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Abstract

Computer assisted image analysis is often required in automatic visual in-
spection in manufacturing processes. However, in spite of years of research
in pixel-based image processing techniques such systems are often unable to
recognise characteristics that are obvious to human visual inspection. In this
paper, we present a technique that combines conventional image analysis,
neural networks and fuzzy decision-making. The motivation for this approach
is to train the automated system on characteristics that would represent a
naturally “perceived” image. The application is on detection of flaws in lami-
nated composite materials. Initial results indicate that great improvement in
classification accuracy can be achieved over the use of neural networks alone.

1 Introduction

Computer image processing and analysis is often required in automatic visual in-
spection in manufacturing processes. While trained human operators will most likely
be able to grade a product accurately, their performance fails remarkably when they
have to deal with high speed and repetitive tasks. On the other hand, in spite of
several years of research in pixel-based image processing, techniques computerised
image analysis systems are often unable to recognise characteristics that would be
obvious to human visual inspection. In this paper we present an application com-
bining conventional image analysis, neural and fuzzy techniques. The motivation
for this approach is to train the automated system on characteristics that would
naturally represent the “perceived” image. The application in this study is on clas-
sification of laminated composites by shearography imaging.

Detection and characterisation of damage and malformation in laminated com-
posites by shearography is often difficult due to a lack of formation of clear fringe
patterns. In this paper we have outlined a method for isolating fringes in poor
quality shearographs and using neural fuzzy techniques to classify the laminated
composites. The technique involves median filtering of the images and extraction
of signatures of sampled pixel intensities along suitable axes. Neural networks are
then used to classify each of the signatures separately. Due to the expectation of

1



their failure to classify certain images correctly, a fuzzy inference system is used to
provide the overall classification of the laminated composite by resolving indetermi-
nate and conflicting classifications. An image gallery of only 20 shearographs was
used, due to the expense of obtaining satisfactory shearographs. However, initial
result indicates that the approach is viable.

2 Shearography: an overview

Shearography is a real-time nondestructive evaluation technique that has been widely
used for damage detection. The nondestructive procedure involves video imaging
of a surface displacements illuminated by laser. A specially designed CCD camera
produces two laterally sheared images of the surface. Shearography is based on the
phenomenon that coherent waves of light having different path lengths produce a
fringe pattern when interference occurs. This fringe pattern represents changes in
the out-of-plane displacement derivative of the surface under test. The out-of-plane
displacement derivative, is a representative of strain. Discontinuities in a material
will give rise to strain concentrations when the object is loaded, through presure or
thermal excitation [1]. The strain concentrations form a fringe pattern and this can
be used to detect and analyze flaws. The mathematical foundations and techniques
used in shearography are described in [2, 1].

During shearographic examination, the test specimen is excited while illuminated
by laser light. An image shearing CCD camera captures the displacements on the
surface. The images are then processed by computer. Obtaining realistic results is
dependent upon an appropriate method for exciting the specimens and the image
analysis technique. Electronic shearography (ES) has mainly been used in damage
detection and has also been successfully applied in detecting delaminations in com-
posites. However, characterization of damage continues to be a problem, especially
for flaws other than delaminaions. On the other hand, ES has also been used for
other applications such as measurement of surface coordinates and slopes of curved
structures and in vibration analyses. There is need for more studies in the develop-
ment of quantitative and qualitative approaches in detecting and evaluating different
types of damage and flaws using shearography. This paper presents an initial study
in combining ES with neural fuzzy classification techniques.

3 Shearograph Image Processing

Neural and fuzzy classification techniques do not offer a “magic bullet” to solve
difficult classification problems. Therefore, it is generally acknowledged that con-
ventional signal pre-processing using conventional techniques is advisable. In this
section we describe the steps of image pre-processing that have been proposed. In
our approach we attempt to derive a perceptual rather than pixel-based processing
of the image. In other words, we wish to extract features that would be apparent
to human visualisation.

