
Multiscale structure in sedimentary basins
S. A. Stewart,n G. J. Hay,w P. L. Rosinz and T. J. Wynn‰
nBPAzerbaijan, Sunbury onThames, Middlesex, UK
wUniversite¤ deMontre¤ al, Montre¤ al, Que¤ bec, Canada
zCardiff University, Cardiff, UK
‰TRACS International, Union Grove, Aberdeen, UK

ABSTRACT

Hierarchies of superimposed structures are found in maps of geological horizons in sedimentary
basins.Mapping based on three-dimensional (3D) seismic data includes structures that range in scale
from tens of metres to hundreds of kilometres. Extraction of structures from these maps without a
priori knowledge of scale and shape is analogous to pattern recognition problems that have been
widely researched in disciplines outside of Geoscience. A number of these lessons are integrated and
appliedwithin a geological context here.We describe a method for generating multiscale
representations from two-dimensional sections and 3D surfaces, and illustrate how superimposed
geological structures can be topologically analysed.Multiscale analysis is done in two stages ^
generation of scale-space as a geometrical attribute, followed by identi¢cation of signi¢cant scale-
space objects. Results indicate that Gaussian ¢ltering is a more robust method than conventional
moving average ¢ltering for deriving multiscale geological structure.We introduce the concept of
natural scales for identifying the most signi¢cant scales in a geological cross section. In three
dimensions, scale-dependent structures are identi¢ed via an analogous process as discrete
topological entities within a four-dimensional scale-space cube.Motivation for this work is to take
advantage of the completeness of seismic data coverage to see ‘beyond the outcrop’and yield
multiscale geological structure. Applications include identifying artefacts, scale-speci¢c features and
large-scale structural domains, facilitating multiscale structural attribute mapping for reservoir
characterisation, and a novel approach to fold structure classi¢cation.

INTRODUCTION

The term ‘scale’ refers to the spatial dimensions at which
entities, patterns and processes can be observed and mea-
sured. From an absolute perspective, scale corresponds to
a standard system, such as cartographic scales and census
units, used to partition geographical space into opera-
tional spatial units. In a relative framework, scale is a vari-
able intrinsically linked to the entities under observation,
and corresponds to ones’ window of perception. Thus
every scale reveals information speci¢c to its level of ob-
servation (Marceau, 1999). Scale is composed of two fun-
damental parts: resolution and extent. Resolution refers
to the smallest intervals in an observation set (i.e. the sam-
ple interval or grid spacing), while extent refers to the
range over which observations at a particular resolution
are made (i.e. the area of interest) (Hay et al., 2001). In this
study, small scale refers to a small area, and large or coarse
scale represents a large area.

Subsurface mapping has traditionally been based on
projection of surface geology, constrained by sparse sub-

surface data points from drilled wells and mines. But the
amount of detail observed at exposures is typically much
greater than that conveyed by stratum contours, which
tend to connect subsurface control points by smooth
curves until they abut at faults (Tearpock & Bischke,
2002). Mappers tend to intuitively accept this variation in
structural architecture at di¡erent scales of observation.
For example, use of fractals to characterise fault popula-
tions and topographic surfaces is well documented (Cowie
et al., 1995; Bonnet et al., 2001), but spatial variations of
fractal characteristics are not widely studied (e.g. Xu et al.,
1993; Bel¢eld, 1998; Veneziano & Iacobellis, 1999).Various
schemes that assign ‘order’ to structures at di¡erent scale
have been devised in ¢eld studies (e.g. Fleuty, 1964; Ram-
say, 1967), but are restricted to manual interpretation of
cross sections and not widely employed. This paper pur-
sues the idea of structural order by demonstrating auto-
mated methods of identifying scale-dependent structure
in two and three dimensions within large data sets of digi-
tal geological mapping.

Seismic re£ection data, three-dimensional (3D) seismic
data in particular, introduces an additional and funda-
mentally di¡erent control on subsurface mapping. The
main di¡erence in relation to sparse data types is provision
of a continuous set of control points on a relatively closely
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spaced 3Dgrid (typically around10m).Geological surfaces
mapped using these data capture structure at a wide range
of scales. At small scales, structures are truncated by the
sampling resolution of the grid (tens of metres), and at
large scales by the size (i.e. area of interest) of the survey
(10^100 km).The data density and coverage of seismic data
¢lls the ‘gap’ between outcrop and regional scale structure.
This is particularly evident in sedimentary basins, where
individual surfaces ^ bedding planes or their lateral corre-
latives ^ can be mapped with con¢dence for tens of thou-
sands of square kilometres, capturing far more structural
information than yielded by interpolation of drilled well
control points or projection of sporadic surface outcrop.
In these settings, a range of di¡erent scales of observation
can reveal a hierarchy of scale-dependent structural forms.
Investigation of data at multiple scales is known as multi-
scale or multiresolution analysis (Mokhtarian & Mack-
worth, 1992; Finkelstein & Salesin, 1994). Consideration of
multiscale structure raises both general and speci¢c ques-
tions related to structural geology. For example:

� How can superimposed geological structures of di¡er-
ent scales be mapped and measured?

� To what extent are outcrop-scale rock properties like
fracture permeability determined by larger-scale
structures that may be unseen at outcrop or in the
wellbore?

� Should fold-classi¢cation schemes be quali¢ed with
scale-dependent terms?

� Are interference and parasitic fold patterns (often con-
sidered to be genetically unrelated and related fold sys-
tems respectively) end-members of a geometric
continuum?

