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Abstract

In the literature, methods for fitting superellipses to data tend to be computationally
expensive due to the non-linear nature of the problem. This paper describes and tests
several fitting techniques which provide different trade-offs between efficiency and accuracy.
In addition, we describe various alternative error of fits (EOF) that can be applied by most
superellipse fitting methods.
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1 Introduction

A goal in low level vision is to represent image features such as edge lists by compact and
expressive primitives. Although straight lines are commonly used they have shortcomings if
the objects in the scene or the object models contain more complex curved parts. This has
lead to higher order primitives such as circles, ellipses, and splines. This paper discusses the
superellipse, which can be defined as
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With only one additional parameter (ǫ) this extends the ellipse to cover a range of shapes
including rectangles, ovals, ellipses, and diamonds. Moreover, a greater gamut of shapes can be
achieved by allowing parameterised deformations such as tapering, bending, etc. [2]. However,
there is one disadvantage, namely the introduction of the nonlinear parameter makes parameter
estimation more difficult. In general a closed form solution is not possible. The literature
contains a number of approaches to fitting superellipses such as gradient descent [5], Powell’s
direction set method [15], simulated annealing [20], exhaustive search [9], and point distribution
model fitting [10]. Not only are they prone to finding suboptimal solutions, but they are all
computationally expensive. In this paper we describe three aspects of fitting superellipses.
First is the case where data covering the complete superellipse curve is available, which enables
simpler more efficient fitting methods to be employed than otherwise possible. Second, we
describe an approach to simplify the full 6D optimisation technique previously used to just a 1D
optimisation. Next we survey, introduce, and compare nine error of fit (EOF) measures which
can be used by fitting algorithms such as most of those listed above. Finally, we extensively test
our methods on synthetic data to quantify their relative performances. In addition, the EOFs
are compared by a set of quantitative assessment criteria.
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2 Fitting to Complete Data

2.1 Area Based Method

If data covering the complete curve is available then most of the superellipse parameters can be
obtained by geometric means rather than fitting functions, thereby avoiding selecting distance
approximations which need to be iteratively minimised. There are various scenarios in which the
complete curve data can be expected to be available. One is industrial inspection, in which the
set-up is often controlled such that the object is not occluded. Another instance is when a larger
figure has been decomposed into regions which are to be represented symbolically. Examples
of applying superellipse/superquadric fitting to figure subparts are given in Pentland [9] and
Bennamoun and Boashash [3].

Our approach is based on the minimum bounding rectangle (MBR) (i.e. the rectangle with
minimum area that contains all the data). Determining the rectangle involves first finding
the convex hull, which for an n-gon is O(n) [11]. Then the MBR can be found using Tous-
saint’s optimal linear algorithm [18]. The MBR provides all the superellipse parameters (axis
lengths, centre, and orientation) except for squareness (ǫ). Similar to the method of moments
approach [7] for estimating the parameters of ellipses and other features we estimate the value
of ǫ by calculating the area of the superelliptical region in the image and comparing it against
the theoretical area which is
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To circumvent difficulties in inverting this equation we approximate the complex hypergeometric
series by its first two terms [1] 2F1(a, b, c; z) ≈ 1 + abz

c
which when substituted into (1) gives

ǫ = 1 − t ±
√
t2 − 6t+ 5 where t = A

4ab . For ǫ > 0 we know that t < 1 which results in
the two solutions having opposite signs, from which we keep only the positive solution. The
errors introduced by truncating 2F1 are evident in figure 1 which plots the estimated values as
a function of ǫ (the error is independent of a and b). For ǫ < 1.8 the estimates could be easily
improved by a linear correction. As an alternative, we have chosen to use a table lookup with
linear interpolation to correct the estimates. We note that the recent approach by Voss and
Süße [19] also uses moments for fitting all the parameters of a superellipse except for ǫ which is
iteratively estimated afterwards.
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Figure 1: Estimated values of ǫ

2.2 Diagonal Based Method

We present another closed form method for estimating ǫ. The method just described has the
disadvantage that any irregularities along its boundary are likely to distort the measurement of
the area, and therefore affect the estimated value of ǫ. The second method only uses four points
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along the boundary and is potentially less sensitive to such variations as the estimate will only be
corrupted if these four points are incorrect. The position of the boundary points is a function of
their orientation as well as the superellipse parameters. For the specific case of the intersection
of the boundary with the diagonal of the superellipse’s MBR the equation is (xi, yi) =

1

2
ǫ

2

(a, b)

which can be easily inverted to provide an expression for squareness, ǫ = 2
log a

xi

log 2 . We determine
the four intersection points of the boundary with the diagonals, obtaining four estimates of ǫ.
The final estimate is taken as the median, providing some robustness to noise.

