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ABSTRACT

Lowe’ demonstrated a method for automatically segmenting and smoothing image curves by varying
degrees. It was intended to remove noise and unnecessary fine detail, aiding subsequent processing such
as grouping and matching. An alternative technique is described in this paper that is based on recursively
subdividing the curve into alternative sets of sections. Rather than use thresholds on the values of
curvature and its derivatives to determine the segmentation and degree of smoothing our technique is
driven by three qualitative measures: 1) a criterion for selecting potential breakpoints, 2) a criterion for
determining the amount of smoothing for curve sections, 3) a significance measure that determines which
sections form the best selection. The advantages of the technique are robustness, scale invariance, and the
absence of parameters.

1. INTRODUCTION

Many techniques and applications within computer vision involve the processing of image curves,
which are usually derived through edge detection. The curves can either be matched directly with model
boundaries or are first approximated by features suci as lines, arcs, corners, €tc. A problem with
processing raw 1mage curves is that they often contain noise and other undesirable fine detail. This can
ar1se from two sources. First, noise, quantisation, and other errors occur during image acquisition and
during the various stages of the extraction of the image curves from the image. Second, object boundaries
are atfected by neighbouring objects and the surrounding background. Different textures and grey level
contrasts will alter the certainty and accuracy of boundary detection. Unwanted structures can be
eliminated by smoothing, but this involves a trade-off between removing noise and removing useful detail,
leading to the question of how much smoothing should be performed. Ideally, the correct amount of
smoothing should remove as much noise as possible while retaining as much real structural detail as
possible. Since errors can come from several sources they may not be uniform across different curves or
within a curve, and may have differing amplitudes and types. Thus different curves and different sections
of a curve may require different amounts of smoothing.

A disadvantage of many curve representations is that they are extremely sensitive to any noise.

Smoothing is therefore a useful preprocessing stage. Some well-known examples of representations are
the Medial Axis Transform (MAT)3, codons?, and Fourier Descriptors2. With the MAT even a tiny
perturbation in the curve can radically change the structure of the medial axis, producing large unwanted

66 / SPIE Vol. 1964 Applications of Artificial Intelligence 1993 0-8194-1200-7/93/$4.00



branches. Codons are defined by the singularities of curvature. Without smoothing either the co-ordinates
of the curve or the curvature function itself many spurious sin gular points of curvature arise, resulting in
the curve being over-segmented into meaningless fragments. Finally, a common parameterisation of a
curve for analysis by the Fourier Transform is by curvature and pathlength. The effects of errors arising
just from quantisation can be significant, and are analysed by Bennet and MacDonaldZ.

When deciding at what scale to perform curve smoothing there are three main approaches. The most
straight forward is to represent the curves over a fixed range of scales!48:9. Although this is a robust
approach it produces a vast amount of data. A second approach is to represent each curve at only a small
number of 1nteresting or significant scales which we have called their natural scales!?. Between each
natural scale there 1s some qualitative change, e.g. they contain different structures. In contrast, the
traditional multi-scale methods contain much redundancy since there will be little qualitative change
between most curves at adjacent scales. This duplication of information makes the representation
inefficient and cumbersome to process since the most relevant information is not made explicit. Finally, the
curve can be represented by a single smoothed version. Either the whole curve is smoothed uniformly at a
single scale or by different amounts over individual sections. The latter approach is more appropriate since
curves often contain differently sized structures. There is a trade-off between completeness and
conciseness that 1s balanced differently by the three approaches. The multi-scale is the most robust,
guaranteeing curves will be represented at the correct scale (assuming adequate sampling of the scale

dimension) but produces a proliferation of data. Natural scales significantly reduce the amount of data at
the cost of occasionally missed or redundant scales. A single scale is the most compact, but necessarily can

lose important information if a curve contains several superimposed structures at different scales.

Lowe’ described a method for automatically segmenting and smoothing image curves that produces a
single curve smoothed by different amounts over different sections. This report describes an alternative
approach to perform the same function. Its advantages are robustness, scale invariance, and the absence of

parameters. We first briefly describe Lowe's algorithm. The new algonthm 1s then introduced, and finally
some comparative examples are provided.

