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Abstract. Several new shape measures are proposed for measuring the sigmoidal-
ity of a region (or more precisely, the region’s axis). The correctness of the mea-
sures are verified on synthetic data, and then tested quantitatively on a diatom
classification task.

1 Introduction

The analysis of form is required in many areas. However, notions of shape tend to be
vague, and difficult to pin down. Scientific disciplines often provide specialised defi-
nitions of shape terms relevant to their subjects of interest. Thus, in botany there are
standard descriptors for gross leaf shape, leaf base, leaf margin (i.e. boundary pattern),
and so on. In computer vision a more general set of shape descriptors have been de-
veloped. Well known examples are symmetry, eccentricity, Euler number, compactness,
convexity, and rectangularity [10], while more recent developments have been chiral-
ity [5], triangularity [9] and rectilinearity [13].

Fig. 1. Examples of diatoms shown next to their extracted contours and axes.

This paper describes a new shape descriptor for sigmoidality, motivated1 by the
classification of diatoms (see figure 1), which are unicellular algae found in water [2],
and have many applications in forensics, geology, etc. There is a limited range of diatom
shapes that occur, and so variations in shape between taxa can be quite subtle. While
techniques such as Legendre polynomial coefficients [11] and Fourier descriptors [7]
have been traditionally used for diatom shape analysis, Fischer and Bunke [4] found that
incorporating additional shape descriptors like those listed above improved classification

1 Other applications of sigmoidal shape are e.g. classification of solar active regions as
eruptive/non-eruptive [1], and as a descriptor of the anatomy of bones [12].
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rates. Moreover, such intuitive, symbolic descriptors are closer to those currently used
by biologists2.

2 Sigmoidality Measures

The sigmoidal shape is generally described as S shaped, but there is no single precise
definition. The measures described in this paper start with a tightly specified function
and progress to more general sigmoidal shapes.

While shapes such diatoms are outlines of two dimensional regions, in this paper
we only consider the central axis. This is extracted by applying a standard thinning
algorithm [14] to the region. If the resulting axis contains vertices then the boundary
is iteratively blurred until a simple axis curve is obtained. While this scheme will not
work well for substantially branched shapes they are not sigmoidal in any case, and will
not be considered further. Also, this paper does not consider details of the shape such
as variations in the cross section along the axis, the thickness (width) of the shape, the
shape of endings, etc.

Fig. 2. Differents types of variation of a sigmoidal curve.

As shown in figure 2 stretching the shape to increase its curvature has a greater
perceptual effect than stretching along its principal axis. Nevertheless, is the right hand
shape really more sigmoidal then the others? The measures in this paper do not take the
“fullness” of the shape into account.

2.1 Cubic Fit

For diatom classification Fischer and Bunke [4] fit a cubic polynomial and classify the
shape based on the coefficient values. We also fit a cubic, but since we are focussing
attention on the sigmoid shape we use y = ax3 + bx + c and miss out the x2 term to
ensure a symmetric curve is fitted. Before the least squares fitting the data is first rotated
so that its principal axis lies along the X axis. The correlation coefficient ρ is used to
measure the quality of fit. Since we are not expecting inverse correlation the value is
truncated at zero, and so the sigmoidality measure is S1 = max(ρ, 0). The range of all
the measures described in this paper is 0 − 1.

2.2 Generalized Gaussian Fit

Rather than fit directly to the coordinates the next approach uses the tangent angle
instead. This has the advantage that apart from a simple offset of the values the angle is
orientation invariant. If we plot the following sigmoid function

2 Some examples of descriptors (with explanations) commonly used for diatom outlines are:
acicular (needle), arcuate (strongly curved), clavate (club), cruciform (cross), cuneate (wedge),
elliptical, lenticular (lens), linear, lunate (crescent), panduriform (‘8’), sigmoid, stellate (star).
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Fig. 3. Sigmoid function (a & c) and tangent angle (b & d).

