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Abstract

A method of segmenting curves into series of superelliptical arcs is pre-
sented. A superellipse is the 2-dimensional form of the superquadric and
can describe circles, ellipses, crosses, parallelograms and rounded rectan-
gles with the same number of parameters. The superellipses are fitted
using Powell’s technique to minimise an appropriate error metric. A tree
is used to represent a number of interpretations and the concept of signif-
icance used to choose the most perceptually correct description. Results
show that perceptually good features are chosen to represent the various
shapes that occur in images.

1 Introduction

A key problem in computer vision is the extraction of meaningful features from
edge data. Although edge pixel data is useful in itself, it is better to represent
edges in a more manageable form. The type of description required can be very
application dependent but is usually based on a combination of straight line
approximations and higher order curves. Numerous techniques have been pro-
posed for generating straight line approximations of curve data. However, less
time has been devoted to extracting higher order representations because of the
increased number of parameters or degrees of freedom and the ill-conditioned



nature of the problem. In addition, most of the polygonal approximation tech-
niques are specific in nature, and cannot be easily generalised to other features
or data types. Lowe proposed an algorithm for segmenting curves into straight
lines [13] which we have shown is easily generalised to fit a variety of representa-
tions such as circular arcs [25], elliptical arcs [19], and second-order polynomials
[18]. Here we extend the algorithm to segment curves into superellipses.
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Figure 1: Various superellipses generated for constant values of a and b and
different values of €. Large values ¢ produce a cross, small values produce a
rectangle.

Superellipses were first formulated by Peit Hein [8], and they and their three
dimensional equivalent — superquadrics — were popularised in computer graph-
ics by Barr [4] and computer vision by Pentland [14]. They are a flexible rep-
resentation, and with a relatively small number of parameters can represent a
wide variety of shapes including ellipses, rectangles, parallelograms, and pinched
diamonds. Superellipses can be described in the parametric form by

z(t) = acos®t
y(t) = bsin® ¢ (1)

where the lengths of the axes are given by a and b and the squareness is de-
termined by . To avoid evaluating complex roots equation 1 can be modified
to
x(t) = asgn cos® t| cos® t| @)
y(t) = asgnsin® ¢] sin® ¢|

Figure 1 shows superellipses with a = 2b and ¢ set to 0.1, 0.5, 1.0, 2.0, 5.0
and 10.0. A value of ¢ = 1 produces an ellipse, ¢ = 2 produces a diamond,
€ > 2.0 produces pinched diamonds (very large values result in a cross) and
e < 1.0 produces rectangles with rounded corners (very low values result in
perfect rectangles).

2 The Segmentation Algorithm

Lowe [13] proposed a technique for segmenting curves into straight lines. We
have generalised and extended this method to apply to other features and to
combinations of different features. The method is based on recursive subdivision



of the curve to form a tree data structure which is traversed to select the best
representation of the curve.

To segment a curve consisting of a list of pixels into features of a single type
the complete pixel list is approximated by the required feature. The list is then
split into two at the point of maximum deviation between the approximation
and the underlying pixel data. This process of approximation and splitting is
repeated recursively on each of the two lists and halts when the pixel lists are too
small to properly fit the representation. Each approximation is stored in a data
structure with links to its two split approximations. The result of the recursive
process is a segmentation tree in which each level describes the complete curve
by increasingly fine segmentations and approximations.

Each feature primitive in the segmentation tree is assigned a significance
value. This was defined by Lowe as the ratio of the length of the feature divided
by the maximum FEuclidean deviation of the feature from the pixels. That is,
for a feature primitive f; (parameterised by arclength ¢) and a set of pixels p;
the deviation is

D(fi,pi) = max min | fe—pill-

The length of the feature L(f;) is taken as the section of the feature which covers
the pixel data. If the fitting process constrains the feature to pass through the
pixel list endpoints then these delimit the feature. Otherwise the points on the
feature which minimise the minimum distance to the pixel list endpoints are
taken as the feature endpoints. To avoid divide by zero errors we have inverted
Lowe’s significance ratio giving

S(ft,pi) = W

which means that the feature selection process should now minimise the signif-
icance values.

