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Abstract

Superellipses can be used to represent in a compact form a large variety of shapes, and are useful

for modelling in the fields of computer graphics and computer vision. However, fitting them to data is

difficult and computationally expensive. Moreover, when only partial data is available the parameter

estimates become unreliable. This paper attempts to improve the process of fitting to partial data by

combining gradient and curvature information with the standard algebraic distance. Tests show that

the addition of gradient information seems to enhance the robustness of fit and decrease the number

of iterations needed. Curvature information appears to have only marginal effects.

Index Terms– superellipse, fitting, optimization, objective function, algebraic distance

1 Introduction

Image feature extraction is an important part of a computer vision system. The accuracy and reliability
of the scheme used for representing the features can have a profound impact on the higher level processes
built on top. Curves are a common feature type, and provide a convenient representation of edges
consisting of individual pixels, allowing easy manipulation at later processing stages. An interesting
abstraction of curves is the superellipse. Its equation (assuming the canonical position: centred on the
origin with its axes aligned with the co-ordinate system) is
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and was discussed by Gabriel Lamé as long ago as 1818, but it was not until this century when it
was popularised. This took the form of successive waves, starting with its introduction to design by
the Danish artist/poet/scientist Piet Hein, and continuing onto recreational mathematics [1], computer
graphics [2], and computer vision [3]. The advantage of the superellipse is that it provides a fairly
compact parameterisation that still enables a wide variety of shapes to be represented. In fact, it has
been claimed to “combine ‘the best’ of the circle, the square, the ellipse and the rectangle”, all of which
can be represented by (1). Some further examples of well known curves that can also be represented are
the Astroid (ǫ = 3

2 ) and the Witch of Agnesi (ǫ = 3
2 ). Unfortunately the superellipse’s disadvantage is

the highly non-linear nature of ǫ.1 In particular, fitting is complicated and problematic since iterative
methods are required. But even just for the generation of curves difficulties arise, for instance in producing
(approximate) equal-distance sampling [4, 5].

In this paper we are particularly interested in superellipse curve fitting, i.e., estimating its parameters
from a given set of pixel data. Most commonly the least squares solution is found [6, 7, 8]. This is

1For rational exponents the curve is algebraic while irrational exponents produces transcendental curves.
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achieved by finding the set of model parameters that minimise the sum of the squares of the distances

between the model curve and given pixel data. The notion of distance can be interpreted in various
ways and Rosin and West [9] investigate several examples. The Euclidean distance between a pixel and
the point on the curve closest to it is probably the most suitable measure. Unfortunately finding this
distance is generally very time consuming and therefore is rarely used. Even for ellipses it requires solving
a quartic equation, while for superellipses we have no closed form solution. A simpler but still effective
measure is the algebraic distance given by

Q0(x, y) =
(x
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2
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− 1. (2)

The best fit superellipse is determined by finding the parameters which minimise the objective function
Q2

0(x, y). One of the main problems with the algebraic distance is that it results in different distance
estimates for different parts of superellipse curves depending on the local curvature of the curve. Many
distance measures have been suggested to compensate the inaccuracy but none of them are totally satis-
factory [10]. The inaccuracies of the distance approximations are not such a serious problem when they
are adopted for fitting superellipses with relatively complete pixel samples (i.e. large parts of the data
are not occluded). This is because errors in parameter estimation caused by measuring pixels opposite
to each other (with respect to the centre of the superellipse) tend to cancel each other.

Realistic applications frequently require fitting based on pixel data covering only parts of superellipses.
In such cases, a conventional fitting approach using the conventional algebraic distance measure often
leads to a gross misestimation. Figure 1 shows an example of such an error. It can be seen from the
figure that, although the estimated superellipse has a centre far away from the true centre (it is off the
page to the left), the estimated superellipse fits the visible pixels reasonably well. Unfortunately, such an
estimation would be deemed unsatisfactory for many applications.