Although relatively little has been published on scale-de-
pendent structure in a geological context, the concept of
scale has been investigated and employed in other disci-
plines including ¢nancial time series analysis (Zhang et
al., 2001), signal processing (Gammaitoni et al., 1998),
computer vision (Lindeberg, 1999), video compression
(Mokhtarian et al., 2002), landscape ecology (Hay et al.,
2001) remote sensing (Marceau & Hay, 1999), biomedical
engineering (Sajda et al., 2002) and the social and natural
sciences (Marceau, 1999).The objective of this paper is to
showhow some of the techniques developed in these other
disciplines can be brought to bear on geological structure,
and begin to address questions such as those previously
de¢ned.

This paper begins with examples of seismic-based
mapping in sedimentary basins to demonstrate variation
in geological structure through scale. This is followed by
a review of methods for two-dimensinal (2D) analysis of
scale-dependent structure, followed by description of a
method for automatically identifying ‘natural scales’ in
geological cross sections.The method is then generalised
to three dimensions ^ an example of scale-space analysis
of a geological surface mapped on 3D seismic data illus-
trates a discussion of the topology of scale-space in sedi-
mentary basins. We conclude with description of

potential applications and note that the tools discussed
here may facilitate exploration of a relatively novel sub-
discipline, multiscale structural geology.

TYPICAL SEISMIC IMAGING OFA
SEDIMENTARY BASIN

Figure 1 illustrates re£ection seismic pro¢les from the
North Sea basin (Fig. 1a, b) and the south Caspian basin
(Fig. 1c^e). In each case, small- and large-scale structure
is illustrated by comparison of the zoom-ins with the
large-scale (regional) sections. In both basins, di¡erent
structural features, picked out by curvature of the seismic
re£ectors, are apparent at di¡erent scales. We focus on
folds and minor faults in this study because faults with
large throw are treated as steep zones in a gridded surface
whereas in reality, they are breaks in surface continuity and
should ideally be excluded from the analysis by structural
restoration. Figure 1 illustrates a number of challenges fa-
cing any technique devised to extract scale-dependent
geological structure from re£ection seismic data:

� To operate on the basis of no a priori knowledge of the
scale and form of the geological structure.

� Fold structures at a given scale might be individual and
localised, rather thanmembers of continuous fold sets.

� At small scales there will be a noise threshold asso-
ciatedwith data acquisition.

� The technique should be applicable in 2D (i.e. sec-
tions) and 3D (surfaces).

RESAMPLING, DECOMPOSITION AND
SMOOTHING

When working with high-resolution data sets such as de-
tailed digital elevation models or a subsurface horizon
mapped on 3D seismic data, several numerical techniques
are available to tackle the challenge of ¢nding large-scale
structure, though the techniques are not necessarily
widely used for this purpose. In the following section, we
discuss the strengths and weaknesses of the principal
techniques, in order to provide a context for the choice of
algorithm used in this study.

Resampling

2D pro¢les and 3D surfaces are routinely resampled from
an original grid spacing of 12.5 or 25m to 50 or 100m, by a
process loosely termed decimation. Decimation is a form
of generalisation that is generally applied to reduce the
quantity of data for the sake of decreasing software run-
time and computer disk usage.The procedure usually in-
volves selecting every second, fourth or eighth data point
(corresponding to 25, 6 or 1.6% of a gridded surface). The
data between the resampled points becomes redundant
unless an operation such as smoothing has been applied
prior to resampling. Decimation also takes advantage of
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the constraint that a regular sampling interval can record
wavelengths no shorter than twice the sample spacing
(e.g. Telford et al., 1976, pp. 376^378) ^ so the more deci-
mated the data set, the smoother the stratum contours.
However, decimation also gives rise to aliasing, which is
the creation of nonreal structure as a by-product of being
unable to capture real features that have wavelengths
shorter than double the sampling interval. An example of
aliasing in a subsurface map is illustrated in Fig. 8 of Stew-
art & Podolski (1998).

Bergbauer & Pollard (2003) reject decimation as a me-
chanism for removing high frequencies, on the basis of
aliasing. An experiment published by Bergbauer & Pollard
(2003, their Fig.11) is reproduced here (Fig. 2a, b), demon-
strating how progressive undersampling of an arbitrary
analytical function produces distortion (i.e. aliasing) of the
original form. This distortion is initially manifest as
changes in the position and shape of fold hinges, until ¢ -
nally the original form becomes unrecognisable (Fig. 2a).
The onset of aliasing depicted in Fig. 2a is re£ected in at-
tributes such as curvature (Fig. 2b).

An alternative approach to decimation involves a ‘mov-
ing window’ where the data points are sampled for attri-
bute calculation at some desired sampling interval.
Unlike decimation as described above, this process is re-
peated at each data pointwithin the initial high-resolution

data set, so the derived data has the same number of data
points as the original data set (minus some data points
around themargins of the surfacewhere the samplingwin-
dow half-width exceeds the distance to the data set edge).
The moving-window approach is less prone to aliasing as-
sociated with the sampling frequency because the sam-
pling is repeated at every grid node in the initial data set
(Stewart & Podolski, 1998; Bel¢eld, 2000; Stewart &Wynn,
2000). Figure 2c illustrates the results of curvature mea-
surements at the same resampling intervals used in Fig.
2b, and demonstrates that the aliasing problems such as
fold-hinge misposition are much reduced.