The final segmentation is then found by searching the segmentation tree for
the best (most significant) set of feature primitives (by choosing those with the
lowest significance). Traversing up the tree from the leaves, a feature primitive
is retained if it is more significant than all its children, otherwise it is replaced by
its children. After traversing the tree the remaining feature primitives constitute
the best segmentation of the curve.

When forming the segmentation tree the stopping criterion is that it must
be possible to adequately fit a feature primitive to the subset of pixels. The
fit should not be underdetermined (i.e. at least seven points are required for
a superellipse). Also, it should not be possible to form a perfect fit between
the feature and pixel data since this would result in a perfect significance value
preventing small sections in the segmentation tree being replaced by larger and
highly significant superellipses. Thus, for a superellipse, the minimum number
of points that can be fitted to is eight, ensuring that the fitting process is overde-
termined and produces superellipse fits with a finite error producing meaningful
significances.



It is important that our stopping criterion is not confused with the error
tolerance threshold used by standard recursive curve splitting algorithms which
do not use backtracking (e.g. [7]). Whereas our criterion is fixed for each feature
type being fitted, the threshold for the standard algorithms is data dependent,
and must be carefully selected.
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Figure 2: (a) A curve and the approximating straight lines and required dis-
tances, (b) segmentation tree — chosen representations circled, and (c) final
choice of representations from the tree.

In figure 2 the process is illustrated with an example of segmenting a curve
into straight lines. Figure 2a shows a curve and the complete set of approximat-
ing lines with their perpendiculars showing the points of maximum deviation
between the curve and line. The generated segmentation tree is shown in fig-
ure 2b. The circled nodes indicate those selected as the most significant in the
tree. That is, b is more significant than both d and e; either f or g is more
significant than c; either b, f or g is more significant than a. The final curve
segmentation is shown in figure 2c.



This segmentation technique has several desirable properties. First, no pa-
rameters are required throughout the process. In contrast, most other algo-
rithms require thresholds for determining which points should be considered
as potential breakpoints, and how small the error between the approximation
and data must be before the segmentation process terminates. This applied
not only to heuristic algorithms but also to statistical approaches Second, the
segmentation process is combined with the fitting process so that the fitted rep-
resentation is used to determine the breakpoints. This means that the approach
can be readily extended to any type of representation that can be fitted. In
contrast, many methods determine breakpoints by techniques specific to a sin-
gle representation. For instance, a common procedure for segmenting curves
into straight lines is to search for curvature extrema. However, more complex
representations such as superellipses have complex curvature signatures, mak-
ing them difficult to analyse. Third, no noise models are required, such as are
common in statistical and minimum description length approaches. A weak-
ness of these approaches is that the simple noise model (usually Gaussian) does
not always apply, causing the techniques to give poor results in the presence of
outliers.

3 Fitting Superellipses

Superellipses are fitted by finding the set of parameters that minimise some
error measure between the curve and data, and the arc sections that cover the
data are retained. The fits are not constrained to pass through the endpoints
of the pixel lists. Therefore the endpoints of a superellipse arc are determined
as the points on the arc which minimise the minimum distance to the pixel
list endpoints. The mean Euclidean distance is the optimum metric which can
be determined from the parametric form shown in equation 1. The x and y
components of the normal to the superellipse in parametric form at angle ¢ are:

(3)

2’ (t) = becostsin® 1t

y'(t) = aesintcos® 1t

The gradient is then:
Y asintcos* 1t (1)
2/(t)  beostsin® 't
The value of ¢ for the nearest point on the superellipse (z., y.) can be determined
using equation 1 and

m = Yp — Ye (5)
Tp — Te
to give:
asintcos 't  y, —acos" 't (6)
beostsin® 't x, — bsin® 1t
which enables the distance of the point to the ellipse d to be determined from:
d=\/(up — ye)? + ( — z.)? (7)



Unfortunately it is difficult to solve equation 6 for ¢ analytically although the
value of ¢ that minimises d can be determined numerically by walking around
the superellipse. This would be computationally expensive. Instead, alternative
simpler measures, similar to those used for ellipse fitting [17] and polynomial
fitting [22] were investigated. The simplest measure is the algebraic distance. A
superellipse centred on the origin with axes aligned with the co-ordinate system
can be represented by the following implicit equation:
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for which the algebraic distance is given by