3 Fitting by 1D Optimisation

In an attempt to speed up the full 6D optimisation approach to fitting superellipses that we
took previously [15] we describe here a 1D optimisation approach. It is based on defining the
shape of the superellipse as a weighted average of an ellipse and a rectangle (for 0 < ǫ ≤ 1).
We fit an ellipse and a rectangle to the data to provide parameter estimates at these extremes.
The simplifying assumption is that for superellipses at intermediate values of ǫ their remaining
parameters will also lie at corresponding intermediate values. This enables a 1D search (Brent’s
method [12] is used) over 0 < ǫ ≤ 1 where simultaneously the other parameter values are
determined by linear interpolation of their values at the extremes of ǫ in order to minimise the
error of fit.

The initial ellipse is determined using the recently developed ellipse-specific fitter [4]. The
same method is used to initialise the 6D optimisation approach to fitting that will be tested
in section 5. Fitting the initial rectangle is more problematic as we want a simple, reliable,
and efficient method that can be applied to partial data. Although this rules out the minimum
enclosed rectangle that we used for complete data we again make use of geometric methods. Like
before we start by finding the convex hull. Next we determine the diameter (i.e. the most distant
antipodal pair of points) of the convex hull which contains m points. This takes O(m) time [11],
so that the overall running time for processing the edge list of n points remains as O(n). The
diameter corresponds to the diagonal of the rectangle, and so the point of maximum deviation
from the diagonal will be a corner of the rectangle. This directly provides three corners, and
therefore the final corner can be found by symmetry.

With the rectangle fitting, in practise we found unacceptable errors were incurred for even
moderate amounts of rounding of the rectangle’s corners (i.e. for moderate values of ǫ). Some
improvements were made by robustly fitting straight lines between the corners using the least
median of squares (LMedS) method. Nevertheless, initial experiments with the overall optimi-
sation revealed that it performed very poorly. It seemed that the parameter estimates of the
ellipse and rectangle differed so much that the intermediate interpolated superellipses fitted the
data extremely poorly. Therefore we simplified the above approach and set all the parame-
ters using either the initial ellipse or rectangle except for the squareness which was found by
a straightforward 1D optimisation. The two optimisations starting from both the ellipse and
rectangle were carried out, and then the fit giving lower error was selected. Note that in order
to compare the fits it is necessary to have an error function that is comparable over different
values of ǫ – we used the central ray method (EOF5).

4 Error Measures

Since many fitting techniques operate by minimising some error measure, the choice of this
measure is of great importance. A function of the distance from the points along the normals to
the superellipse would be a suitable measure except that it cannot be computed easily. Therefore
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an approximation to this distance is required.1 Below we describe some possible measures, both
old and new. To visualise their effects their iso-distance contours are plotted2 in figure 2 for a
superellipse with a = 400, b = 100, ǫ = 1

2 . To improve visualisation the distance values between
contours are different for each plot – this does not affect the interpretation of their quality since
multiplicative factors do not affect the fitting techniques. In addition, the assessment criteria
developed in Rosin [13] are applied to quantify their linearity, curvature bias, asymmetry, and
overall goodness. In the following we will assume that the superellipse has been transformed to
the canonical position, i.e. centred at the origin and aligned with the co-ordinate axes. During
the iterative fitting process this is performed using the previous estimate of the superellipse’s
parameters, while in the case of the complete data fitting methods the MBR provides the
canonical frame.

(a) EOF1 (b) EOF2 (c) EOF3

(d) EOF4 (e) EOF5 (f) EOF6

(g) EOF7 (h) EOF8 (i) EOF9

Figure 2: Iso-value contours; the thick line shows the superellipse and the thin lines show points
of constant distance from the superellipse according to various distance approximations

4.1 Algebraic Distances

Due to its simplicity the most commonly used error measure is the algebraic distance which is
defined as

EOF1 = Q(x, y) =
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For ellipse fitting the algebraic distance has the added advantage that its minimisation has a
closed form solution, although unfortunately this does not hold for the superellipse. A standard
approach for improving the algebraic distance is to inversely weight it by its gradient, which is
equivalent to a first order Taylor’s expansion of the true distance
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Although the linearity and curvature bias of the algebraic distance have been much improved
there is still substantial error along the corner. In an effort to avoid these anomalies we have

1Even for simpler curves such as ellipses approximate distances are generally used for fitting [13].
2Artifacts from the plotting process have caused some contours to be missed near the centre of some

superellipses.
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considered replacing the derivative by the directional derivative along the ray from the point to
the superellipse centre instead

EOF3 =
Q(x, y)

|∇RQ(x, y)| =
(

x
a

)
2

ǫ +
(y
b

)
2

ǫ − 1

2
ǫx

(

x
a

)
2

ǫ cos θ + 2
ǫy

(y
b

)
2

ǫ sin θ
.