Decomposition

Fourier transforms are widely used for decomposing con-
tinuous signals into their component frequencies, and
have been applied to geological fold shape (Stabler, 1968;
Ramsay & Huber, 1987; Stowe, 1988), geomorphological
surfaces (Pike & Rozema, 1975) and bedding surfaces
mapped on 3D seismic in sedimentary basins (Bergbauer
et al., 2003). Gallant & Hutchinson (1997) critically dis-
cussed applying Fourier spectral analysis to regional geo-
logical surfaces.They pointed out that Fourier harmonics
are continuous within an area of interest; consequently,
their properties are independent of location, in contrast

Fig.1. Re£ection seismic examples (2D pro¢les) of scale-dependent structure from two sedimentary basins. (a, b) from the central
North Sea show a mixture of geological structure and seismic noise at sub-kilometre scale (a), and structures up to basin curvature at a
scale of hundreds of kilometres (b). (c^e) show the relatively simple, kilometre-scale fold train of the south Caspian Sea. Additional
structures are seen within the folds (c) and at basin scale (e).
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to geological structures that are often localised, isolated
features. Secondly, harmonics are sine functions that may
not adequately represent the complex geological forms in
the source data. Finally, nonsinusoidal geological shapes
produce short-wavelength harmonics that overwhelm the
contribution of smaller geological features at these wave-
lengths. Conversely, Bergbauer et al. (2003) obtained pro-
mising results by removing frequency bands in the
Fourier domain to produce low-cut or high-cut ¢ltering,

but it was not clear how this method could be automated
to isolate the most signi¢cant harmonics. Bergbauer et al.
(2003) also tested the performance of singular-value de-
composition and factorial kriging; both yielded poorer re-
sults than Fourier ¢ltering.

Wavelet transforms represent a family of techniques for
multiscale signal decomposition that have theoretical ad-
vantages over Fourier transforms for geological mapping.
In particular, the basis function is discrete rather than
continuous.However, de¢ning the form of the function re-
mains a challenge. Positive wavelets have been used to de-
compose topographic surfaces into a number of ‘features’
at di¡erent scales (Gallant & Hutchinson, 1997). As with
Fourier transforms, however, these features are ¢xed in
shape and the validity of structural attributes derived from
them, or a partially decomposed surface, is open to ques-
tion. Anisotropic and ‘complex’ wavelets with variable di-
rectional properties exist (Darrozes et al., 1997;
Kingsbury, 1999), and may overcome this problem, but
have yet to be applied to geological mapping.

Smoothing

Smoothing, or fairing, is perhaps the most obvious ap-
proach to removing high-frequency components, and is a
routine step in producing maps from re£ection seismic
data (e.g. Roberts, 2001). Several published studies of
scale-dependent geological structure have been based on
smoothing (e.g. Ericsson et al., 1998; Bergbauer & Pollard,
2003). For most seismic interpreters, however, degree of
smoothing tends to be driven by map aesthetics rather
than explicit consideration of frequency content, and
there is limited choice of smoothing ¢lters (or adequate
reason for selecting one technique over another) in most
commercial seismic interpretation software. Review of im-
age-processing literature reveals that a wide range of
smoothing algorithms exist, ranging from a simple mov-
ing average ¢lter, through various weighted averages, to
more sophisticated edge-preserving algorithms and fea-
ture detectors (e.g. Gonzalez & Woods, 2002). In the fol-
lowing sections, we compare the equally weighted moving
average ¢lter and Gaussian ¢ltering within the context of
generating multiscale geological structure.

The movingaverage ¢lter

A moving average ¢lter, where all data points are equally
weighted within a user-speci¢ed window (box-car ¢lter)
is probably the most commonly used smoothing device in

Fig. 2. Numerical experiment showing the e¡ects of sampling
and aliasing, partly after Bergbauer & Pollard (2003). (a) An
arbitrary curved line (darkblue) is progressively sampled by fewer
and fewer points. Below a sampling interval that is signi¢cant
with respect to the main structures (Nyquist frequency), the
sampled data quickly loses the original signal. (b)As the sampling
interval becomes wider, structural attributes such as curvature
bear less relationship to attributes calculated on the original,
analytical data. (c) Curvature calculations of part (b) repeated
using a moving window approach. Although there are
inaccuracies, aliasing is much reduced.

Fig. 3. Results of smoothing of the Caspian regional marker shown in Fig.1e. (a) Original pro¢le (thick red line) overlain by 250 versions
that are smoothed by moving average within progressively wider windows, from1to125 kmwindow width (data point spacing 250m).
Arrows highlight examples of lateral migration of fold-hinge locations as a function of smoothing. Circles show anomalous short
wavelength features (Slutzky E¡ects) in smoothest pro¢le. (b)Map view of surface derived from pro¢les in (a). x-axis is the cross-section
length (300 km) y axis is width of smoothing window (0^125 km) and can be thought of as the smoothing, or scale,‘dimension’.The
unsmoothed pro¢le (lowermost (red) in part (a)) is placed along thex-axis, the smoothest (topmost (yellow) in part (a)) is at the top of the
map. (c) Perspective view of surface shown in (b). (d^f) Repeat of the ¢rst three displays, this time withGaussian smoothing.The y-axis
in the map and perspective view corresponds to Gaussian ¢lters.
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geological mapping (e.g. Bergbauer &Pollard, 2003). It can
be shown, however, that equal weighting is less e¡ective
than a weighted mean for the purposes of eliciting scale-
dependent structure. Figure 3 shows the e¡ect of applying
moving average smoothing to the folded regional marker
shown inFig.1e. In this experiment, the original 2Dpro¢le
was smoothed by a moving average ¢lter with 250 di¡erent
kernel sizes (kernel is an arrangement of numbers that
constitute a ¢lter). The narrowest ¢lter was three data
points wide (a 1� 3 kernel resampling a 500-m window)
and the resulting curve is plotted immediately on top of
the original pro¢le in Fig. 3a.This result is then superim-
posed by the results from the other 249 kernel sizes, culmi-
nating in the widest (1 � 501 kernel resampling a 125-km
window) and represents the topmost pro¢le plotted (in
bold yellow) on Fig. 3a. The consecutively smoother ver-
sions of the original surface can also be used to construct
a 3D surface to help visualise the scale dimension, or scale-
space (Fig. 3b, c).The lateral migration (mispositioning) of
fold hinges noted in the resampling example (Fig. 2a) is
seen once again with progressive moving average smooth-
ing (Fig. 3a^c).The most heavily smoothed pro¢le (yellow
in Fig. 3a) shows that relatively short wavelength structure
has persisted, or been created, in spite of the aggressive le-
vel of smoothing.These phenomena are known as Slutzky
e¡ects after an economist who showed that a moving aver-
age might generate an irregular oscillation even if none ex-
ists in the original data (Slutzky, 1937).

