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Abstract

Most thresholding algorithms have difficulties
processing images with unimodal distributions. In
this paper an algorithm, based on finding a corner
in the histogram plot, is proposed that is capable
of performing bilevel thresholding of such images.
Its effectiveness is demonstrated on synthetic data
as well as a variety of real data, showing its appli-
cation to edges, difference images, optic flow, tex-
ture difference images, polygonal approximation of
curves, and image segmentation.

1 Introduction

Over the years many image thresholding techniques have
been developed [16], and considerable research continues
nowadays [3, 4, 6]. The reason for this longterm, ongoing
effort is that none of the methods are capable of optimal
performance under all conditions. Although techniques
based on many different principles are available they
all operate under certain implicit or explicit assump-
tions. These assumptions effectively form restrictions on
the successful operation of the thresholding algorithms.
Examples of requirements for bilevel thresholding are
that there should be two distinct modes in the inten-
sity histogram, the peaks should not be too disimilar in
size, and they should be roughly Normal. Since different
computer vision applications produce different types of
images we can expect the success of any thresholding
algorithm to vary according to how well its expected
operating conditions are met.

This paper looks at the case where bilevel threshold-
ing is desired even though the image histogram may only
contain one obvious peak. Although performing thresh-
olding might not seem appropriate in such cases there
are in fact many instances when it is required. Take for
example edge detection, which typically produces many
low magnitude edgels corresponding to non-edges. The
true edges produce a wide range of edgel magnitudes
that will often just create a fat tail on the non-edge
peak in the edge histogram rather than generate a dis-
tinct peak of their own. Another example is change
detection carried out by differencing pairs of images. In

applications such as surveillance the amount of change
will be extremely small if a wide field of view is imaged
and only a small, distant object has moved. Thus the
histogram could contain one enormous peak (no-change)
and one tiny peak (change).

Such applications will cause difficulties for most ex-
isting thresholding algorithms, and there has been rel-
atively little work in such areas [14, 15]. In contrast,
we present in this paper a technique that is specifically
intended to cope with essentially unimodal distributions
rather than the more usual bimodal or multimodal dis-
tributions. Section 2 describes the algorithm and anal-
yses its performance on a variety of types of synthetic
data. In section 3 it is applied to thresholding a range of
types of real data: edges, difference images, optic flow,
texture difference images, polygonal approximation of
curves, and image segmentation. Both the theoretical
and experimental analyses demonstrate the benefits of
the new algorithm for such data.

There is a wide range of thresholding techniques [16].
For instance, Otsu [11] minimises the ratio of the be-
tween class variance to the within class variance of the
two classes. More recently many algorithms based on
maximising some measure of entropy have been devel-
oped [2, 9]. As a last example are those based on the
shape of the histogram, looking for concavities as suit-
able threshold points. Rosenfeld and de la Torre’s [13]
work in this vein is similar to ours, although in contrast
to our approach they specifically attempt to eliminate
unbalanced concavities.

2 Proposed Method

The proposed bilevel thresholding algorithm is ex-
tremely simple. It assumes that there is one dominant
population in the image that produces one main peak
located at the lower end of the histogram relative to
the secondary population. This latter class may or may
not produce a discernible peak, but needs to be rea-
sonably well separated from the large peak to avoid
being swamped by it. A straight line is drawn from
the peak to the high end of the histogram. More pre-
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cisely, the line starts at the largest bin and finishes at
the first empty bin of the histogram following the last
filled bin. If the i’th entry of the histogram is writ-
ten as Hi then the line (xs, ys) → (xf , yf) is defined
as (arg maxi Hi, maxi Hi) → (maxHi=0 and Hi−1 �=0 i, 0).
The threshold point is selected as the histogram index i
that maximises the perpendicular distance between the
line and the point (i,Hi); see figure 2. This is effectively
an application of a single step of the standard recursive
subdivision method for determining the polygonal ap-
proximation of a curve [12].