2. LOWE'S ALGORITHM

Lowe's algorithm segments curves based on the change in curvature. A curve is smoothed through a
range of octave separated scales with o going from 1 to 8. At each scale the curve is split into sections in
which all the points have a change in curvature below a threshold normalised by 6. A minimum length
threshold of 2ais set to prevent zero crossings of X* near corners from being considered as short smooth
Intervals. The sections at all the scales are selected so that each point is represented by a single section. The
following procedure is carried out to maximise the lengths of individual sections. All sections are
considered and the longest section is chosen. The portions of all other sections that overlap the selected
sections are removed, and the process is repeated until as much of the curve is covered as possible.

Although the algorithm works fairly well, there are several points to note. First, the reason given for

segmenting the curve based on the change in curvature was that these represent likely points at which two
objects cross. Large curvature difference is used rather than large curvature to partially overcome the
etfects of noise and scale. However, we have earlier noted that object boundaries may be locally affected
by noise and the effects of different textures and contrasts of surrounding backgrounds. This implies that a
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variable amount of smoothing (and therefore segmentation) may be required within a section arising from a
single object. These segmentation points will not be detected by analysing change in curvature.

A second consideration 1s the requirement for thresholds. Different values of the threshold on the
change in curvature will produce different results, requiring user "tuning". The threshold on the change in
curvature is normalised by o so that the same threshold can be applied to the curve at the different levels of
smoothing. However, it 1s still constant for different curves. This means that the technique cannot be scale
independent since if a curve decreases 1n size its curvature proportionally increases.

3. OUR PROPOSED ALGORITHM

To overcome these limitations of Lowe's algorithm we have developed an alternative technique for
segmenting and smoothing curves. It 1s based on recursively subdividing the curve into smaller sections
which are smoothed by suitable amounts. We call the set of sections the segmentation tree. It contains all
the possible alternative segmentations and representations of the image curve given the chosen
breakpoints. From this tree the set of sections that make up the best unique description of the curve is
chosen. The same general approach to segmentation and approximation by some feature(s) was taken by
Lowe® for finding polygonal approximations of curves, and by Rosin and West!3:14 for segmenting
curves into straight lines, circular arcs, and elliptical arcs.

3.1 Scale Selection

Each section of curve (to be defined by the breakpoints) is smoothed. Rather than smoothing by an
arbitrary amount some qualitative criterion is required. Initially, the highest ranking (i.e. the most
significant) natural scale was considered. It could be detected using the approach described by Rosin!9.
However, this idea was abandoned for several reasons. First, it would be possible for the most significant
natural scale of a section of curve to be smaller than that of some of its subdivided sections. This would
not agree with the general spirit of the segmentation algorithm which assumes that fits to large sections are
coarser than fits to smaller sections. Second, determining and quantifying the natural scales is not totally
robust, and sometimes several spurious natural scales are detected, confusing the rankings. Lastly, some
curves do not contain a predominant natural scale. Fractal curves such as the Sierpinski triangle and the
Koch snowflake are examples composed of repetitive structures, equally spaced over a range of scales,
that would all be detected as equally significant.

Instead of employing natural scales a simpler and more appropriate method is used to determine the
degree of smoothing. Each section of curve 1s smoothed by the amount necessary to eliminate all zero-
crossings of curvature. This results in a simple section with no inflection points, and is either entirely
concave, convex, or straight. This closely follows the earlier versions of the segmentation algorithm that
fit features (e.g. analytic functions such as straight lines, circular arcs, and elliptical arcs) to curve
sections. In this case the feature is a concave/convex/straight arc. Since the amount of smoothing required
1s not known 1n advance the curve section is repeatedly smoothed with increasing values of ¢ until no zero-
crossings of curvature remain. Thus, for a given curve, the longer the sections considered in the
segmentation tree the greater the degree of smoothing is likely to be required. When the segmentation tree
1s formed the higher levels of the tree will contain coarser features and the lower levels will contain finer
features, producing in effect a multi-scale representation similar to Ballard's strip-treel.
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3.2 Segmentation Tree Traversal

After the segmentation tree is generated the best set of features is selected from it. Each section is
assigned a significance value. This is a quasi-psychological measure that describes the goodness of the
representation. It 1s defined as the maximum deviation between the approximation and the original data
normalised by the length of the feature. Since the original data and the smoothed version have a pointwise
correspondence this is simply the maximum pointwise distance divided by the length of the curve.
Normalising by the length has two functions. It can be seen as allowing longer (and therefore more
perceptually significant) features to contain greater deviations from the norm. More importantly, it also
ensures that the technique 1s scale independent. Favouring long sections was also employed in a more
explicit manner by Lowe’. The best set of features is selected from the segmentation tree by traversing
upwards from the leaves to the root. At each node the feature 1s retained 1if 1t 1s more significant than all its

children, otherwise it 1s replaced by its children. After traversing the tree the remaining feature curves
constitute the best representation of the curve.