Gaussian ¢ltering

An alternative to the arithmetic mean is some form of
weighted average, either linear or more complex. In a dis-
cussion of scale dependence in topography,Wood (1996)
suggested that distance-dependent weighting should be
user-de¢ned (but criteriawere not speci¢ed). An approach
commonly employed in image and signal processing is
weighting according to a Gaussian function (Eqn. (1) de-
¢nes a one-dimensional Gaussian ¢lter).

GðxÞ ¼ 1

s
ffiffiffiffiffi
2p

p e�x2=2s2 ð1Þ

where x is distance from the median point of the ¢lter and
s is the standard deviation that de¢nes the shape (width) of
the weighting pro¢le. Widespread usage of Gaussian
smoothing re£ects a number of advantageous properties,
including, spatial shift invariance (i.e. no preferred loca-
tion of ¢lter), thus all locations are measured in the same
fashion. Isotropy (i.e. no preferred orientation of ¢lter),
and no new structures are created in the transition from
¢ne to coarse scale. Babaud et al. (1986),Weickert (1997),
Lindeberg (1999) andHay etal. (2002) discussGaussian ¢l-
tering in more detail and conclude that this family of
smoothing operators is a good choice for multiscale analy-
sis ^ especially without a priori information. Figure 3d^f
repeat the smoothing exercise of Fig. 3a^c, this time con-
volving the data representing the regional marker from

Fig. 1e with a Gaussian ¢lter through a range (1^250) of
standard deviations (s). Figure 3d compared with Fig. 3a
shows that the most smoothed (uppermost) pro¢le is free
from the high-frequency artefacts produced by moving
average ¢ltering. The relative stability of Gaussian
smoothing is particularly clear in the comparison of map
views of the surfaces that represent the progressively
smoothed pro¢le (Fig. 3b, e, c, f). Lateral migration of fold
hinges is less pronounced. Given the widespread use of
Gaussian smoothing in other disciplines and the relatively
good performance of this approach to smoothing demon-
strated here, Gaussian smoothing is adopted here as the
core process for investigating scale-dependent geological
structure. Figure 3e can be viewed as a scale-space repre-
sentation of the original 2D geological pro¢le (Witkin,
1984), and is the basis of the natural scales analysis in the
next section.

2D MULTISCALE GEOLOGICAL
STRUCTURE ^ NATURAL SCALES

The 3D surfaces generated by applying aGaussian ¢lter to
smooth a single 2Dpro¢le inFig. 3 show that structure ap-
pears to evolve progressively with smoothing, rather than
in a series of abrupt steps, raising the question: with no
a priori knowledge of the scale of the geological structural
elements, how canwe identify speci¢c geological frequen-
cies in the initial data, given the continuous nature of
scale-space? To address this question, we introduce the
concept of natural scales, which seeks to identify real
structures within a scale-space curve or pro¢le, according
to some signi¢cance criterion, while excluding the redun-
dant information (Bengtsson & Eklundh, 1991; Rosin,
1992, 1998).

A technique for determining natural scales

Multiscale analysis requires two main components: the
generation of a multiscale representation, and a feature
detector. Given a scale-space representation of a pro¢le
(Fig. 3e), the problem of detecting natural scales becomes
the task of subdividing scale-space according to structural
signi¢cance.The technique employed here was described
in a reviewofmethods for calculating natural scales by Ro-
sin (1992), which is built on the notion that structures can
be identi¢ed by changes in the sign of curvature. This is
conceptually the same condition used by Ramsay (1967,
pp. 351^355) to identify hierarchies of median surfaces in
fold trains (Fig. 4a).The primary weakness of the median
surface method was that a given order of median surface
could contain structure at awide variety of scales (Fig. 4b, c),
therefore could not isolate scale-speci¢c structure.