0.5 − 1
1 + eax

we see (figure 3a&c) that increasing the value of a sharpens the transition between the
middle section and the outer arms. The corresponding tangent angle looks somewhat
Gaussian, but is flattened as the sigmoid function becomes sharper. The shape of the
tangent angle plot can be modelled well by the Generalized Gaussian distribution. The
probability density function is given by

p(x) =
vn(v, s)
2Γ (1/v)

e−[n(v,s)|x|]v with n(v, s) =

√
Γ (3/v)
Γ (1/v)

/s

where v is a shape parameter controlling the peakiness of the distribution. Since the
maximum likelihood estimate requires solving a highly nonlinear equation we use Mal-
lat’s method [6] for approximating the solution which is computationally simpler. First
the mean absolute value and variance of the data xi are matched to the Generalized
Gaussian. If m1 = 1

n

∑n
i=1 |xi| and m2 = 1

n

∑n
i=1 x2

i then

v = F−1
(

m1√
m2

)
where F (α) =

Γ (2/α)√
Γ (1/α)Γ (3/α)

.

In practise, values of F (α) are precomputed, and the inverse function determined by a
look-up table with linear interpolation. Finally, the tangent angle is scaled so that the area
under the curve sums to one. Again the error of fit was determined using the correlation
coefficient, S2 = max(ρ, 0).

2.3 Curvature Analysis

A characteristic of the sigmoid is its single, central point of inflection. For perfect, clean
data its presence would be easy to test, but in practise, with real data the sensitivity of
curvature estimation to noise makes this hopeless. Although the data could be smoothed
to eliminate false inflections the parameter for the degree of smoothing would be crucial.
Instead of identifying zero crossings of curvature we check the overall distribution of
curvature values along the curve. The curvature at each point is estimated as κi using
kernels of the Gaussian function and its first two derivatives. Since the curvature will be
integrated along the curve and the number of zero crossings is not critical then the value
for the spread of the Gaussian is not critical either. Separating the positive and negative
curvature values as
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κ+
i =

{
0 if κi < 0
κi otherwise

κ−
i =

{
0 if κi > 0
−κi otherwise

then the positive and negative curvature values are summed over the curve to the left
and right respectively of the midpoint m. In addition the total curvature is computed for
normalisation purposes:

A+ =
m∑

i=1

κ+
i A− =

n∑
i=m

κ−
i S =

n∑
i=1

|κi| .

The sections of positive and negative curvature should be restricted to either side of
the inflection point and so the quantity A+ + A− should be large. Also, the amount of
positive curvature on the left should equal the (absolute) value of the negative curvature
on the right, and the discrepancy is measured by |A+ − A−|. These values are scaled to
lie in the range 0 − 1 and combined using a product to obtain the following measure

S3 =
[
1 − 2 (A+ + A−)

S

] [
1 − |A+ − A−|

S

]
.

To cope with the curve bending in either direction it is analysed both for κi and −κi,
and the larger of the two values returned.

Figure 4 shows several examples of curvature plots in which the quantities A+ and
A− are shaded dark and light gray respectively. Only the first example gets a score of
one and the remainder are assigned zero either due to the first (b and c) or the second
term (d).

κ

t

(a) S3 = 1 × 1

κ

t

(b) S3 = 0 × 1

κ

t

(c) S3 = 0 × 0.5

κ

t

(d) S3 = 1 × 0

Fig. 4. Curvature plots with the shaded regions corresponding to A+ and A−.

2.4 Convex Hull Method

The final method splits the curve in two at its midpoint, and the convex hull of each
section is determined. Next, each section is traversed from the midpoint to the other
end of the curve, and the areas to the left and right sides of the curve are calculated.
If these are L1 and R1 for section 1, and likewise for section 2, then ideally L1 = L2
and R1 = R2 = 0 (or the equivalent with L and R switched). This corresponds to the
two sections being convex on opposite sides, and partially enclosing areas of similar
sizes. Like S3, the precise shape of the curve is immaterial. An appropriate normalised
measure is

S4 =
(

1 − |L1 − L2|
L1 + L2

) (
1 − R1 + R2

L1 + L2 + R1 + R2

)
.
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Fig. 5. For the given axis (in bold) the con-
vex hull is determined for each half. The
areas to the left/right of each axis section
(when traversing from the axis midpoint) are
hatched/shaded.

Fig. 6. The areas for the left hand spiral sec-
tion cannot be calculated, although the other
section is not problematic.

Fig. 7. In each row the curves are ranking in decreasing order according to S1, S2, S3, S4 respec-
tively.