Several assumptions have been made. First, that the
large class has lower intensity values than the small
class.1 While it is not always realistic to expect this, in
many cases the relative ordering is known. For instance,
in the examples of edge and change thresholding given
in the introduction the large peak corresponds to noise
and is therefore at the bottom end of the histogram.
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Figure 1: Procedure for determining threshold from in-
tensity histogram;
Figure 2: Different distributions used as simple models
in the analysis of the thresholding algorithm

The second assumption is that the main peak has a
detectable corner at its base which corresponds to a suit-
able threshold point. To check the validity of this we
shall first analyse the performance of the technique on
some simple analytic distributions (see figure 2). First
we look at modelling the large peak by a Normal distri-
bution with zero mean and standard deviation σ

G(t) =
1

σ
√

2π
e

−t2

2σ2 . (1)

For simplicity we shall assume that the secondary peak
is small enough and sufficiently well separated such that
we can ignore it. If the threshold is chosen at position t
then we can calculate the probability of error in classi-
fication (i.e. how much of the distribution is above the
threshold) as

P (t) =

∫ ∞
t

G(x)dx∫ ∞
0

G(x)dx
=

1
2

(
1 − erf

t√
2σ

)
(2)

1If they are known to have higher values then the histogram
can obviously be reflected before threshold analysis.

where only the positive half of the distribution (i.e. pos-
itive intensities) is considered. While the Normal is a
common model for the mode we shall also investigate the
effects of other shaped distributions with peaks which
are more or less sharp (i.e. leptokurtic and platykur-
tic). Thus, in a similar manner we model the peak by
an exponential

E(t) =
1√
2σ

e
−

√
2|t|

σ (3)

with a probability of error

P (t) = e
−

√
2t

σ (4)

and as an exponential of the fourth power, giving
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and the probability of error is
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1
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16C2σ4

)
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(
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4

) ≈ 0.2758Γ
(

1
4
, 0.1142

x4

σ4

)
. (7)

To avoid confusion we emphasise that for uniformity
all the distributions have been defined as symmetric
about t = 0 with standard deviation σ. This enables
them to be easily compared against each other. The er-
ror probabilities are doubled as if only the positive half
of the distribution existed, although this does not affect
the comparison.
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Figure 3: Analysis of algorithm on synthetic data; (a)
using a Normal model the effects of perturbing the his-
togram are shown, (b) the thresholds selected under dif-
ferent models (c) the error rate under different models

Figure 3a shows the results of thresholding synthetic
data distributed according to just the Normal model
(plotted as the central continuous curve). Both axes are
in units of σ. The graph illustrates the effect on the
detected threshold value when the far end of the fitted
straight line (xf , yf) ≡ (xf , 0) is shifted. When the end



is very close to the peak the threshold changes rapidly,
but only over a small range (2σ − 3σ). Otherwise if
there is a wider separation between the start and end of
the fitted line the selected threshold is stable. Although
there is a consistent bias to increase the threshold value
as the separation increases, the change is fairly insignifi-
cant. It should be added that, according to the statistics
of the Normal, thresholding around the 3σ level is gen-
erally considered appropriate. The additional curves in
the graph demonstrate the robustness of the approach.
Those marked start were produced by perturbing the
graph so that the start value ys was rescaled by 0.75
or 1.25. The curve marked end (which lies very close
to the uppermost curve) had the end value yf set to
0.2 × ys (directly rescaling yf would mostly have negli-
gible effect). It can be seen in all cases that perturbing
the graph has minimal effect on the selected threshold.
Thus, as long the end of the fitted line is not too close
to the peak then the method works well.

In figure 3b the results of thresholding data from the
three model distributions are given. All are unstable
when there is little separation between the ends of the
fitted line. Increasing the power of the exponent pro-
duces a more stable result. There is little bias according
to the Q(t) model. Referring to figure 2 this is to be ex-
pected since the corner in the Q(t) curve is well defined
whereas the location of the E(t) corner is much fuzzier.

