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Abstract

Two methods for approximating the normal distance to an ellipse using a) its orthogonal hyper-
bolae, and b) Stirling’s oval are described. Analysis with a set of quantitative set of measures shows
that the former provides an accurate approximation with little irregularities or biases. Its suitability
is evaluated by comparing several approximations as error of fit functions and applying them to ellipse
fitting.

1 Introduction

A common goal in image analysis is to find the best fitting ellipse to a set of data points. This enables a
higher level representation of, for example, edge data, which is useful for many applications of computer
vision. A large body of work has been developed on ellipse fitting techniques, mostly using least squared
error [1, 2] but also other criteria such as the least median of squares [7, 8]. The majority of these
fitting methods operate by minimising some function of the errors between the data points and the
ellipse. Although the Euclidean distance along the normal between the point and the ellipse would
be well suited for an error function it requires solving a quartic equation. Therefore, more efficiently
computable approximations to this distance are usually used instead, some examples of which are given
in [3, 4, 9, 10, 11].

Recently we have analysed the accuracies and inherent biases of several such approximations [6, 5].
The best method used the focal property of ellipses. Given an ellipse with foci F and F’, and a point P
on the ellipse, then the lines FP and F'P make equal angles with the tangent to the ellipse at P. Thus
the angular bisector of FP and F'P is the normal to the ellipse at P. Although this does not hold when
P lies off the ellipse, when the angular bisector is taken as an approximation to the normal then good
results displaying little curvature bias, asymmetry, or non-linearity were obtained. More details on the
definition and calculation of the error assessment measures are given in Rosin [6].

In this paper we describe two new techniques for estimating the perpendicular distance to an ellipse.
They are based on complementary approaches: the first approximates the normal itself using a hyperbola
and the intersection with the true ellipse is obtained, while the second approximates the ellipse using
circular arcs to which the true normal can be determined.

2 Orthogonal Conics

Families of ellipses and hyperbolae which are confocal are mutually orthogonal, as shown in figure 1.
Given that much of a hyperbola is “fairly” straight then the confocal hyperbola passing through P
should be a reasonable approximation of the straight line through P that is normal to the ellipse. The
three stages in its calculation are as follows: first, the unique hyperbola H that is confocal with the ellipse
E and passes through P is determined. Next the four points of intersection I of E and H are calculated.
Finally, rather than actually use the arc length along the hyperbola, the Euclidean distance of the normal
from P to F is approximated by the Euclidean distance from P to I.

To simplify the equations the ellipse and data are transformed into the canonical coordinate frame.
The canonical equations for an ellipse and hyperbolae are
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Figure 1: Orthogonal ellipse and hyperbolae

The position of the foci along the X axis of the ellipse and hyperbolae are defined as

fo= TR

fu=n/aj, + b} 3)

where a., b and ay, by, are the major and minor axes of the ellipse and hyperbolae respectively. Since
we will only be considering confocal conics then f. = f;. To determine the parameters of the confocal
hyperbola that passes through P we use the following substitutions

and

A = ai (4)
F o= fi=f
X = 2
Y y?
and rewrite (2) as
X_ Y
A F—-A
which produces a quadratic in A
A~ AX+Y+F)+ XF=0. (5)

Solving (5) for A and resubstituting in (4) and (3) gives us aj and by,. The intersection I = (x;,y;) of

the ellipse and hyperbola is found by solving the simultaneous equations (1) and (2), to get
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and the calculation of PI is now straightforward. Four solutions are obtained, and the shortest distance
selected.

3 Stirling’s Oval

We now describe a second approach using a recently published method developed by James Stirling
around 1744 for approximating an ellipse using four circular arcs [12]. The resulting oval provides a good
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Figure 2: Stirling’s circular arc approximation of an ellipse

approximation if the ellipse is not too eccentric, appearing virtually indistinguishable if § < 2. Moreover,
the arcs join with C' continuity.

The oval can be generated by drawing the ellipse’s minimum bounding rectangle as shown in figure 2.
The lines drawn from the corners are tangent to a central circle, and their intersections with the axes
define the centres of the approximating circular arcs. That is, the centres of arcs CD and DE are X and
Y respectively, and the two opposite arcs are defined similarly. The centres X = (z,0) and Y = (0, —y)
can be calculated algebraically:
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Calculating the perpendicular distance from a point P is now straightforward since we can easily calculate
the perpendicular to the appropriate circular arc. If the ellipse and data are transformed to the canonical
position (centred at the origin aligned with the axes) then we can immediately transform the point into
the first quadrant. Arc selection is now limited to choosing between C'D and DE. P is tested to see
which side of line X D it lies on. Then we calculate the distance to the arc centre, and finally subtract
the radius, so that the distance can be written as

de |PX|—(a—x) ifyr+ L(azr —2) <0
1 |PY|—(b+y) otherwise,

where (z7,yr) is the transformed point.

4 Experimental Results

We start by visualising the error functions by plotting their iso-value contours in figure 3. The original
ellipse with axes a = 400 and b = 100 is drawn bold. Contours for the angular bisector and confocal hy-
perbola methods appear very similar (figure 3a and figure 3b). However, when overlaying them (contours
from the angular bisector method are shown gray) the differences can be seen more clearly (figure 3c).
Using Stirling’s oval the discontinuity between the two circular arcs is evident (figure 3d). Also, due to
the high eccentricity of the ellipse the approximation is rather poor, especially close to the boundary.