A reasonable mathematical explanation of this phenomenon is that, in these cases, the algebraic
distance measure results in error functions with a very flat error surface (or even local minima) surrounding
the global minimum. Thus it is hard for conventional hill-climbing estimation techniques to converge to
the true parameters. A natural idea to attack this problem is to somehow recondition the error surfaces
to make the global minimum easier to find. This can be achieved by incorporating extra “distance”
information. In this paper, we propose a modification scheme based on introducing higher order derivative
information and demonstrate experimentally that it does aid superellipse fitting to partial data. The
proposed scheme still allows the distance measure to be calculated in closed form (although the overall
superellipse fitting remains iterative) and is therefore computationally attractive.

2 Proposed Scheme

2.1 Rationale

A problem with fitting superellipses to partial data using the conventional algebraic distance is that this
error landscape does not provide enough information to guide the optimisation process. The conventional
algebraic distance measure treats pixels as individual data points and relations between pixels are not
exploited. However, incorporating these relations is potentially very useful for curve fitting. In particular,
the local gradient and curvature of a superellipse are functions of its parameters. Therefore, examining
the gradient and curvature features of points on a curve should also reveal information about the true
parameters. For example, a segment of curve containing a sharp corner (a few points with substantial
curvature surrounded by many points with much lower curvature) indicates a very small ǫ.

In order to utilize such information, reasonable gradient and curvature “distance” measures need to
be defined. The next section devises these distance measures, which take the same form as the algebraic
distance measure. We demonstrate that these distance measures can be easily combined together and
used in an iterative parameter estimation algorithm.

Needless to say, the generalised distance measure will result in a different error surface in the parameter
space. The expectation is that by combining different sources of information the new error surface will
be better adapted to fitting partial data than the error surface produced by the conventional distance
measure.
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2.2 Modified Objective Functions

For generality, we first adopt a more general form of the algebraic distance which includes superellipses
not in the canonical position

Q0(x, y) =

[

(x− xc) cos θ − (y − yc) sin θ
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where (xc, yc) are the coordinates of centre of the superellipse and θ is the degree of rotation. To simplify
the expression of the following derivation, we define the one-to-one transformation T (xc, yc, a, b, θ, ǫ) from
the original space to a new {X,Y } space:








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Notice that transformation T does not only shift, rotate, and rescale superellipses but also transforms
them into circles (due to the effect of ǫ in the transformation) in the XY domain. As a result, we have the
following relationship between an algebraic distance to a unit circle in the XY domain and the Q0(x, y)
in the xy domain:

Q′

0(X,Y ) = X2 + Y 2 − 1 = Q0(x, y) (5)

In other words, we have performed a normalisation to transform the problem to circle fitting in the XY
domain. Since the inverse mapping T−1(xc, yc, a, b, θ, ǫ) exists and is one-to-one as well, the xy and XY
notations are theoretically interchangable in mathematical expressions. In the rest of the paper, we will
mainly base our discussion in the xy domain but use the XY notations in places for clarity.

The conventional algebraic distance is calculated by evaluating Q0(u, v), where (u, v) is the coordinates
of the point in question. If point (u, v) is on the superellipse described by Q0(x, y) = 0, then Q0(u, v) = 0,
in other words the algebraic distance from (u, v) to Q0(x, y) = 0 is 0. Otherwise, Q0(u, v) 6= 0. Hence,
curve fitting can be achieved by minimising objective function Q2

0(x, y).
The principle contribution of this paper is to extend the concept of algebraic distance to incorporate

a measure of the local shape of the curve in terms of gradient, curvature, etc. In order to achieve this,
we first look at the unit circle in XY space. For any point on the unit circle, (U, V ), we have

U2 + V 2 = 1, (6)

and (U, V )can be expressed in parametric form as
{

U = cos t
V = sin t.