Curvature is independent of the overall reference frame
of the pro¢le, so delimiting structures by in£ections, or
‘zero-crossings’ of curvature, rather than changes from
concave up to concave down, has the advantage of rotation
invariance. In practice, the second derivative gives similar,
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if less robust, results in pro¢les from sedimentary basins
(Roberts, 2001). Rather thanworking with the scale-space
data set itself (e.g., Fig. 3e), we use the scale-space plot of
the zero-crossings of curvature (Mokhtarian & Mack-
worth, 1992). Also known as a ‘curvature scale-space im-
age’, this plot is constructed by recording the location of
curvature zero-crossings with increasing degree of Gaus-
sian smoothing. The curvature scale-space image gener-
ated from the pro¢le in Fig. 1e is shown in Fig. 5a. The
arch-shaped areas enclosed by curvature zero-crossings
in scale-space can be thought of as scale domains that de-
¢ne scale-dependent geometry of the individual struc-

Fig.4. De¢ning structural ‘order’ in a folded surface using
median surfaces (after Figure 7^11of Ramsay, 1967). (a) Each
median surface is a minimum curvature spline connecting the
curvature ‘zero-crossings’ in the lower-order surface. (b)
Showing how spatial variation in structural scale in the initial
data is re£ected in the median surface, raising the question, how
can median surfaces in themselves isolate scale-dependent
structure? (c) Typical piece of seismic data from a sedimentary
basin showing variations in roughness of autopicked surface due
to variations in data quality ^ these would translate into spatial
variation in structure of median surfaces.

Fig. 5. Natural-scale analysis ofFig.1e. (a)Curvature scale-space
image of the pro¢le highlighted inFig.1e. Axes are same as in Fig.
3e. Arches represent position of curvature zero-crossings ins ^
pro¢le length space.The standard deviation units are the same as
the sampling interval of the geological pro¢le, in this case 250m,
so ats5 40,1standard deviation is10 km from the median point.
(b) Signi¢cance measure (Ss) againsts. Local minima represent
natural scales, lumped here into three groups.The minima could
equally have been split to represent individual structures.
Diamond shapes identify scales representing structural order. (c)
The structural orders identi¢ed in (b) displayed as the
corresponding smoothed versions of the original pro¢le.The
original pro¢le is displayed as the thin, lowermost line.This is a
subset of the pro¢les in Fig. 3d.
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tures they enclose. Archwidth is an indication of structur-
al wavelength (distance along the original pro¢le with con-
stant curvature sign after a given amount of smoothing),
and height is a measure of the scale. Structures do not per-
sist (in scale) beyond the crest of their enclosing arches.

The density of zero-crossings as a function of scale is
then used to identify ‘natural scales’. In our de¢nition, nat-
ural scales are de¢ned by step changes in the density of
zero-crossings. Visual inspection of Fig. 5a suggests the
presence of several natural scales within the original pro-
¢le.The population of the shortest wavelength structures
exists at so5, a loose group of intermediate scale struc-
tures are removedwhen15oso50, and three larger struc-
tures dominate the interval 90oso110. Beyond s5110
only the basin scale structure remains, though it does not
appear on Fig. 5a as there are no associated in£ections in
the curve representing the basin (Fig. 3d).We test here a
numerical method of identifying these scale-speci¢c
groups, using a signi¢cance measure (Ss). At each scale,
Ss is de¢ned as the sum of the number of zero-crossings
of curvature at all points on the curve normalised by the
Gaussian smoothing scale s (Fig. 5b). Natural scales are
de¢ned to be at scales producing local minima of Ss,
where individual structures or groups of structures disap-
pear (Bengtsson & Eklundh, 1991; Rosin, 1992). According
to this criterion, Fig. 5b shows three de¢ned orders of
structure: the lowest (1) corresponds to the individual folds
seen in Fig. 1e, the highest (3) is the basin scale curvature
seen in Fig. 3e. In Fig. 5c we illustrate the results of apply-
ingGaussian ¢ltering to the original pro¢le at these natur-
al scales, to reveal optimised orders of structure.

The natural scales shown inFig. 5 are global in the sense
that a smoothing operator of a given scale is convolved
with all of the original data but the result will only yield
structure where it exists in the original data, based on spe-
ci¢c threshold criteria.Nonetheless, there are several tech-
niques available for calculating natural scales locally rather
than globally (review byRosin, 1998). However, calculation
of local natural scales tends to be less stable than the global
method, and is not further pursued in this study.

Discussion of natural scales

The results in Fig. 5 show that natural- scale analysis of a
fold belt with a regional data set can isolate smooth forms
of individual fold structures, and at the largest scale, detect
basinal curvature that is di⁄cult to measure in the initial
data.The ¢rst natural scale e¡ectively removes the highest
frequency noise in the data/interpretation, but preserves
the wavelength and amplitude characteristics of the major
fold structures.This low-order natural scale could be used
in curvature analysis to determine strain distribution and
related reservoir parameters (e.g. Ericsson et al., 1998; Ro-
berts, 2001; Hart et al., 2002). The higher-order, larger-
scale structures are not obvious within spatially restricted
subsets of data, but could contribute to the ¢nite strain
within the deformed layers and could also be the subject
of curvature analysis to factorise scale-speci¢c structure

from the total strain at outcrop or well scale (Stewart &
Wynn, 2000). An alternative approach would be to use a
high-order natural scale as a structural restoration tem-
plate to remove basin curvature (for example) before strain
analysis.The di¡erence between the ¢rst natural scale and
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the original data, or between low-order natural scales is
the equivalent of applying a low-cut ¢lter and can reveal,
for example, sedimentary features by removing local fold
structures (e.g. Fig. 8 of Carter, 2003).

Gaussian ¢ltering reduces the area enclosed by the
curve or surface (e.g. Lowe, 1989). This ‘shrinkage’ a¡ects
closed curves (e.g. diapirs) more severely than open ones
(e.g. regional bedding planes). It can be measured and cor-
rected by various methods, such as normalising the inte-
grals of the original and smoothed curves (Desbrun et al.,
1999).TheFig. 3d examples show a maximum shrinkage of
3.5% (ats5125).The examples in Fig. 6 include a shrink-
age correction method described by Lowe (1989).