A more quantitative assessment is given in tables 1 and 2 which use different noise models to char-
acterise the performance close to and far from the ellipse boundary respectively. EOF; and EOF5 are
error of fit functions often used for ellipse fitting, and are the algebraic distance and the algebraic dis-
tance divided by its gradient respectively. The angular bisector is labelled as EOF3, the new orthogonal
conic approach is given as EOF14, and the method based on Stirling’s oval is given as EOFy5. To aid
comparison, all results are normalised against EOF;. It can be seen that close to the boundary all the
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EOFs have similar linearity L, i.e. the error measure changes linearly with increasing distance from the
ellipse. Further from the boundary EOF5 does more poorly while EOFs;3_15 outperform EOF; slightly.
Although EOF5 has a lower curvature bias C than EOF;, EOF;3 is much better, while EOF4 exhibits
almost no curvature bias for distant points. the performance of EOF5 is significantly better than EOF;
but poorer than the rest. EOFy and EOF15 have extremely poor asymmetry A (the variation between
corresponding errors values inside and outside the ellipse); the former more so far from the ellipse and
the latter close to the ellipse. The overall goodness measure calculated both inside and outside the ellipse
(G) or only outside the ellipse (G') also shows EOF;3 and EOF;4 improving upon the other methods,
especially far from the boundary, while EOF;5 receives a poor score.

Table 1: Normalised assessment results with N (0, 2) noise model; a = 400, b = 100

|EOF || L | ¢ | A | & | & |
1T 1.000 | 1.000 | 1000 | 1.000 | L.000
2 |[0.987 | 0.011 | 3.978 | 0.808 | 0.841
13 || 1.000 | 0.009 | 1.125 | 0.775 | 0.822
12 || 1.000 | 0.009 | 1.107 | 0.775 | 0.822
15 || 1.000 | 0.193 | 8.997 | 4.076 | 3.340

Table 2: Normalised assessment results with N(0,64) noise model; e = 400, b = 100

[wOF | £ | ¢ | A [ ¢ | ¢ |
T || 1.000 | 1,000 | 1.000 | 1.000 | 1.000
2 |[0.877 | 0.041 | 8.404 | 2.771 | 0.099
13 || 1.006 | 0.002 | 0.747 | 0.007 | 0.009
14| 1.006 | 0.000 | 0.755 | 0.002 | 0.001
15 || 1.005 | 0.118 | 3.276 | 4.347 | 4.749

The effectiveness of the various distance approximations is tested by fitting ellipses. The Least Median
of Squares (LMedS) fit is found using the different approximations as error of fit functions (see Rosin [7]
for further details and examples). 4000 sets of synthetic data were generated for ellipses, each containing
between 18 and 89 points, varying the following parameters: major axis a = [200,450], minor axis b = 100,
subtended angles § = [1, 6], and added Gaussian noise o = [5,40]. The alpha trimmed (o = 0.1) mean
errors are listed in table 3, and show that EOF; is rated worst, while EOF14 performs slightly better
than the other methods, and EOF;5 does not do particularly well.

Table 3: Trimmed mean errors of estimated centre coordinates by LMedS ellipse fitting

H EOF ‘ Centre Error H

1 97.6
2 64.7
13 62.7
14 61.8
15 75.7

Figure 4 shows how varying the ellipse and noise parameters affect the quality of the fit. Although
EQOF 5 gets an overall poor assessment it can be seen to be insensitive to noise and is competitive for
small arcs. As expected, the results of fitting deteriorates for all EOFs as noise increases, subtended
angle decreases, and eccentricity increases.

Table 4 shows a count of the arithmetic operations involved in calculating the distance approximations.
The true Euclidean distance (obtained by solving the quartic equation) is also included as EOFq4. In
addition, the figures for EOF's;5 include the one-off calculations to determine the oval which account for
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Figure 4: Centre estimation error

half the complexity. Since the algorithms have not been carefully coded these figures should only be taken
as rough estimates of the algorithms’ complexities. As expected, the algebraic and weighted distances
are much more efficient than the better approximations. The complexities of EOFs;3_15 are comparable,
and are still substantially less than solving the quartic equation.

Table 4: Number of occurrences of arithmetic operations for distance approximations

[ EOF | +— | x: [ v [ trig |

1 5 8 0 0
2 6 13 |1 0
13 26 | 41 | 2 8
14 25 | 35 | 6 4
15 23 | 20 | 3 4
16 52 | 110 | 7 6

5 Conclusions

We have described two new approaches for approximating the normal distance to an ellipse. Along with
some other distance approximations they were analysed by a set of criteria that enable a quantitative
comparison. The method using orthogonal hyperbolae proved to be the most accurate, showing good lin-
earity and asymmetry, comparable with the confocal method we described previously, while its curvature
bias and overall goodness is much improved for distant points. The approach using Stirling’s oval fared
poorly for eccentric ellipses as the circular approximation breaks down. When the distance approxima-
tions are applied to the task of ellipse fitting the orthogonal hyperbolae method produces slightly better
fits, as measured by the trimmed mean of the errors in centre location.
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