Again the linearity and curvature bias of the algebraic distance have been improved, but anoma-
lies are still present. As an alternative correction to the algebraic distance for superquadrics
Gross and Boult [5] suggested taking the ǫ’th power of the algebraic distance EOF4 = Q(x, y)ǫ.
We see that it does indeed improve linearity although the curvature bias is still evident.

4.2 Ray to Centre

Several approaches are based around the ray OP passing through the origin O (i.e. the centre of
the superellipse) and the data point P = (x, y). The ray intersects the superellipse at I = (xi, yi),
where
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Denote the distances along the ray as n = IP and m = OI. Then the distance approximation
EOF5 = n has been used for ellipse [8] and superellipse [5] fitting, while for ellipse fitting
Safaee-Rad et al. [16] derived the following weighted algebraic distance

EOF6 = m
1 + n

2a

1 + n
2m

Q(x, y).

4.3 Similar Superellipse

Related to Stricker’s approach [17] to estimating the distance to an ellipse we consider scaling
the superellipse axes to find the “similar” superellipse which passes through the point. Solving
the equation
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for the scale factor s and measuring distance as the difference in axis lengths between the two
superellipses (e.g. sa− a) we can neglect the multiplicative factor a, yielding

EOF7 = s− 1 =
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A weakness of the similar superellipse is that it is just as prone to the curvature bias as the
algebraic distance. In other words, near the pointed end the superellipse does not need to be
stretched out as much as near the flat end.

4.4 Quadrarc

An alternative approach to approximating the distance directly is to approximate the superel-
lipse, and then find the distance to the approximate curve. A good candidate is the quadrarc
which has previously been extensively used to generate reasonably accurate and simple approx-
imations of the ellipse [14]. The quadrarc consists of four circular arcs with centres (±h, 0) and
(0,±k) and radii a− h and b+ k respectively such that they pass through the extremal points
of the ellipse.
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Figure 3: Quadrarc approximations of a superellipse; the intersections of the two circles are
marked and the normals to the arc joints are drawn.

We adapt Knowlton’s [6] method for constructing elliptical quadrarcs to the superellipse.
Given the symmetry we only need describe results for the first quadrant. The intersection point
of the diagonal of the superellipse’s minimal enclosing rectangle and the superellipse itself is
taken as the joint between the arcs, and constrains the circular arcs to

h =
a2 − x2i − y2i
2(a− xi)

; k = −b2 − x2i − y2i
2(b− yi)

.

An example for a = 200, b = 100, ǫ = 0.5 is shown in figure 3. To determine the distances to the
curve we must choose the appropriate arc to calculate the normal to. We take the bisector of the
lines joining the circles and the arc joint as the dividing line between the two sets of normals.
The distance can then be simply calculated as the distance from the point to the circle centre
less the circle radius

EOF8 =

{

√

(h− x)2 + y2 − (a− h) if y(a− b) + x byi
xi−h

− a(yi+k)
xi

+ ak − bh < 0
√

x2 + (y + k)2 − (b+ k) otherwise.

4.5 Weighted Average

0.0 0.2 0.4 0.6 0.8 1.0
e

0.8
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x

Figure 4: Position of diagonal intercept against squareness

For 0 < ǫ ≤ 1 we can consider the superellipse as a cross between an ellipse and a rectangle.
Moreover, on plotting out the position of the “corner” of the superellipse (i.e. its intersection
with the diagonal) as a function of ǫ we find that their relation is fairly linear, see figure 4
in which the straight line (1, 1√

2
) → (0, 1) is shown dotted. Therefore it seems reasonable to

construct a superellipse distance measure as a linear combination of the two distances to the
ellipse and rectangle which form the bases of the superellipse EOF9 = deǫ + dr(1 − ǫ). The
weights are chosen since the curve is an ellipse at ǫ = 1 and approaches a rectangle as ǫ tends to
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zero. The distance to the minimum enclosing rectangle (for the first quadrant) is calculated as

dr =



















√

(x− a)2 + (y − b)2 if x > a and y > b

min(|y − b|, |x− a|) if x < a and y < b

|y − b| if x ≤ a

|x− a| if y ≤ b,

while we use the confocal conic method to accurately estimate the distance de to an ellipse [14].
We can apply the same strategy to cover 1 ≤ ǫ ≤ 2 by combining a diamond with the ellipse.
Figure 2i shows the combination of de and dr. The result has excellent linearity, but shows
discrepancies at the corner.