(7)

By differentiating both sides of equation (6) with respect to t we have
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Notice that from Equation (7) we get (U ′

t)
2 + (V ′

t )
2 = 1, giving

(UU ′′

t + V V ′′

t + 1) = 0. (10)

Let Q1(x, y) = XX ′

t +2Y Y ′

t and Q2(x, y) = XX ′′

t +Y Y ′′

t +1. Thus, in a similar manner to the algebraic
distance, at any point, (u, v), on the superellipse Q0(u, v) = Q1(u, v) = Q2(u, v) = 0. In general, for any
point off the superellipse Q1(x, y) 6= 0 and Q2(x, y) 6= 0, although depending on the values of X ′

t, Y
′

t , X
′′

t

and Y ′′

t this may not hold. In contrast, Q0 is guaranteed to be non-zero for all points off the superellipse.
The above suggests that we can introduce Q1 and Q2 into our objective function for minimisation.

One way to achieve this is to use a linear combination. For example, we can define a new objective
function in the XY domain (although written as F (x, y))

F (x, y) = (1− w1 − w2)Q
2
0(x, y) + w1Q

2
1(x, y) + w2Q

2
2(x, y) (w1, w2 ≥ 0 and w1 + w2 ≤ 1) (11)
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so that the curve fitting problem is now to minimise F (x, y), which involves simultaneously minimising
Q2

0(x, y), Q
2
1(x, y), and Q2

2(x, y).
The purpose of the objective function is to measure how well the gradient and curvature of a given

data set fits a theoretical superellipse model. However there is no need for us to explicitly calculate the
theoretical values of X ′

t, Y
′

t , X
′′

t , and Y ′′

t . All that is needed is to estimate them from the data set and
evaluate Q1 and Q2 accordingly.

It should be pointed out that the reduction of F (x, y) does not necessary lead to the reduction of a
given distance measure (say, the Euclidean distance) in the xy domain. However, an exact fit in the XY
domain (F (x, y) = 0) does guarantee an exact superellipse fit in the xy domain.

2.3 Application of the Levenberg-Marquardt Algorithm

The problem of curve fitting is achieved by finding a set of parameters which minimises an objective
function. As pixel data are given, x and y are no longer treated as variables during parameter estimation.
Instead, F should be expressed as functions of the unknown parameters. For the superellipse model given
earlier, there are six parameters, namely, xc, yc, a, b, θ, and ǫ. Our objective function, therefore, should
be expressed as F (xc, yc, a, b, θ, ǫ) and it is non-linear.

To minimise the non-linear objective function, we have applied the well-known Levenberg-Marquardt
iterative algorithm [11]. This has become a standard algorithm for non-linear optimisation due to its
robustness and efficiency obtained by a clever combination of the steepest descent method and Newton’s
algorithm. The former have rapid convergence but tend to overshoot unless provided with a good initial-
isation. On the other hand, Newton’s Hessian based method initially has slow convergence, but speeds
up closer to the minimum. In the Levenberg-Marquardt algorithm, when the results are far from the
minimum the method of steepest descent essentially determines the step size. As the solution approaches
the minimum the Hessian matrix has more effect on determining the step size.

The Levenberg-Marquardt algorithm requires the analytic expressions of ∂F
∂pi

and ∂2F
∂pi∂pj

, pi being the

six parameters. As
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t
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One might think that the terms X ′

t − Y and Y ′

t +X on the right hand side of the equation are always
zero (as X ′

t = Y and Y ′

t = −X) and therefore part of the right hand side is redundant. However, when
evaluating the right hand side (X ′

t, Y
′

t ) is derived from (X,Y ) which in turn is worked out by using the
current estimate of the parameter set (xc, yc, a, b, θ, ǫ). Equations X ′

t − Y and Y ′

t +X will be zero only
when the true (xc, yc, a, b, θ, ǫ) is found.

It is a convention that second derivatives can be omitted in the Levenberg-Marquardt iteration [11].
Therefore,

1

2
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Derivation of ∂X
∂pi

and ∂Y
∂pi

is straightforward, and is therefore omitted.