Plotting the error functions (figure 3c) shows that
the algorithm does not work well under the exponential
model. The extreme peak and the poorly defined cor-
ner lead to high error rates (about 10%). In contrast,
the other two distribution models lead to good results,
only breaking down when the end of the line is very
close to the peak (< σ). Thus our analysis predicts that
the algorithm should work well unless the histogram is
sharply peaked.

The proposed thresholding algorithm is now com-
pared with three others from the literature, all of which
are extremely disimilar in nature. Otsu’s [11] is an ex-
ample of the statistical-based approach; Tsai’s [17] is
based on the method of moments; and Kapur et al.’s [9]
maximises the entropy of the partitioned histogram. A
series of 512 × 512 images were synthetically generated
containing pixels from two unevenly sized Normal distri-
butions with mean intensities 80 and 190 and standard
deviation 15. An example histogram is shown in fig-
ure 4a. Figure 4b shows how the thresholds selected
by the algorithms vary as the proportion of the smaller
class to the total image size varies. Not unexpectedly
most have difficulties when the secondary class is very
small. Otsu’s method jumps up to a reasonable level
and stablises there when the small peak’s size is about
2% of the total image size. Tsai’s method gradually
creeps up to a reasonable level only when the peak size
is about 35%. Kapur et al.’s method shoots up to rea-

sonable levels almost immediately, although it does drift
down to marginally underthreshold at the image when
the small peak size is around 10%−40%. The proposed
method is consistently around the 120 level, irrespec-
tive of the peak size. Since it is based on the shape of
the histogram rather than the image as a whole it is
more prone to the variations in the images due to noise.
However, it can be seen that the variations in selected
thresholds are not high.
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Figure 4: Experiments with synthetic image data; (a)
bimodal histogram with ratio of class sizes 1 : 50, (b)
thresholds selected by various methods as a function of
the relative class sizes

3 Examples

Having demonstrated the potential strengths of the pro-
posed algorithm on synthetic data we now show its ap-
plication to a variety of thresholding tasks, this time
involving real data.

3.1 Edges

Figure 5a shows the Lena image, and the result of apply-
ing the Canny edge detector (inverted for display pur-
poses) is given in figure 5b. Due to the non-maximal
suppression stage filtering out secondary edges the his-
togram contains an enormous peak at zero. We elimi-
nated this peak (figure 5c) and modified all programs to
reflect this. The results show that simple thresholding
(no hysteresis was applied) was best performed by the
proposed method.

3.2 Change Detection

The second example is change detection, in which
we have previously applied a related version of the
thresholding method as well as several other new al-
gorithms [15]. Not only is the image sequence poorly
lit (both the original and difference image (figures 6a-b)
have been contrast stretched) but the moving objects
are extremely small (several birds on the grass in the
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Figure 5: (a) Lena image, (b) inverted edge magnitudes,
(c) edge histogram from 1-255, (d) proposed threshold-
ing, (e) Otsu’s thresholding, (f) Tsai’s thresholding, (g)
Kapur et al.’s thresholding

middle and far distance). This makes the difference
histogram look perfectly unimodal (figure 6c). Never-
theless both the proposed method and Kapur et al.’s
method perform well. Tsai’s result is rather noisy while
Otsu’s breaks down altogether.

3.3 Optical Flow

Related to the example above, change detection is car-
ried out in this case using the magnitude of the optical
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Figure 6: (a) SRDB018 first frame, (b) inverted dif-
ference image, (c) difference histogram, (d) proposed
thresholding, (e) Otsu’s thresholding, (f) Tsai’s thresh-
olding, (g) Kapur et al.’s thresholding

flow calculated by Anandan’s algorithm [1]. This time
since the helicopter in the image centre is being tracked
(figure 7a) most of the image changes over the sequence,
and so the the flow magnitude image is inverted before
thresholding (figure 7b). It is clear that there cannot be
perfect discrimination between the helicopter and the
foreground. However, considering this, the result by the
proposed thresholding method is good. Kapur et al.’s
result is slightly inferior while Otsu and Tsai’s results
are markedly so.
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Figure 7: (a) chopper frame 6, (b) inverted magnitude
optic flow, (c) flow magnitude histogram, (d) proposed
thresholding, (e) Otsu’s thresholding, (f) Tsai’s thresh-
olding, (g) Kapur et al.’s thresholding

3.4 Texture

As well as small regions of difference arising from change
they can also arise from feature detection. This example
creates a texture model, corresponding to an object or
region of interest, and then calculates texture differences
over the image relative to the model.