2 2
T\ = y)g
x,y)={— =) -1 9
Qy) = (5) + (% ©)
Again, this involves evaluating complex roots for negative values of x and y and
choosing the root x + j0 and y + j0. Due to the symmetry of the superellipse
this can be avoided by using the absolute values of x and y:

2
e

Q) = (2 +(§U§—1 (10)

This would produce the curve in the positive z, positive y quadrant. The curve
can then be reflected into the other three quadrants.

However, a problem with the algebraic distance is the so called high curvature
bias. The algebraic distance from a point to the superellipse gives a lower esti-
mate near high curvature sections than low curvature sections of the curve for
the same Euclidean distance. When performing fitting this causes data points
near the high curvature sections to have less influence than points near the low
curvature sections since smaller errors are produced by the former points. This
often results in the eccentricity of the fitted curves being overestimated. The
curvature bias is evident in figure 3a which displays the error contours (alter-
natively coloured black and white) formed by the algebraic distance calculated
from the superellipse boundary (the thin grey curve plotted at Q(x,y) = 0) for
a =40, b =100 and £ = 0.5.

One popular method of approximately correcting the curvature bias is to
inversely weight the algebraic distance by its gradient [1], thereby minimising
the following:

Quy) (5 +(3)° —1 (11)

+
Ve e (3w

However, the error contours for equation 11 displayed in figure 3b show there
is still severe distortion in the error measure near the pointed ends of the su-
perellipse. It can be seen that the values of the error within the superellipse are




s ]

IS
=

Figure 3: Error contours for (a) algebraic distance to the superellipse, (b) alge-

braic distance divided the gradient of the algebraic distance, and (c¢) distance
to the superellipse on a line through the centre of the superellipse.




significantly greater than values outside with the same distance to the bound-
ary (shown by the closeness of the contours i.e. a high error gradient). This
biases the fit to give greater significance to interior points. Moreover, we found
that when minimising either equation 10 or 11 the system often incorrectly con-
verged with very large values of e. This arises since lim. o (|2|/a)%/¢ = 0 when
|z|/a < 1, and likewise for (|y|/b)*/¢. The fitted superellipses tended to be very
long as well as rectangular. When fitting superquadrics Solina and Bajesy [21]
suggested minimising

Vabe Q(x,y, 2) (12)

so as to find the best fitting superquadric with the minimum volume. However,
minimising a similar functional to fit superellipses (but ignoring the parameter
¢ and dimension z in equation 12) proved to unstable, and was often minimised
by setting a = b = 0.

Instead we choose to minimise the Euclidean distance d, from the data
point (z,,yp) to the point (x5, ys) on the superellipse along the line that passes
through (xp, yp) and the centre of the superellipse (0,0), where:

d= \/(xp —xs)? + (ypi_ Ys)?

1 2

Tg = 1 n (yfp>% (13)
a% xpb

Ys = xszf

Figure 3c displays the error contours plotted for d,. While still only approx-
imating the shortest Euclidean distance from the point to the superellipse its
distortions are less severe than either equation 10 or 11. In addition, equation
13 cannot be minimised simply by increasing the value of e. The equivalent
measure to equation 13 for superquadrics was also shown by Gross and Boult
[9] to perform better than the preceding two.

The above equations have worked with object centred co-ordinates. To allow
for translation by (z.,y.) and rotation 6 equation 8 can be modified to:

((x—xc)cosﬁ— (y—yc)sinf))? . ((a:—xc)SiH9+ (y—yc)cosf)>g (14)

a a

which would result in the modification of equation 13. However, now that
the superellipse is no longer symmetric in all four quadrants, complex roots
cannot be avoided by simply using absolute values. This is avoided by keeping
the superellipse centred at the origin and aligned with the co-ordinate axes.
When fitting data, rather than transform the superellipse, the data is inversely
transformed to fit the model.