We start by showing an example of a shearography image (Figure 1a). To the
human eye the main feature in the image are distinct fringe patterns. However,
closer examination shows that they are in fact not so easily identifiable, which can
be a problem to conventional automatic image processing. For example, as a first



step, it would be useful to threshold the image to separate the fringe patterns from
the background using the image histogram. Unfortunately, the intensity histogram,
shown in figure 1b, reveals a unimodal distribution. This makes thresholding con-
siderably more problematic as most algorithms expect bimodal (or more generally
multi-modal) histograms so that threshold points are well defined. A second diffi-
culty is that the images are very noisy, as seen more clearly in the enlarged section
in figure 1c. This also reveals how the histogram is unimodal despite the visual
appearance of the image seemingly being composed of well separated dark and light
patterns. The bands are in fact made up of a mixture of isolated points distributed
over a wide range of intensities. Therefore there is no peak at the dark end of the
histogram (large intensity values infigure 1b) as the contributions of the dark fringes
are spread so thinly as not to form a discernible peak.

To overcome the above problems, the first stage of processing applied is to blur
the image using a Gaussian filter (the value of σ = 2 was used) to merge the
isolated points and form more distinct (on a local scale at least), less noisy fringes.
The result is shown in figure 1d. Since it is known and assumed that the main
feature in the image are the fringe patterns, it is necessary to isolate these. To
find the centre of the fringe patterns the horizontal and vertical lines of symmetry
in the image are first located. The intersection of these lines of symmetry will
correspond to the centre of the fringe patterns. In our approach we assume that these
correspond to the horizontal and vertical lines such that pixel intensities reflected
about the lines match the corresponding pixels. The intensity similarity is measured
using Pearson’s moment correlation coefficient, which indicates the degree of linear
relationship between two variables:

r =

∑
i(ai − ā)(bi − b̄)√∑

i(ai − ā)2
√∑

i(bi − b̄)2
.

To locate the vertical line of symmetry, for example, this is applied at each possible
position of x, producing the correspondences

ai = Ix+i,y, bi = Ix−i,y; ∀i, y

The value of x for which r is maximum is selected as the line of symmetry. The
horizontal line is found similarly.

An additional practical detail is that the values of x ± i and y ± i must remain
within the bounds of the image size. Thus, as the lines move towards the image edges
then many pixels cannot be used as they have no correspondences. The problem
that arises is that close to the edges only a small region of the image is included
in the symmetry test. This can result in false centre of symmetry since the rest of
the image may be featureless, in which case any line provides a high correlation.
To avoid this problem the candidate lines are only considered within the middle
portion of the image, that is, if the image width is w then potential vertical lines of
symmetry are restricted to x = [w

4
, 3w

4
]. As shown the method works well, and has

generally been found to be reliable. However, given the variability of the images,
errors can still occur. An example is given in figure 1g in which the pattern is rather
larger than previously. The detected centre of symmetry is not at the centre of the
complete pattern, but the centre of one of the eyes of a dual pattern.

Locating the fringe centre is advantageous for two reasons. Firstly, it eliminates
the two degrees of freedom necessary for pixel-based processing. Secondly, it permits



a translation-invariant description of the patterns in the image. In other words, the
image can now be processed in terms of the patterns, which we have assumed should
be present, or absent, in the images. But, as has been described above, examining
the image along the lines of symmetry has its drawbacks, because it may not be
possible to perceive the existence of fringes by traversing a symmetry line, even
where it is known that the fringes exist. It is for this reason that extra decision-
making is necessary from examination of more than one line of symmetry.

To reduce the quantity of data the image intensities are sampled along the hor-
izontal and vertical lines of symmetry to generate 1-D signatures, as shown in fig-
ure 2a. Two approaches to resampling these slices were considered. The first is to
generate, for a fixed number of lines, the optimal polygonal approximation with re-
spect to the incurred integral squared error. This was implemented using a dynamic
programming scheme [3]. The second is much simpler and faster, and just performs
a regular subdivision and sampling of the curve. These levels of compression were
found to be the limit to which the visual characteristics of the original image were
preserved. Figure 2b and figure 2c show the results applied to the horizontal slice.
The optimal approximation was set to extract 30 lines while the regular subdivision
used 100 samples.

4 Neural Network Classification

The data obtained from the image processing described above, was used to train
conventional backpropagation networks to classify the signatures obtained from the
images. Due to the cost of carrying out experimental shearography it has not been
possible to obtain a large enough collection of images. A gallery of 20 flawed lam-
inations was used, which provides 80 different signatures of the two types. The
non-flawed laminations were represented by images made up entirely of random
background noise, thus, another 80 of such “non-flawed” signatures were collected.
The pixel intensities were normalised in [0.0, 1.0]. These data was separated into
two equal sets for training and testing.