In each Levenberg-Marquardt iteration, X ′

t, Y
′

t , X
′′

t , and Y ′′

t are re-estimated from the transformed
data (i.e. (X,Y )) in order to evaluate ∂F

∂pi
. Currently, (X ′

t, Y
′

t ) is estimated by fitting a line to (X,Y )

using linear regression [12]. This introduces another parameter, namely, the width of the observation
window. The optimal window size is expected to depend on the noise level of the input data. It is
possible to implement the estimation in an O(N +W ) fashion, N being the number of pixels and W the
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width of window. In the same way (X ′′

t , Y
′′

t ) is estimated by fitting a line to (X ′

t, Y
′

t ).
2

Compared to fitting just the standard algebraic distance Q0 the total time complexity for each
Levenberg-Marquardt iteration only increases by a small constant. Of more importance, preliminary
tests on partial data show that introducing the higher order features (particularly the gradient informa-
tion) dramatically reduces the number of iterations required for the Levenberg-Marquardt algorithm to
converge, providing an overall speedup.

Providing good initial guesses of the model parameters for the Levenberg-Marquardt algorithm should
reduce the amount of Levenberg-Marquardt iterations required. We use the least-squares ellipse fit to
the data [13] to provide estimates for xc, yc, a, b, and θ. The initial guess of ǫ is always set to 0.5, the
centre point of the range of ǫ we consider. This procedure is efficient (its time complexity is linear in the
number of points) and provides reasonable estimates for most of the parameters.

3 Experimental Tests

3.1 Test data generation

In order to carry out extensive tests, 4000 synthetic data sets were used, each containing around 1000
points. Some examples are shown in figure 2. As an initial attempt, it is sensible to focus our attention
only to some of the possible tests. The following specify the extent of this investigation.

Added noise – In practice, errors in pixel data are inevitable due to sampling error, noise existing in
original image, etc. To simulate this, the procedure for generating data is as follows:

1. Perfect superellipses are synthesised for different instances of the parameter values. The centre
is fixed at (xc, yc) = (400, 400), and b = 100. The remaining parameters are evenly sampled:

• a values in range: [150, 260] pixels, increment: 10

• ǫ values in range: [0.1, 1.0], increment: 0.1

• θ values in range: [0, 3] radians, increment: 0.3

The co-ordinate data (in the range [0, 800]) is quantised to integer form and plotted in an
image.

2. The interior of the superellipses is flood-filled and the resulting binary image is blurred slightly
by Gaussian smoothing (σ = 2).

3. Gaussian noise (σ = 20) is added to the image pixel values.

4. The image is thresholded, and the noisy superellipse boundary extracted.

Magnitude of ǫ – It is not difficult to appreciate that a particular curve segment can frequently be
approximated by two superellipses with two different values of ǫ, one larger than 1 and the other
less than 1. To simplify and speed up testing we only generate ǫ < 1.

Portion of superellipse used and its location – Tests have shown that both the standard and new
least squares schemes do not perform very well when, for ǫ < 1, less than two (rounded) corners
are present in the data. We believe that this is because the data surrounding the corners provides
the majority of the information concerning the shape of the superellipse. We set the amount of
data present to 60% (i.e. a subtended angle of 216◦) to ensure that a reasonable amount of corner
information is available.

Variation of parameter a and b – It is our believe that the performance of the scheme will remain
roughly the same as long as a/b remains constant. We therefore fix the value for b to 100 and only
vary a when generating superellipses.

3.2 Test setup

The performance of this proposed scheme can be affected by many algorithm parameters such as the
values of w1 and w2. Four aspects are outlined below.

2An alternative would be to estimate the curvature by fitting a circle directly to the curve segment.
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Weights w1 and w2 – Weights w1 and w2 can be set to various possible values. As gradient and
curvature features are estimated values which contain error, large w1 and w2 values are unlikely to
be appropriate. Here, we only investigate w1 and w2 within the range of 0 ≤ w1, w2 ≤ 0.3.

Selection of window sizes for gradient and curvature estimation – To estimate local gradient and
curvature features at each point, it is necessary use additional neighbouring points in addition to
the central point. Setting the optimal window size is problematic – the presence of noise makes
small windows unreliable while large windows distort the local line fitting. After some investigation,
we have set the window size for gradient and curvature to 101 which corresponds to 5− 10% of the
curve.