Since the term being minimised is non-linear a closed form solution is not
available. We use Powell’s technique [16] which just requires the term being
minimised to be evaluated. Powell’s algorithm performs a gradient descent in
the following way:



e Do gradient descent by varying the first parameter. Once the minimum
has been found, repeat for the second parameter and so on for all param-
eters.

e Combine the changes in the parameters into a vector and minimise the
function by gradient descent along this vector.

e Repeat from stage 1 until no change.

An advantage of this method is that the analytic form of the function is not
required, the only requirement being the function must be able to evaluated
at all required points. This considerably simplifies the minimisation procedure.
Another advantage gained by not requiring the analytic form of the function
is that alternative error can easily be implemented. Minimising the distance
rather than squared distance reduced the effect of outliers. These can be further
reduced by minimising not the summed error as above, but the median of the
errors along the curve. This is the Least Median of Squares (LMedS) approach
that has become popular in the field of robust statistics [20]. When using
Powell’s method of minimisation this adaptation is easily performed.

With iterative minimisation techniques it is important to provide a good ini-
tial estimate of the superellipse parameters. Initial work on fitting superquadrics
(to range data) primarily dealt with unoccluded isolated objects [9, 14, 21]. This
enabled the initial estimate to be determined by crude methods. For instance,
Solina and Bajcsy used the smallest bounding box about the data to estimate
the lengths of the three axes. More recently, some attention has been paid to oc-
cluded objects and cluttered scenes, e.g. Pentland [15]; Gupta and Bajcsy [10];
Yokoya et al. [26]; Dickinson et al. [6]; Leonardis et al. [12]. However, Pent-
land’s technique requires searching over the entire range of possible superquadric
occluding boundaries at different scales for potential concave silhouettes at all
locations in the thresholded image; Gupta and Bajcsy’s technique requires sev-
eral parameters, reducing robustness; Yokoya et al. use simulated annealing,
which is computationally expensive, and only show results for a simplistic scene
containing one object; Dickinson et al. depend on the pre-segmentation stage
being correct since there is no interaction between segmentation and fitting; and
Leonardis et al. require a threshold specifying whether a model should grow.

Since we will generally only have a small portion of data underlying the
superellipse the bounding box will not provide an adequate initial estimate.
Instead we fit an ellipse to the data which provides reasonable estimates of all
the parameters except for squareness which is initialised to 1.0. The ellipse is
found by the closed form least square fitting of a conic [2]:

A2® + Bxy+Cy* + Da+ Ey+F =0 (15)

with the normalisation F© = 1 to avoid the trivial solution A = B = C =
D = FE = F = 0. If the conic fit does not produce an ellipse then a circle fit is
performed instead as the next best solution [23] and the orientation is estimated



by finding the principal axis of the data:

1 2
§=-tan~! ML
2 2p20 — 21102

where pi,, is the (p, q)t" central moment calculated by

fpg = Y _ (i — 2)P(y; — )" (17)

i

where (Z, ) is the centroid and there are i data points.

4 Results

Figure 4a shows an image containing a number of complex parts made up of
straight lines, circular and elliptical arcs and freeform curves. The edgels ex-
tracted using the Marr-Hildreth edge detector with a 0 = 3.0. This edge detec-
tor produces one pixel wide edge data resulting in the extraction of connected
lists of edges using a simple edge following algorithm. Spurious short and weak
edges are eliminated by using a threshold based on edge strength and edge
length. The significant edges are shown in figure 4b. Figure 4c¢ shows the re-
sults of the detection of superellipses. Crosses are used to indicate the ends
of each superellipse. The lack of continuity between adjacent superellipses is
mainly due to shortcomings of the plotting process. There are a number of
interesting points to note about these results. The computer mouse has been
segmented reasonably well. A single superellipse describes the inner edge of
the mouse as a rectangular shape with rounded corners. The bumps on three
sides of the edge have been removed from the segmentation tree since the over-
all shape of the mouse is considered more perceptually significant. The edges
of each of the three buttons has been described by single superellipses. Note
that instead of the boundary consisting of a rectangle with circular arcs at the
ends (as would be expected from the edge data) the arcs are smaller and el-
liptical. As explained in section 5 a superellipse cannot represent such a shape
precisely. Other interesting superellipses are the right hand corner of the large
flat metallic object (just above the mouse buttons) which has been represented
as a diamond (¢ = 1.0) which adequately describes the vertex; rounded parts of
the spectacles and spoon have been well represented; and the outer boundary of
the object in the bottom right hand corner has been segmented into a number
of straight lines and circular arcs. Examination of the superellipse parameters
reveals that the straight lines are superellipses with low values for € =~ 0.1 so
that the diamonds have degenerated to crosses. The arcs are represented by an
approximate circle and by a rounded square (see figure 5).