The network parameters were determined as is common through experimenta-
tion. This includes the number of hidden nodes and the learning rates. The other
considerations were that the network is trained to learn outputs of 0.1 and 0.9, in-
stead of 0 and 1, respectively. In practice, to improve network learning efficiency,
networks are also trained to accept value in excess of 0.8 as close enough to 1, and
conversely, values less than 0.2 as close enough to 0. Output values outside these
ranges are usually considered indeterminate. The output of a neural network, in
many cases, will lie in the indeterminate region, unless thresholding is applied. In
this work, an output is assigned a fuzzy measure of belonging to any of the three
possibilities. However, since in a classification task we require a definite output, a
decision-making system is used to resolve contradictory and indeterminate classifi-
cations.

5 Fuzzy Inference Aggregation

The fuzzy inference system is designed to be used in the testing or operation stage
to determine the overall output from classification networks, which are trained with
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Figure 1: Locating the fringe pattern in the shearograph images
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(a) intensity slices though lines of symmetry
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(b) optimal polygonal approximation
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Figure 2: Representing the fringe pattern by horizontal and vertical 1D intensity
slices through the detected centre
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Figure 3: Fuzzy partitions

orthogonal 1-D signatures of images. An output from each network is assigned
a fuzzy measure to indicate the degree to which it is “False” (no defect), “True”
(defective) or “Indeterminate”(unknown), in terms of identifying a delamination
in the tested material. At present two networks are used. The final decision is
evaluated using fuzzy rules constructed to represent the authors’ interpretation of
the problem, that is, how likely it is that the shearographs belong to one of the two
possibilities. The fuzzy partitioning used is shown in figure 3 and the inference rules
in Table 1

Fuzzy measures and fuzzy integrals were introduced by Sugeno [4] as a means of
determining concepts which are heavily influenced by human perception. A fuzzy
integral is a function which can be used to aggregate information from multiple
sources. Thus, a fuzzy integral can be understood as the degree of agreement be-
tween opposite tendencies or degree of agreement between objective evidence and
the expectation. In this paper, the degrees of agreement for each classification are
summed over all classification rules, with the final class being determined by the
maximum sum:

φ(Cj) =
∑

∀Ri=Cj

min
i

µi

j∗ = arg max
j

φ(Cj)

where Cj is the jth class of output, Ri is the output of the rule triggered by the
inputs, and µi are the fuzzy measures of the outputs of the neural networks, and j∗

is the determined final classification.

horiz. / vert. False Indeterm. True

False F F *
Indeterm. F * T

True * T T

Table 1: Fuzzy Rules for Out-
put Class Aggregation (F=False;
T=True; *=Conflict)

Type Sens. Spec. ppr npr
NN30 0.53 0.58 0.69 0.67
NN100 0.55 0.52 0.61 0.63
FNN30 1.0 1.0 1.0 1.0
FNN100 1.0 1.0 1.0 1.0

Table 2: Performance for network
classification



6 Results and Discussion

The performance of the neural-fuzzy classification is measured using a number of
metrics. The classification of each network is evaluated in terms of its sensitivity,
specificity, positive prediction ratio and negative prediction ratio. Sensitivity is a
measure of the accuracy to determine a positive outcome, given that the outcome
was indeed positive. Conversely, specificity is a measure of the accuracy to determine
a negative outcome, given that the outcome was negative. The positive prediction
ratio (ppr) is the percentage of actual positive outcomes, while the negative predic-
tion ratio (npr) is the percentage of actual negative outcomes in a test.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

ppr =
TP

TP + FP

npr =
TN

TN + FN

Table 2 shows the result obtained from the classification tests, using two signal
processing approaches and in combination with the fuzzy aggregation. NN30 is the
network using 30 sample points obtained through polygonal approximation of the
image signature. NN100 is the network with 100 regularly sampled inputs. FNN30
and FNN100 refer to the combination of these networks with a fuzzy decision-making
system.

The networks were trained for a predetermined number of cycles sufficient to
reduce the network error to an acceptable level. The result shows that while the
classification accuracy was low in all cases using the neural networks alone, it was
possible to classify shearograph images with certainty when the neural networks were
combined with a fuzzy decision-making system. This result, however, is tempered
by the small training and test set available at the moment. We anticipate reporting
similar improvements with a larger gallery of images.
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