Dealing with unevenness of pixel distribution – Definition (4) can be viewed as a transformation
from the input xy domain to the XY domain. Assuming the original pixels in xy are evenly dis-
tributed along superellipse curves, the transformed pixels in XY are unlikely to be distributed
evenly [4, 5]. This means that mid-point pixels may not actually be at the centre of gradi-
ent/curvature estimation windows, which may result in estimation errors. Currently, no effort
has been made to remedy the situation, assuming the imbalance is insignificant.

Estimation of gradient and curvature at segment ends – Estimation of gradient and curvature
requires multiple neighbouring pixels. At both two ends of data segments, some neighbouring
pixels are not available. In general, there are two ways to solve this problem during curve fitting.
The first one is to ignore all pixels which have insufficient neighbouring pixels. This may result in
the loss of important information. The other one is to estimate using information available. We
have chosen to duplicate the nearest end pixel to replace missing pixel neighbours.

3.3 Test results

Examples of fitting to the data are shown in figure 2. The extreme errors that often arise are evident. A
more quantitative assessment is provided by the following graphs. They show the quality of the various
parameter estimates as the parameters of the data are varied as well as the parameters of the algorithm.
The centre errors are calculated as the Euclidean distances between the true and the estimated centre
co-ordinates, and the orientation error is measured in radians. The general performance of the algorithm
is tested on the full data set of 4000. Further testing of specific variations in the algorithm or data was
carried out on subsets of between 750 and 1500 data sets.

General performance

The first set of tests was done using a window size of 101 for gradient and curvature estimation. Figure 3
shows the test results for four different w1/w2 combinations. They represent tests on all the test data
generated using the various model parameters shown on the abscissa. The two rows display the estimation
errors of the parameters as functions of a and ǫ. Assuming b fixed, these are the only shape parameters
as opposed to pose parameters. Several observations can be made:

• Overall, it is evident that the introduction of the gradient/curvature features has significantly
reduced the estimation error of all the individual parameters.

• Estimation error of a generally increases as a (or ratio a/b) increases. This means that superellipses
with a large aspect ratio are more difficult to fit.

• The estimation error of θ generally decreases as a increases. This is easy to understand as more
elongated superellipses have a better defined orientation – the orientation of circles can not be
estimated.

• For low squareness values (ǫ ∈ [0, 0.5]) – i.e. more rectangular shapes – the inclusion of gradient
information/curvature improves the estimation accuracy, while for larger squareness values (ǫ ∈
[0.6, 1]) – i.e. more elliptical shapes – estimation accuracy is reduced.

• There is an inherent dependency between the estimated major axis a and the center, which is
evident in these figures.
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Impact of w1 and w2 variation

A second set of tests have been carried out to reveal the effect of varying w1 and w2. Figures 4 and 5
show the performance as a function of one of the weights while the other is kept fixed. It appears that the
introduction of a small amount of gradient information (w1) improves performance – errors are reduced
by a factor of two or three. Increasing w1 beyond ≈ 0.1 produces no further benefit. Including curvature
(w2) in addition to gradient information makes little difference, and no across the board improvement
for all the parameter estimates was found.

Impact of window size variation

Figure 6 shows the effect of varying the size of the window within which the line fitting is performed to
estimate the gradient and curvature information. It is seen for this data set that the best performance is
achieved around 100 (which corresponds to 5− 10% of the curve) although we would expect this to alter
for different data sets. It can be seen that greater errors are incurred by too large a window (resulting in
blurring of the corners) rather than too small a window (insufficient noise suppression).

Impact of noise level variation

Since the proposed method requires the estimation of gradient and curvature information there is the
concern that it will be overly sensitive to noise. Figure 7 shows the effect of modifying the noise level in
the data generation procedure. As expected, adding large amounts of noise does increase the error rate.
However, the algebraic distance augmented by the gradient and curvature information retains higher
accuracy of the parameter estimates.