4.6 Assessment of EOFs

One approach to comparing the various EOFs is to apply the set of assessment measures devel-
oped by Rosin [13]. These enable us to quantify the linearity (L), curvature bias (C), asymmetry
(A), and overall goodness (G) as well as overall goodness excluding the interior of the superellipse
(G′). An EOF rates well if it has a high linearity while the remainder of the measures should be
low. All measures have been applied to the a = 400, b = 100, ǫ = 1

2 superellipse used previously,
and are normalised with respect to the algebraic distance (EOF1). To aid interpretation the
best third of the entries in each column have been highlighted in boldface and the worst third
are in italics. Also, in two instances asymmetry was so severe that it was not measured properly,
and is indicated by a dash in the table. The EOFs may display different behaviour close to or
distant from the superellipse boundary, and so we have evaluated the measures simulating this
as the displacement of data points from the true superellipse due to two levels of Gaussian noise,
see tables 1 and 2. We see that for low levels of noise EOFs such as EOF2 and EOF6 do well
while EOF8 and EOF9 do poorly. At greater levels of noise however, EOF8 and EOF9 do much
better, EOF5 performs quite well, and EOF1−3 do badly.

Table 1: Normalised assessment results with low amounts of noise: N(0, 2)

EOF L C A G G′

1 1.000 1.000 1.000 1.000 1.000

2 0.994 0.190 0.419 0.699 0.746

3 0.923 0.287 1.213 1.077 0.964

4 0.999 0.919 0.248 0.981 1.122

5 1.000 0.280 0.669 1.018 0.935

6 1.000 0.283 0.433 0.968 0.913

7 1.000 1.006 1.193 1.057 1.014

8 1.000 1.481 0.147 2.030 1.499

9 1.000 0.337 0.487 2.709 2.626

5 Experiments

In order to test out the various methods 1320 synthetic curves were generated with a variety
of characteristics. Their parameters systematically ranged over a = [150, 300], b = 100, ǫ =
[0.1, 1.0], θ = [0, 3.0], xc = yc = 400. To improve the realism of the data the following processes
were carried out. A binary image of each curve was formed (containing values 50 and 200),
which was then blurred by a Gaussian filter (σ = 2). Gaussian noise was added (σ = 20), the
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Table 2: Normalised assessment results with high amounts of noise: N(0, 64)

EOF L C A G G′

1 1.000 1.000 1.000 1.000 1.000

2 0.526 0.109 – 2.222 0.166

3 0.562 0.108 – 2.229 0.247

4 1.153 1.000 1.430 0.329 0.307

5 1.158 0.067 0.938 0.260 0.144

6 1.071 0.172 0.257 0.565 0.497

7 1.145 0.997 1.892 0.262 0.347

8 1.160 0.004 0.518 0.006 0.005

9 1.160 0.010 1.030 0.018 0.015

image thresholded, and the boundary extracted. Each of the three methods was tested on the
data; the 1D optimisation using EOF5, and the 6D optimisation technique using EOF1.

The absolute mean errors of the fitting techniques for each of the estimated parameters is
plotted against the curve parameters in figure 5. As expected, since the quality of the data is
fairly high (e.g. the complete curve is presented), the error rates are low. Many of the estimates
are insensitive to the parameters of the data. Notable exceptions are:

• the error in the estimated axes length by the 1D method increases linearly with the size
of the superellipse

• the error in the estimated orientation by the complete data (i.e. area/diagonal) and 1D
methods decreases with the size of the superellipse

• due to the combined ellipse and rectangle fitting of the 1D method many variations are
found in the parameter estimates as a function of ǫ

• for the complete data method orientation errors increase and squareness errors decrease
with increasing ǫ; the estimation of ǫ by the area method (labelled complete) is more
sensitive to squareness then the diagonal method (labelled complete2)

Overall, the full 6D optimisation technique performs best, although the geometric component of
the 1D optimisation technique provides a slightly more accurate centre estimate. The complete
data and 1D optimisation techniques are comparable since the former fares better on axis length
and squareness while the latter performs better on centre and orientation estimates.