To be able to determine the areas this method assumes that the endpoints are vertices
in the convex hull. Otherwise, problems arise such as shown in the left hand section in
figure 6.

3 Experimental Results

3.1 Contour Example

The four measures are first tested on some synthetic curves and a miscellaneous selection
of other curves. The curves are shown in figure 7, ranked in descending order of sig-
moidality. All measures do reasonable well, generally assigning high scores to sigmoidal
curves. Also, as already noted, S4 cannot cope with the spiral sinusoid.

Examining the distribution of the sigmoidal measures (figure 8) it can be seen that S2,
S3 and S4 all correctly give close to peak responses for the first six noise free sinusoids.
Due to its more restrictive model S1 shows a drop-off.

3.2 Diatom Example

The second experiment applies the shape measures to classify diatoms. The mixed genera
set from the ADIAC project was used, consisting of 808 contours covering 38 taxa. Out



Measuring Sigmoidality 415

5 10 15
rank order

0.0

0.2

0.4

0.6

0.8

1.0

si
gm

oi
dn

es
s S1

S2
S3
S4

Fig. 8. Distribution of values calculated by sigmoidality measures for data shown in figure 7.
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Fig. 9. ROC curves for identification of Gyrosigma acuminatum diatoms.

of the 38 taxa (classes) there is only one with a sigmoidal shape: Gyrosigma acuminatum.
Between 20 and 29 examples of each taxa were present.

For each sigmoidal shape measure, as well as some standard shape descriptors, their
discriminating power was calculated for identifying Gyrosigma acuminatum diatoms
against all other diatoms (i.e. a two class problem). Receiver operating characteristic
(ROC) curves were generated, showing the trade-offs between the amount of true and
false positives for all the different threshold values – see figure 9. The area under the
ROC curve corresponds to the probability of a correct decision in a two-interval, forced
choice task [3], and is listed in table 1. As expected, the sigmoidal shape measures do a
good job of discriminating the sigmoidal diatoms, and are clearly better at the task than
the other shape descriptors.

Next, classification of the full set of 38 class labels was performed using Murthy
et al.’s oblique decision trees [8], the set of 15 non-sigmoidal shape descriptors given
in table 1, plus one sigmoidal shape measure at a time. Leave-one-out cross validation
produced the classification accuracies in table 2 3. S1 was found to perform best, (perhaps
since Gyrosigma acuminatum have a consistent, regular sigmoidal shape) improving
classification accuracy by 3%, while S2 performs worst. Overall, there seems to be a
small but consistent improvement in classification accuracy when one or other of the

3 Fischer and Bunke [4] reported better accuracies than ours (in excess of 90%). However,
they used diatom specific features (e.g. 10 descriptors for valve endings) as well as internal
textural details (“ornamentation”). Moreover, by applying bagging they further increased the
performance of the decision tree classifiers.
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Table 1. Areas under ROC curves for identification of Gyrosigma diatoms.

Sigmoidality measures
method S1 S2 S3 S4

area 1.000 0.981 0.992 1.000

Geometric primitives
method circularity ellipticity rectangularity triangularity
area 0.142 0.180 0.386 0.060

Classical measures
method aspect ratio compactness convexity eccentricity
area 0.203 0.881 0.112 0.818

RTS Moment invariants
method φ1 φ2 φ3 φ4

area 0.826 0.825 0.374 0.437

Affine Moment invariants
method I1 I2 I3

area 0.820 0.689 0.708

Table 2. Diatom classification success rate for all 38 taxa. The columns show which sigmoidality
measure was used in addition to the set of general shape descriptors.

S1 S2 S3 S4 none

78.47 75.62 76.36 77.72 75.25

sigmoidal measures (apart from S2) are combined with the other descriptors, confirming
that sigmoidality does provide some useful discriminating power in this application.

4 Conclusions

Four measures for computing the sigmoidality of a shape have been described. All
have linear computational complexity and are straightforward to implement. From the
experiments reported in this paper it is not possible to choose any one method as the
best. All performed reasonably; S2 fared worst, but the others produced similar levels of
performance considering both the two-way and 38-way diatom classification tasks. The
latter three also showed that an improvement in classification could be achieved over
using just standard shape descriptors. Future work will investigate testing and comparing
the measures over a wider range of applications.
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