The image in figure 8a shows an aerial view of the
RADIUS modelboard. A texture spectrum model [18]
was trained from a small region containing parked cars.

The differences between this and local texture spectra
is shown (after inversion) in figure 8b. The histogram
(figure 8c) contains a large peak of middling distance
values, with tails giving relatively few small and large
distances. We wish to detect the large distances (i.e.
close matches since the difference image was inverted)
to find other instances of cars in the image. Both the
proposed algorithm and Kapur et al.’s algorithm work
well, while both Otsu’s and Tsai’s thresholding totally
breaks down (in the context of the task).
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Figure 8: (a) RADIUS K3 image, (b) inverted texture
distance, (c) histogram, (d) proposed thresholding, (e)
Otsu’s thresholding, (f) Tsai’s thresholding, (g) Kapur
et al.’s thresholding

3.5 Polygonal Approximation

The application of the thresholding method has al-
ready been successfully applied by Hill and Taylor [7]
to the polygonal approximation problem. Rather than



thresholding an image based on its histogram they
used it to select an appropriate critical level for Zhu
and Chirlian’s [20] dominant point detection algorithm,
analysing the histogram of the number of detected
points indexed by the critical level.

We demonstrate further application of the approach
to different polygonal approximation algorithms by
Douglas and Peucker [5], Melen and Ozanian [10],
Ramer [12], and Zhang et al. [19]. Figure 9 shows
the histograms of the number of lines indexed by the
algorithms’ selected input parameters; these are dis-
tance threshold, filter size, distance threshold, and win-
dow size respectively. The algorithms are run until the
resulting segmentation contains three lines, the mini-
mum reasonable segmentation for a closed curve. Since
the shapes of the histograms do not always follow the
thresholding algorithm’s expectations some of the re-
sulting polygonal approximations are poor. The Dou-
glas and Peucker histogram has a very fat tail, although
the result is still good. The Melen and Ozanian his-
togram is very noisy, and given such discontinuities it
is to be expected that the parameter selection process
is unreliable. Although the Ramer histogram is well
shaped the best defined corner in the histogram incor-
rectly sets the algorithm’s distance parameter. Finally,
the Zhang et al. histogram is also well shaped, and the
result is reasonable although slightly oversegmented.

Since it is rather harder to judge the quality of the re-
sults of polygonal approximation compared to the other
thresholding tasks several additional examples are given
for the two better suited algorithms (see figure 10). The
results are fairly consistent; the threshold algorithm se-
lects good but rough approximations from the Douglas
and Peucker algorithm and more detailed segmentations
from the Zhang et al. algorithm.

3.6 Image Segmentation

In a similar manner parameter selection can be per-
formed for image segmentation algorithms. In this ex-
ample the split and merge [8] algorithm is applied to the
angiogram image in figure 11a, and histograms are be
formed by running through a range of the input param-
eters: the split and merge thresholds which in this in-
stance are set equal to each other. Figure 11b shows the
RMS histogram calculated as the differences between
the original and segmented image (reconstructed using
mean region intensities). Whereas this does not appear
suitable for analysis using our method, the histogram
of number of regions has the correct shape (figure 11c).
The selected segmentation (reconstruction and bound-
aries) is shown in figure 11f-g, and looks reasonable
(given the limitations of the split and merge algorithm).
For comparison with that output, the results are also
given for the input parameter divided and multiplied by
a factor of three (figure 11d-e and figure 11h-i). The
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Figure 9: Plots of number of approximating lines against
input parameter for various algorithms, and the approx-
imation selected by the proposed algorithm; (a) and (b)
Douglas and Peucker, (c) and (d) Melen and Ozanian,
(e) and (f) Ramer, (g) and (h) Zhang et al.

segmentations appear over- and under-segmented, in-
dicating that the proposed algorithm at the very least
approximately located the correct parameter value.