Impact of variation in completeness of data

We previously showed that fitting superellipses using the algebraic distance appears to breakdown when
less than 60–70% of the data is present [10]. Figure 8 shows the results of testing the standard and
augmented algebraic distances. It can be seen that the standard algebraic distance performs better as
long as 70% or more of the data is present. When less than 70% is available all fits noticeably degrade, but
those using the gradient information do not exhibit such a sharp breakdown, and consequently provide
consistently better estimates.

Impact on efficiency

Earlier we hypothesised that augmenting the algebraic distance could improve the shape of the error
surface, and thereby aid convergence. This is verified by figure 9 which shows that the number of
iterations is considerably reduced. Only a small amount of gradient information (w1 = 0.05) is necessary
to halve the number of iterations. Despite the overhead of the additional gradient calculations the overall
computation time is still reduced.

3.4 Fitting to Real Data

We finish with an example of applying the fitting techniques to real data. A set of edges are extracted
from the image in figure 10. The results of the fits are overlaid on the data, and plotted both when the
standard algebraic distance is used (figure 11) and when gradient information is incorporated (figure 12).
It can be seen that about half of the estimated superellipses are similar for both methods, while most
of the remaining fits are better when gradient information is used. The majority of these correspond to
data which are short or have low curvature, and the algebraic distance fits tend to overestimate the value
of the major axis (compare the high curvature bias problem that arises with ellipse fitting [14]).

3.5 Application to Classification

A final test of the fitting technique is given in a classification example. Figure 13 shows a variety of
seeds and beans to be distinguished; the complete data set contained 260 samples with between 25 and
30 samples for each of the nine classes. The resolution is relatively low: each sample is between 20 and
50 pixels in length. To make the process scale invariant only intrinsic shape parameters are used. Since
the seeds and beans have similar shapes and moreover display considerable intra-class variability this is a
difficult classification task. Previously, we performed classification on a similar data set using Murthy et
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al.’s oblique decision trees [15] applied to various shape measures [16]. Rerunning the experiment using
the best performing two shape measures (ellipticity and rectangularity as defined in [16]) the classifier gave
53.85% accuracy using 10 fold cross-validation. Including squareness as determined from the superellipse
fits (w1 = 0.1 and w2 = 0) boosted performance to achieve 57.31%.

4 Conclusions

Reliably fitting superellipses to partial data is both difficult and computationally expensive, requiring
iterative techniques to minimise some objective function. We have described an approach that augments
the standard algebraic distance commonly used as the objective function to incorporate gradient and
curvature information. It was found that by adding just a small amount of gradient information to the
algebraic distance both the quality of the fit was improved and the computation time was decreased.
Tests showed this to hold i) over a range of noise levels, and ii) under conditions where less than 70%
(i.e. a subtended angle of 252◦) of the data is present.
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Figure 1: Gross misestimation of centre

Figure 2: Examples of superellipse fits to partial data; the fit using the standard algebraic distance
(w1 = 0 and w2 = 0) is drawn in black, the fit incorporating gradient information is drawn in gray
(w1 = 0.1 and w2 = 0)
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Figure 3: Mean errors in parameter estimates
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Figure 4: Effect of varying weight w1 with w2 = 0
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Figure 5: Effect of varying weight w2 with w1 = 0.1
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Figure 6: Effect of varying window size
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Figure 7: Effect of varying noise levels
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Figure 8: Effect of varying amounts of missing data
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Figure 9: Reduction in mean number of iterations when gradient information is included

Figure 10: Test image with extracted contours
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Figure 11: Fitted superellipses without using gradient information: w1 = 0 and w2 = 0

Figure 12: Fitted superellipses using gradient information: w1 = 0.05 and w2 = 0

Figure 13: Examples of seed and bean data with fitted superellipses overlaid; (1) almond, (2) chickpea,
(3) coffee bean, (4) lentil, (5) peanut, (6) corn kernel, (7) pumpkin seed, (8) raisin, (9) sunflower seed.
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