Several di¡erent geological data sets were used to test
the method further. The results are illustrated in Fig. 6.
Figure 6a represents a stratigraphic marker overlying a salt
diapir in the central North Sea. The ¢rst natural scale is
di⁄cult to distinguish from the initial data and retains
rugosity due to local degradation in seismic data quality.
The second natural scale removes this rugosity but pre-
serves the overall form of the drape fold, and some adja-
cent deepwater channels. The third scale emphasises the
wavelength of the large features in the surface but does
not represent the shape of these structures accurately. Fig-
ure 6b is a section through two deepwater channel cuts.
The natural scales yield the same information as discussed
for Fig. 6a, but it is now clearer that the third natural scale
is a poor representation of the structural form even though
the wavelength is accurately measured. It is also evident
that the structural amplitude is suppressed in spite of hav-
ing been corrected for shrinkage.The examples so far have
been free from abrupt changes in dip.

Faulted surfaces, on the other hand, challenge all meth-
ods of analysing scale-dependent structure. The main
problems are the sharp edges at fault cuto¡s and the spa-
tial gaps in structure between the fault cuto¡s. Figure 6c
shows a faulted surface in which interpretation of the re-
gional marker is connected by interpretation along the
fault planes, giving a combination of sharp edges, fault
planes and unfaulted strata within the fault blocks. The
natural-scale surfaces treat the whole data set as a contin-
uous curve and do not distinguish between the fault planes
and unfaulted strata. Solving this issue is beyond the scope
of this paper, though there are some obvious geometrical
possibilities such as restricting natural- scale analysis to
strata within major fault blocks, or doing natural- scale
analysis on a surface with the major faults restored. Figure
6d shows natural- scale analysis of a topographic pro¢le

from a present day mountain range. In this case, natural
scales isolate the position and areal extent of the principal
topographic features.

In each of the cases shown in Fig. 6, as in Fig. 5, manual
inputwas required at the stage ofdecidingwhether to‘lump
or split’ the natural scales detected by Ss minima. So the
technique involves an element of interpretation and is best
described as ‘semi-automatic’. Nonetheless, it represents a
step forward in the structural analysis of seismic interpre-
tation by objectively identifying scales of interest that can
go forward into further attribute analysis. Although the
analysis has been on 2D sections rather than 3D surfaces
so far, 2D analysis can represent a rapid, automated guide
to determine the degree of smoothing to be applied to large
surface data sets prior to further analysis (e.g. curvature
measurement).The next section of this paper describes ap-
plication of a similar technique to 3D surfaces.

3D MULTISCALE GEOLOGICAL
STRUCTURE ^ SCALE-SPACE
TOPOLOGY

Multiscale analysis of a 3D surface is done in two stages ^
similar to the approach to analysing 2D pro¢les ^ gene-
ration of scale-space, followed by feature detection. Sev-
eral methods are available along these lines (Hay et al.,
2003). We generate ‘linear scale-space’ (Lindeberg, 1994;
Hay et al., 2002) to provide a multiscale representation of
a geological surface mapped on 3D re£ection seismic data
(i.e. a gridded surface, or digital elevation model), and em-
ploy ‘blob-feature detection’ (Hay et al., 2002) for automa-
tically de¢ning dominant multiscale components from
this representation.

Linear scale space

Scale-space is an uncommitted framework for early visual
operations that was developed by the computer vision
community to automatically analyse real-world structures
at multiple scales ^ speci¢cally, when there is no apriori in-
formation about these structures, or the appropriate
scale(s) for their analysis (Lindeberg, 1994).‘Uncommitted
framework’ refers to observations made by a front-end vi-
sion system (i.e. an initial-stage measuring device) such as
the retina, a camera or a re£ection seismic survey that in-
volves no knowledge, and no preference for anything.
When no scale information is known about a map or visual
scene, the only reasonable approach for an uncommitted
vision system is to represent the input data at (all) multiple
scales. The example chosen here to test this method in a
geological context is a patch of 3D seismic interpretation
from a surface overlying a salt diapir in the Central North
Sea, that is known to contain a variety of types of geologi-
cal and artefact structure at various scales (Fig. 7a, b).

In practice, surface elevation is treated as a height attri-
bute, enabling the surface to be converted to a greyscale
image, or map. Gaussian ¢lters are applied to this initial

Fig. 6. Natural scales in various cross- sections. Each example
shows the initial pro¢le as a thin black line overlain by the ¢rst
three natural scales. Axis labels in metres, all have signi¢cant
vertical exaggeration (labelled). (a) Drape fold overlying North
Sea diapir. (b) Deep water channel cuts in North SeaMiocene
surface. (c) Faulted intra-Permian surface, southern North Sea.
Inset shows original interpretation at V5H,with faults marked.
(d) Present day topographic pro¢le across the sub-Andean
foothills, Bolivia.
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greyscale image at a range of kernel sizes resulting in a
scale-space cube or stack of progressively smoothed image
layers, where each new image layer represents convolution
at an increased scale (Fig. 7c).This is a process similar to
the smoothing of 2D pro¢les discussed earlier in this pa-

per (Fig. 3c^e), though here, we are using the zeroth-order
derivative of a ‘2D’Gaussian function (Eqn. (2)).

Gðx; yÞ ¼ 1
2ps2 e

� ðx2þy2Þ=2s2ð Þ ð2Þ
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As before, the scale of each derived signal is de¢ned by se-
lecting a di¡erent standard deviation s for the Gaussian
function. Each hierarchical layer in a stack represents con-
volution at a ¢xed scale, with the smallest scale at the bot-
tom, and the largest at the top (Fig. 7c). This scale-space
cube is analogous to the scale-space surface illustrated in
Fig. 3e.