4 Discussion

A simple thresholding algorithm has been described.
Unlike the majority of thresholding algorithms it is suit-
able primarily for essentially unimodal distributions.
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Figure 10: Polygonal approximations obtained using al-
gorithms: (a) and (c) Douglas and Peucker; (b) and (d)
Zhang et al.

Tests on synthetic data showed the feasibility of the
approach. As long as 1) the mode is not so broad
as to fill most of the histogram, and 2) the mode is
not too strongly peaked (e.g. it is not exponential)
then the mode is likely to contain a corner at its base
that can be detected and is also a suitable threshold.
Further tests were carried out on real data to select
thresholds or other input parameters for various com-
mon tasks such as edge detection, change detection, tex-
ture detection, and the segmentation of curves and im-
ages. These demonstrated that the proposed technique
worked well, often better than some standard threshold-
ing algorithms that were run for comparison.

A possible remedy to the errors caused by strongly
peaked histograms is to prescreen them so as to detect
them, and signal their unsuitability for processing by
the proposed algorithm. The degree of peakiness can
be measured by the kurtosis κ = µ4

σ2 − 3 of the distri-
bution; κ > 0 indicates greater peakiness than a Nor-
mal. In cases such as the edge detection example, where
the approximate exponential (before removing bin 0) is
one-sided, the histogram should be duplicated and re-
flected about the Y-axis to obtain a symmetric double
exponential distribution. To avoid discrepancies arising
from other entries in the histogram (e.g. a fat tail or sec-
ondary peak) the histogram could be truncated. Trun-
cating at t (in units of σ) gives the following expressions
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Figure 11: Split and merge segmentation of 128 × 128
angiogram; (a) original image, (b) histogram of RMS er-
ror versus threshold (c) histogram of number of regions
error versus threshold (d) and (e) segmented image at
threshold value 50, (f) and (g) segmented image at se-
lected threshold value 150, (h) and (i) segmented image
at threshold value 450

for the kurtosis of the double exponential distribution
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When they are plotted out (figure 12a) it is seen that
as long as the truncation is not too severe (> 3σ) the
kurtosis values can be estimated sufficiently well to be
able to identify excessive peakiness. Applying this to
the histogram produced from the full edge map in fig-
ure 5b (i.e. the raw histogram including bin 0) gives
consistently high values of kurtosis for a range of trun-
cation values (see figure 12b). If bin 0 is deleted and
the histogram shifted down one (H ′

i = Hi+1) then the
measured kurtosis values of the modified histogram are
much closer to those expected for a Normal distribution.
The truncation point can be selected as 3σ with σ esti-
mated from the complete histogram. From figure 5b we



get σ = 20.8 which gives κ = 13.2, clearly indicating an
excessively sharp peak.
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Figure 12: Kurtosis of truncated distributions; (a) the
double exponential distribution, (b) the edge magnitude
histogram of lena

A second area of investigation is the properties be-
ing histogrammed. So far we have mainly demon-
strated image intensities (although these have been de-
rived from different sources according to the various ap-
plications). However, as the polygonal approximation
example demonstrated, other properties can also be his-
togrammed although not all are suitable. In that case
RMS values were considered, and found not to be use-
ful for the thresholding algorithm. Previously we have
performed thresholding for change detection in which it
was found that the image’s Euler number as a function
of threshold was a suitable input to the thresholding
algorithm [15]. Many other such properties could be in-
vestigated as potentially useful for enabling thresholding
of images where the intensity histogram is unsuitable.
Some examples are the spatial randomness of the thresh-
olded image (compare Rosin [15]), the average separa-
tion between thresholded regions, and shape properties
of the regions such as average size, compactness, etc.
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