The second experiment looks at performance on noisy, complete data. As we would expect,
figure 6 shows that performance degrades with increasing noise although the methods are affected
by varying degrees. The severity of degradation is in the order of complete data methods, 1D
optimisation, and 6D optimisation. We see that for the estimation of ǫ the diagonal based method
provides improved robustness compared to the area based method. This makes it competitive
with the 1D optimisation technique for estimating both axis length and squareness.

The third experiment tests the ability of the 1D and 6D optimisation techniques to cope
with partial data. Since the breakdown of the methods can involve enormous inaccuracies (e.g.
centre and axis values increased by a hundred orders of magnitude) we present graphs of α-
trimmed mean errors (α = 0.05). We see in figure 7 that the breakdown point is around 0.5–0.7.
Although the 6D optimisation technique performs best for fairly complete data it breaks down
earlier and more severely than the 1D optimisation technique which outperforms it when less
than 60% of the data is available.
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The final experiment again goes through a range of noise levels, and tests the different
distance measures. Since we would expect all the measures to work reasonably for complete
data, this time only 70% complete data sets are used. Again, some extremely bad estimates
produce confusing mean errors, and so results of median errors are plotted instead. Experiments
showed that optimisation using Gross and Boult’s measure (EOF4) failed. This comes about
because many of the residuals are less than one and so the error function tended to be minimised
by just increasing squareness. The median errors of all the remaining measures are shown in
figure 8a–d. To improve readability of the graphs they have been redrawn in figure 8e–h,
excluding the high error measures EOF8, and EOF9 and going over a smaller range. It can be
seen that roughly ordering the measures in decreasing merit gives: EOF3/EOF5/EOF7, EOF2,
EOF6, EOF1, EOF8, EOF9.
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Figure 5: Errors in parameter estimates as a function of data parameters

Finally, in figure 9 we show an example of applying the fitting techniques to some real data
– the computer mouse from [15]. The data shows various discrepancies, e.g. protrusions, and
straight rather than curved sides. We can see that the 6D optimisation method has produced
good fits while the other methods are less satisfactory. In particular they have incorrectly
estimated the major axis of the outer curve. For the area and 1D methods this leads to the
incorrect estimate of ǫ, but the diagonal method is relatively unaffected, and has managed to
produce estimates of ǫ only a little worse than the 6D optimisation method. The quality of the
fits can be seen to improve as the fitting methods progress from closed form (area), to 1D fitting,
closed form (diagonal), to 6D fitting. Along with this improvement is a concurrent increase in
computation (with the exception of the diagonal method which is both efficient and accurate
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Figure 6: Errors in parameter estimates as a function of noise
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Figure 7: Errors in parameter estimates as a function of completeness of curve
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Figure 8: Errors in parameter estimates as a function of noise for various error measures using
the 6D optimisation method
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for this example); the elapsed time for the fitting algorithms is: 0.14, 2.14, 0.15, and 85.64
seconds respectively. This demonstrates the large difference in the computational loads of the
algorithms.

(a) (b) (c) (d) (e)

Figure 9: Fitting to real data of mouse; (a) pixel data, (b) area based method, (c) diagonal
based method, (d) 1D optimisation, (e) 6D optimisation

6 Conclusions

Several new methods for superellipse fitting have been described and tested. On good data,
i.e. unoccluded with low noise, all methods performed well. Since the two complete data
methods performed several orders of magnitude faster than the 6D optimisation method they
are obviously more appropriate in this setting; the diagonal based method appearing more robust
than the area based method while requiring little additional computation time. However, when
substantial amounts of noise are added the complete methods quickly degrades, and the 6D
optimisation method gives the best results. Testing the 1D and 6D methods on incomplete data
shows that both are little affected by small amounts of occlusion. With increasing amounts of
occlusion both break down sharply, first the 6D method and then the 1D method, making the
latter more suitable for incomplete data that has not much noise. For this latter case the 6D
optimisation method performs best.

The results of comparing the various EOFs is more confused since the results of the tests
based on fitting do not always agree with the indications provided by the assessment criteria.
On some points they concur, for instance EOF8 and EOF9 perform relatively poorly when there
is little noise while, when there is a greater amount of noise EOF1 and EOF6 perform worst.
However, whereas the assessment criteria predict that EOF8 and EOF9 should perform well in
the presence of substantial noise this was not borne out when the fitting was carried out. This
suggests that the assessment criteria need to be further refined to ensure that they capture the
qualities of EOFs that have most effect on the subsequent fitting process.
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