Blob-feature detection

To de¢ne dominant features in the cube, we apply blob-
feature detection. This is analogous to the identi¢cation
of zero-crossings of curvature discussed earlier in relation
to natural scales in cross sections.Hay etal. (2002) describe
this procedure and terminology in detail; a summary of
the key steps is presented here. The primary objective of
this nonlinear feature detection approach is to link struc-
tures at di¡erent scales in scale-space to higher-order ob-
jects called ‘scale-space blobs’, and to extract signi¢cant
features based on their appearance and persistence
through scales.The main features that arise at each scale
within a stack are smooth regions, which are brighter or
darker than the background and stand out from their sur-
roundings. These regions are termed ‘grey-level blobs’
(Fig. 7d).When blobs are evaluated as a volumetric struc-
ture within a stack, it becomes apparent that some struc-
tures visually persist through scale, while others
disappear (Fig. 7e). Therefore, an important premise of
scale-space is that blob-like structures that persist in
scale-space are likely to correspond to signi¢cant struc-
tures in the initial image, and thus in the real-world scene
or structure. Grey-level blobs at each scale in the stack are
treated as objects with extent both in 2D space (x, y) and in
grey level (height attribute) ^ thus 3D (and the structures
that are persistent through scale are therefore four-dimen-
sional (4D)).

Grey-level blob delineation can also be describedwith a
watershed analogy. At each scale in the stack, the image
function of all blobs may be considered as a £ooded 3D
landscape (i.e. a watershed). As the water level gradually
sinks, peaks appear. At some point, two di¡erent peaks be-
come connected.The corresponding connection elevation
levels are called the base level of the blob.They are used for
delimiting the 2D spatial extent or ‘region of support’ of
each blob, which is de¢ned as a binary blob (Fig. 8). The
actual technique for de¢ning binary blobs involves convol-
ving the original image with the Laplacian of Gaussian at
di¡erent standard deviations, then identifying zero-cross-

ings to give binary blobs at each scale.This ¢lter combines
smoothing and calculation of second derivative (Eqn. (3)).

LoGðx; yÞ ¼ � 1
ps4 1� x2 þ y2

2s2

� �
e� ðx2þy2Þ=2s2ð Þ ð3Þ

Figure 7d compares zero-crossings calculated in this way
with the corresponding s5 200 greyscale image. This
shows that (particularly at large scale) our implementation
is only partially successful in matching greyscale structure.
Optimizing this step is the subject of future work. None-
theless, the binary blobs shown in Fig. 8 highlight many
of the features identi¢ed in the initial structural sketch
(Fig. 7b). This is still, however, an arbitrary sampling of
the scale-space continuum; the next stage is extraction of
signi¢cant elements from this data set.

2D binary blobs at all scales are combinedwithin a new
stack to create 3D ‘hyper-blobs’ (Fig. 9). Individual hyper-
blobs can be characterised by one or more of four primary
topological elements or ‘bifurcation events’ (Fig. 10).The
ability to de¢ne these scale-space-events represents a cri-
tical component of scale-space analysis, as scales between
bifurcations are linked together forming the lifetime (Lsn)
and topological structure of individual scale-space blobs.
Once the lifetime of each scale-space blob is established,
the integrated normalised 4D volume (x, y, z, s) of each
scale-space blob is de¢ned. But since blob behaviour is
strongly dependent upon image structure, it is possible
that an expected image behaviour may exist that may or
may not relate to signi¢cant multiscale structure ^ when
evaluated through scale, even noise has structure (Hay et
al., 2002).To allow for this, statistics that characterise noise
are extracted from a large number of stacks made from
random images. The resulting normalised volumes are
then ranked from the highest to the lowest based on the
size of their integrated 4D volume, and a user determined
number of ‘signi¢cant’ scale-space blobs are extracted
from this set. For each of the selected hyper-blobs, the
scale (s) representing the maximum 3D grey-level blob
volume (x, y, z) is extracted. From these layers, the 2D spa-
tial support (i.e., binary blob) is identi¢ed and related back
to the corresponding structures in the image for viewing
and further interpretation (Fig. 11). So, based on the un-
derlying initial premise, 4D scale-space blobs are simpli-
¢ed to 3D grey-level blobs, which are further simpli¢ed to
their 2D support region (x, y), and then to their corre-
sponding real-world object in the original image.

Fig.7. Generation of a scale-space cube from 3D seismic interpretation. (a) 30 km2 patch of seismic interpretation of a surface within
theTertiary of the central North Sea.The surface lies at a depth of about 300m below the seabed. Colourbar indicates elevation (red
high, blue low). Sun shaded to emphasise edges.North is up.The surface is mapped at a grid spacing of 25m. (b) Sketch interpretation of
main features in surface. Some pervasive features (pick busts and acquisition footprint) are only annotated in a small part of the sketch
for clarity. (c) Scale- space stack (cube) created from the surface in part(a).The height (z-axis) in (a) is rendered as a greyscale attribute to
form the initial image, and the imaged is resampled at a grid spacing of100m. Each layer is smoothed by aGaussian kernel of increasing
scales. (d) Slice through scale- space cube showing grey-level blobs ats5 200. Rendered in16-bit greyscale to emphasise blob shape.
Overlay of polygons shows corresponding binary blob edges derived by Laplacian of Gaussian ¢ltering at the same scale (see Fig. 8). (e)
Scale-space cube rendered semi-transparent to show grey-level blobs that persist in scale.
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Discussion of blob-feature detection