3.3 Breakpoint Determination

/ -+ ongmal Curve

point of
maximum deviation

figure 1 - point of maximum deviation as a breakpoint

There are a vaniety of approaches to choosing the breakpoint to split each curve segment into two.
We describe here three techniques, all of which are non-parametric. The first follows the original
segmentation and approximation algorithms which used the point of maximum deviation between the
original data and the approximation as the breakpoint. In many cases this will correspond to the point of
maximum change in curvature. An example 1s shown 1n figure 1.

}
division between sections point of maximum

containing different amounts change in curvature

of noise/structure \ /

figure 2 - change in texture as a breakpoint
This approach has limitations in common with Lowe since large deviations, or large changes in

curvature will not identify changes in the texture of a curve. By texture we mean the characteristics of the
underlying noise and/or fine detail. An example of a curve containing two levels of detail is shown in
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figure 2. The ideal segmentation point that separates the two sets of structures does not correspond io the
point of maximum deviation (or maximum change in curvature).

The second technique addresses the curve texture by analysing the heterogeneity of the two sections
of the curve on either side of the potential breakpoint. In other words, the sections should have different
noise characteristics. The best breakpoint will be the point at which the noise characteristics of the two
sections differ most. Heterogeneity is calculated by comparing the average errors between the original data
and its smoothed version for the two sections. At every point along the curve the average error on the
section to the left (error,,,) and to the right (error,,,,) of the point is calculated. Heterogeneity 1s then

calculated as:

error,, .
error,,.,,

rs

| _ ETTOT gy

error,,,

heterogeneity =
if error,, > error,,,

However, this measure could result in breakpoints being chosen very close to the ends of the curve. To
avoid this another factor is included to bias the breakpoint towards the centre of the curve, where length,,,

and length,,,, are the lengths of the curve sections to the left and right of the potential breakpoint:
length
e .
centrality = ] e:g , h
right
—=— if length, . > length
length,, gth,, > length,,,

Both these measures produce a response between 0 and 1, corresponding to worst and best results. They
are combined into a single measure, also ranging from O to 1, as:

measure = heterogeneity X \/centrality

The square root of the centrality measure is used since it was otherwise found to dominate the combined
measure.

Although this measure uses the correct principles to determine the breakpoint, it unlikely to be
completely robust. Real data does not display such well defined noise characteristics. In addition, when a
curve contains more than two levels of structure the breakpoint determination will not work well unless
two levels dominate. Therefore, a third approach is considered, which 1s to subdivide the curve at its
midpoint. While it does not take the curve's structure into account it does have the benefits of robustness
and efficiency.

3.4 Curve Smoothing

The curve is represented as two coordinate functions of a path length parameter
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x = x(¢) and y = y(¢)

To smooth the curve these functions are independently convolved with a Gaussian function of standard
deviation o:

P
Golt) = oN2T e h

Curvature 1s calculated using the convolution of the first and second derivatives of the Gaussian:

XY -Y'X”

The Gaussian has the property that it does not introduce zero-crossings with increased smoothing,
which 1s required for the selection of the degree of smoothing for curve segments to be well conditioned.
However, there are several problems associated with curve smoothing which have to be addressed. The
first is the tendency of the smoothed curve to shrink towards its centre of curvature. As this effect is
proportional to the degree of smoothing as well as the degree of curvature it can become pronounced for
the large amounts of smoothing that may be required to eliminate kinks. Fortunately, a solution has been
provided by Lowe’ to correct the shrinkage, which is employed here.

data , 3o0'th
axi1s for 4 2<d—point

&,

axis for first
reflection

second \
reflection \\
\

A Y

endpoint Of g

e e ’
original data 2 Y
s \

\ \ﬁrst reflection

\
\

T second reflection

figure 3 - extending a curve beyond its endpoints

The second problem concerns the need to convolve the Gaussian mask with the data when it extends
beyond the end of the curve. The convolution kernels are defined over an infinite range but can be safely

truncated at a distance of 3o from their centre. For closed curves x(z) and y(z) are periodic functions and

the data wraps around. If the curve is open then a way must be found to extend the data beyond the end of
the curve. There are several solutions possible; we have chosen to extend the data by 3¢ points at each end
of the curve by duplicating and reflecting the curve. This is most often done by reflecting the curve about a
line passing through the endpoint that is normal to the tangent estimated at the closest curve point for
which a reliable estimate is available’. We avoid the difficulty in estimating the tangent by first reflecting
about the straight line between the endpoint to the previous 3o 'th point and then reflecting again about the
normal to that line at the curve endpoint (see figure 3). In practise this is performed by a single
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transformation. The advantages of this technique are that it 1s robust and non-parametric. Points can be
reliably reflected even for very noisy curves with a high rate of change of curvature.