To further show the different superellipses a single connected edge list from
figure 4b is isolated (figure 6a). Figure 6b shows the same data but with the
full extent of the superellipses drawn in grey. The spoon bowl is approximated
mainly by one ellipse and there are various combinations of rounded rectangles
and diamonds for straight edges and corners.
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(c) Superellipses detected with crosses delimiting each super ellipse.

Figure 4: Extracting superellipses from an image of objects containing straight,
circular, elliptic and free-form curves. 11



Figure 5: One list from figure 4c showing the full representation for each su-
perellipse. One corner has been represented by an ellipse and the other by a
diamond with rounded corners. The straight lines are represented by parts of
diamonds, squares and crosses. Crosses show the ends of each superellipse.

As a final example consider the edge data of figure 7a that was obtained
from a multiply exposed time lapsed photograph of a tennis player serving.
The interesting feature here is the head of the racquet whose perceived shape
changes throughout the serve. Figure 7b shows that in all cases a small number
of superellipses represent the head of the racquet. In most cases a small number
of superellipses (sometimes just one) represent the handle of the racquet.

This paper describes the extension of our previous algorithm which seg-
mented curves into ellipses to superellipses which provide a more flexible de-
scription. It would also be possible to further extend the current proposal to
yet more flexible representations such as hyperellipses, which have recently be-
come popular [5, 11]. However, we feel that hyperellipses provide a less useful
representation than superellipses. First, there are increased difficulties in esti-
mating the parameters since: (i) the number of terms in the expression defining
the hyperellipse has to be determined, and (ii) the increased number of free
parameters increases the chance of poor fits arising from non-global minima.
Second, the geometric interpretation of the parameters in terms of bounding
lines does not explicitly describe the shape in the same was as the squareness
parameter of the superellipse.

5 Discussion
The results of segmenting image curves into superellipses give perceptually cor-

rect interpretations. The advantage of superellipses is that many different fea-
tures can be represented by the same set of parameters such as ellipse, circles,

12



Figure 6: Super ellipse description of one long list of edge pixels for the spool
and large flat object from figure 4c showing (a) the segmentation and (b) the
full superellipses. Crosses delineate each superellipse
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Figure 7: Segmentation of a multiple exposure image of a tennis player serving
showing (a) the original edge data and (b) the superellipses. Each instance of
the racquet and ball are clearly visible.
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Figure 8: Examples for which a superellipse describing a rounded square (in
bold) is the best fit to rectangular objects with circular rounded corners.
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rectangles, corners and straight lines. A disadvantage is that different superel-
lipses can represent the same curve data e.g. a 90° corner. There are at least
three superellipse interpretations: (1) a diamond € = 2.0, (2) a rectangle € ~ 0,
and (3) a pair of lines ¢ = {2,00,0}. Note two lines will not be produced be-
cause the algorithm favours the longest interpretation. There is now an obvious
ambiguity because it is difficult to decide on which of a rectangle or diamond is
the best as they will both fit the data equally well in the sense of significance.

It may be necessary to consider segmenting the superellipses into other fea-
tures such as rectangles with rounded corners into straight lines and circular
arcs. Segmentation is possible in many cases by examining the parameters,
especially & which is the measure of squareness (see section 1.

A value of e = {0,2, 00} would indicate that the superellipse could be con-
verted into a number of straight lines by locating the vertices. The segmenta-
tion points are determined by examining the parameters e.g. if ¢ = 2 then it
is known that the vertices will be on the x and y axes of the superellipse i.e.
t={0,7/2,7, 31/2}.