This analysis yielded 4635 hyper-blobs, each represented
bya 2D support region polygon.This represents automatic
selection of 2D blobs corresponding to features that were
arbitrarily intersected in the scale slices shown in Fig. 8.
Visual appraisal of this large number of features is a sub-
stantial task in itself. Figure11a shows 200 of the most sig-
ni¢cant blobs, rendered as un¢lled 2D support region
polygons.Even this small proportion (4%of the total iden-
ti¢ed) is di⁄cult to make sense of in a conventional map
display. For clarity, in this short discussion the number is
further reduced in Fig. 11b. Strengths and weaknesses of
this approach are clear.The method has identi¢ed small-
scale features (pick busts), and large-scale features (salt
dome and erosive channels). On the other hand, narrow
linear features such as the radial faults and the seismic ac-
quisition footprint have not been identi¢ed as discrete ele-

ments. Furthermore, some large features are only partially
identi¢ed, for example the channel in the north of the area.
There are also numerous circular features of approxi-
mately 500-m diameter that are not obvious in the original
data set (Fig. 7a) ^ it is unclear if these are artifacts of the
process or if they are a subtle geological phenomenon such
as incipient polygonal faults. It is, however, encouraging
that structures over a range of scales have been identi¢ed
by this automatic procedure, but further work is evidently
required to simplify the output of the feature detector.

SUMMARY

The density and extent of data acquired in seismic re£ec-
tion surveys allows multiscale structural analysis. A num-
ber of possible methods for deriving scale-space and
detecting structures within it have been reviewed ^ some

Fig. 8. Binary blobs derived by Laplacian of Gaussian ¢ltering of the intial greyscale image at a range of scales, comparedwith the
source seismic interpretation.The binary blobs highlight di¡erent features at di¡erent scales.
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are standard techniques used by seismic interpreters,
others are introduced from disciplines outwith
geoscience. Introduction of some new terminology has
been di⁄cult to avoid, but minimised.Moving average ¢l-
tering to remove seismic noise is common practice in the
oil industry, but it is shown here that Gaussian ¢ltering is
more robust. A Gaussian ¢ltering method of generating
scale-space ful¢ls key criteria for multiscale analysis of
geological surfaces identi¢ed at the start of this paper ^ it
operates on the basis of no a priori knowledge of the scale
and form of the geological structure, the derived scale-
space can isolate localised features and the technique is
applicable in 2D (i.e. sections) and 3D (surfaces). Feature
detection in scale-space associated with sections and sur-
faces has been demonstrated using thresholding methods
based on zero-crossings of curvature and second deriva-
tive (Laplacian) of surface elevation.The feature detectors

tested here have been moderately successful at automati-
cally identifying multiscale structure, but the results can
be regarded as promising and represent a starting point
for further investigation.

A relatively simple work£ow for multiscale structure of
a gridded surface that can be recommended on the basis of
the work presented here is:

(1) Derive natural scales from a representative 2D section
through the area of interest.

(2) Smooth the gridded surface using isotropic Gaussian
kernels corresponding to these natural scales.

(3) Option to use high-order natural- scale surfaces to re-
move long wavelength curvature from low order natur-
al scale surfaces.

(4) Further structural analysis, e.g. curvature analysis
(Lisle, 1994; Stewart & Podolski, 1998; Bel¢eld, 2000;
Bergbauer & Pollard, 2003)

Use of bespoke curvature analysis methods after multi-
scale ¢ltering as suggested in step 4 would yield anisotro-
pic structure, such as periclinal folds, even though the
¢lters that generate the surfaces are isotropic. Anisotropic
Gaussian ¢lters are available (e.g. Geusebroek et al., 2003),
but variation in both anisotropy and orientation would
multiply computer time and blob-feature detection com-
plexity such that an automated method on this basis is dif-
¢cult to envisage at this time.

Multiscale analysis using the methods presented in this
paper, or analogous procedures (e.g. Bergbauer etal., 2003),
are appropriate for addressing the structural geology
questions identi¢ed at the start of this paper. Complete
answers to these questions is beyond the scope of this pa-
per, but some comments can be o¡ered:

� How can superimposed geological structures of di¡er-
ent scales be mapped and measured? Natural- scale
analysis and scale-space topology could be used.

� To what extent are outcrop-scale rock properties like
fracture permeability determined by larger scale struc-

Fig.9. Hypercube made in a manner similar to the scale- space
cube shown in Fig. 7, but using binary blob masks, a selection of
which are shown in Fig. 8.

Fig.10. Topological elements within scale-space, de¢ned in relation to an increase in scale: Annihilation ^ one blob disappears,Merge
^ two blobs merge into one, Split ^ one blob splits into two, Creation ^ one new blob appears.
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tures that may be unseen at outcrop or in thewellbore?
Structures or structural domains identi¢ed in scale-
space are candidates for controlling widespread frac-
ture sets.

� Should fold-classi¢cation schemes be quali¢ed with
scale-dependent terms? The examples presented in
this paper strongly indicate that whether a fold is per-
ceived or not depends entirely on the scale of observa-
tion, so a measure of fold scale should always
accompany classi¢cation that is otherwise based on
fold style or geometry. Scale-space analysis could un-
derpin a novel, automated method of fold mapping
and classi¢cation.

� Are interference and parasitic fold patterns end-mem-
bers of a continuum? This could be the case in geo-
metric, if not genetic, terms.

Possible applications of these methods in a hydrocarbon
production context are indicated above; speci¢c examples
include automated removal of data noise from seismic in-
terpretation and mapping of tectonically in£uenced reser-
voir quality domains.
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