extension of data original data

figure 4 - the curve extension ensures smoothed endpoints do not drift

A third desirable property is that the location of the curve endpoint is preserved after smoothing. This
can be demonstrated without loss of generality by setting (or rotating) the extended curve so that the lines
of reflection lie on the co-ordinate axes (figure 4). Setting the pathlength parameter of the curve ¢’ to zero at
the end of the original data (which lies on the origin) it can be seen that all the extended data points
(x_,,y_.) have symmetric pairs (x,,y.), with x_.=-x, and y_, =-y,. Thus, the averaged co-ordinate
values at the endpoint remain (0, 0). Towards the end of the curve the smoothed points approach the
horizontal axis and the smoothed curve becomes flattened. Retaining the curve endpoints after smoothing
1S important since it ensures that even if sections of a single curve are smoothed by different amounts the
result will still be continuous (although only piecewise smooth). In contrast, Lowe's method allows the

endpoints to drift significantly. This 1s apparent in the examples which show that curves are segmented
into discontinuous segments.

4. RESULTS

Figure 5 shows the edges extracted from an image using the Canny edge detector. The results of
smoothing these edges using Lowe's algorithm are shown in figure 6, where the thickness of the lines is
proportional to the amount of smoothings. Figures 7a-c show the results of our algorithm using the
following breakpoint criteria: a) maximum deviation, b) homogeneity, and ¢) midpoint. A considerable
difference can be seen between these approaches. None the less, it can be seen that even without manually
set thresholds they provide reasonable results. In particular the technique for extending curves has
produced continuous curves in comparison to the occasionally fragmented output from Lowe's algorithm.

The outline of Africa 1s used to demonstrate the properties of scale invariance. It was subsampled to
provide three versions at different sizes as shown in figure 8a. The results of Lowe's algorithm are given
in figure 8b, and our algorithm using the midpoint breakpoint criterion in figure 8c. The latter results can
be seen to be more pleasing and consistent. Since the curves are only analysed at pixel resolution, creating

quantisation errors for the two smaller curves, the results are not exactly scale-invariant. Of course, similar
sampling problems would occur with real data.
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5. CONCLUSIONS AND FUTURE WORK

We have described a method for segmenting and smoothing curves by varying degrees. It is based
on an algorithm previously used for segmenting curves into a variety of other features such as straight
lines and arcs. Its advantages are that it is relatively robust, scale-invariant, and non-parametric. This
means that it can be applied to a variety of curves with different noise, scale and structural characteristics
and not require any user tuning to ensure good performance.

The algorithm requires sections of curves to be smoothed by various amounts. Gaussian smoothing
with shrinkage correction is applied until all zero-crossings of curvature are eliminated. In the future it
would be interesting to experiment with other smoothing methods and alternative criteria for determining
the suitable amounts of smoothing. For instance, Gaussian smoothing causes sharp corners to become
rounded, which is not always desirable. Adaptive smoothing techniques!® could be employed which
would retain such discontinuities. Other criteria for choosing the optimal scale could be based on cross-
validation techniques!’ or bending energy?®.

The general segmentation algorithm has already been successfully applied to segment three-
dimensional curves into lines and circular arcs!’. Likewise, the current smoothing algorithm could be
easily extended from 2D to 3D curves. Work is also being undertaken to apply the curve smoothing as a
pre-processing stage for curve grouping!! and representation by codons!2.
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figure S - edges produced by Canny detector
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figure 6 - smoothed curves produced by | Lowe's algorithm
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figure 7a - our results with maximum deviation ! criterion for breakpoint
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Jigure 7c - our results with midpoint } criterion for breakpoint
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Jigure 8a - pixel data for outline of Africa at three scales

figure 8b - smoothed curves produced by Lowe's algorithm

figure 8c - smoothed curves produced by our algorithm
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