One important point concerns the description of rectangular shapes which
have rounded corners. When considering an ellipse, the parameters a, b of equa-
tion 1 imply that a circle is scaled along one direction (compressed) to form an
ellipse. For a rectangle, the same applies. Hence a square with rounded corners
will have the corners represented by circular arcs. A rectangle is a square scaled
along one axis which means the rounded corners are represented as elliptical
arcs. It is therefore impossible to describe a rectangle with circular arcs as a
single superellipse. An actual result (the mouse buttons) has been identified in
section 4. The worst case would be a long rectangular object with rounded ends.
This applies to complete figures. If only one or two corners of the figure are
visible it can be perfectly modelled by a superellipse with axes of equal length
giving a rounded square which will have circular arcs at the corners. Figure 8
shows examples.

It is important to note the non-linear sensitivity of the shape of the superel-
lipse to values of €. The shape of the superellipse is most sensitive for € ~ 1.0
(an ellipse). Varying € from 0.1 to 20.0 gives almost all shapes possible. Outside
these values there is little difference in shape, especially in the context of images
of less than 512 x 512 pixels in size.

Segmentation of a superellipse into subsections requires the formulation of
curvature x as a function of ¢. Considering equation 1 the derivatives of x and
y w.r.t. t are:

& = —aecos® ltsint
. e 1
= besin® L tcost (18)
and the second derivatives are:
& =ae?cos 2t —ae?costt — ascos T2t (19)

i = besin® ?tcos®t(e — 1) — besin® ¢t

The curvature can be expressed as:
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Ty — Ty
K= CESIEE (20)

By substituting the values from equations 18 and 19 into equation 20, an
expression for x w.r.t. t can be determined. Given some knowledge of the
squareness ¢ the superellipse can be segmented into regions of high curvature
(corners) and low curvature (approximate straight lines).

The current version of the algorithm using Powell’s technique requires many
hours of computation on a Sun IPC workstation for an image such as in figure 4a.
Various approaches are being investigated to speed up the algorithm. For in-
stance, minimisation techniques such as the Levenberg-Marquardt technique
[16] which use gradient information are faster than Powell’s method. However,
the partial derivatives of equation 13 are relatively complex (see Appendix).
Currently at each level in the tree search all the edge data is used to determine
the fit. The use of a multi-resolution technique which starts with a small subset
of points for the initial fit and successively fits to more and more data would
improve performance [21]. Early jump-out methods could be used [3] but these
need some threshold which we wish to avoid.

6 Conclusions

This paper has described an algorithm that segments curve data into a number
of superellipses. The results indicate that it is possible to segment image curves
in a bottom-up process (very little contextual information) into perceptually
significant high order representations. The use of a significance measure en-
ables a perceptually meaningful description to be determined as opposed to a
minimum error description. There is an increase in complexity of the algorithm
compared to our previous work involving segmenting curves into straight lines,
arcs and ellipses, The squareness parameter introduces non-linearities, requiring
an iterative method for minimising the error of fit between the superellipse and
the data.

Section 5 discussed the segmentation of superellipses into other features such
as lines and arcs. To make the algorithm more general purpose, extra parameters
could be incorporated to describe deformations such as tapering and bending
[21]. Further details of the segmentation technique described in this paper are
available [24].
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Appendix

The partial derivatives of the distance measure given in equation 13 were found
using Maple and (after some tidying up) are:

S22 (1 yie fta?) vied (z,1E -
od T T Yp Tp a Tp (Tpyp — @ (21)

Sa 202 2 2 e . 15 o
VZp (m;be +y§ae) \/xpt€ — 2z,batz + b2az,
2 2
5d VT Ypys a e (zpvu —a) (22)

5b .

:cpzbtu\/(l — 2bat™ + t—€a262>
o _ (22 +2) xp e T2t5 ab? (zpt™ — a) y (23)
de (2€t€+1 \/(:L'ptE — 2zpbats + b2a’x)) (:1:]2j + yz%))

Lp

(vbf + (v+2) <ayp> : (In(zp) + In(b) — In(a) — ln(y,,)))

where

2,2 2 2 te YpQ :
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