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ABSTRACT
A polygon P is said to be rectilinear if all interior angles of P belong to the set {7/2, 37 /2}. In this paper we

establish the mapping
T ( 771 (P . CE) 2 - \/5 )

R(P) = —————— | max ——————— —

( ) 7T—-2'\/§ a€(0,2n] \@PQ(P) T

where P is an arbitrary polygon, P2(P) denotes the Euclidean perimeter of P, while P (P, «) is the perimeter
in the sense of [; metrics of the polygon obtained by the rotation of P by angle o with the origin as the center
of the applied rotation. It turns out that R(P) can be used as an estimate for the rectilinearity of P. Precisely,

R(P) has the following desirable properties:

— any polygon P has the estimated rectilinearity R(P) which is a number from |0, 1;
— R(P)=1 if and only if P is a rectilinear polygon;

— Fl)lé{_[ R(P) = 0, where II denotes the set of all polygons;

— a polygon’s rectilinearity measure is invariant under similarity transformations.

The proposed rectilinearity measure can be an alternative for the recently described measure R1(P).! Those
rectilinearity measures are essentially different since there is no monotonic function f, such that f(R;1(P)) =

R(P), that holds for all P € 1l.

A simple procedure for computing R(P) for a given polygon P is described as well.
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1. INTRODUCTION

Shape plays an important part in the processing of visual information, and is actively being investigated in
a wide spectrum of areas, from art® through to science.® Within computer vision there have been many
applications of shape to aid in the analysis of images, and standard shape descriptors include compactness,

eccentricity, circularity,® ellipticity,® and rectangularity.”

This paper describes a shape measure that has received little attention: rectilinearity. While there exist a

variety of approaches to computing the related measure ot rectangularity,” rectilinearity covers a wider space of
shapes since the number of sides of the model shape is variable. Here we define a rectilinearity measure which

can be used as an alternative to that recently described in Ref. 1.

One of possible applications of the obtained results is to provide a useful tool for the analysis of buildings in
aerial photographs, since many buildings appear rectilinear from an overhead view. Over the last 10-20 years
there has been considerable research in this area with the goal of providing automatic photointerpretation which

would be particularly useful for cartographers.> !
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Figure 1. For the given rectilinear 20-gon P, its {1 perimeter P;(P) has the minimum value if the coordinate axes are
chosen to be parallel with v and v, while it reaches its maximum if the coordinate axes are parallel to p and ¢g. The

minimum and maximum values correspond to Pi1(P, 27 — «) and P; (P, %’ — @), respectively, if z and y are taken to be
the coordinate axes.

2. DEFINITIONS AND DENOTATIONS

We start this section with the formal definition of rectilinear polygons (see Fig. 1 for an example).

DEFINITION 2.1. A polygon P 1is rectilinear if its interior angles belong to the set {g-, iéz}

Also, we will use the following definitions and denotations (see Fig. 2 and Fig. 3 for some illustrations). The
set of all polygons will be denoted by II. For a given n-gon P having vertices denoted by Ay, A;,..., A,_1{, A, =
Ap, its edges will be denoted e; = [A;_1, A;] fori =1,2,...,n. The Euclidean length of the straight line segment
e = [(T1,Y1), (2, y2)] is la(e) = /(z1 — x2)? + (y1 — y2)?, while the length of e according to the {; metric is
l1(e) = |z1 — z2| + Y1 — yol.

P2(P) will denote the Euclidean perimeter of P, while P1(P) will denote the perimeter of P in the sense of
1 metrics. So,

PQ(P) —= Z lg(ez') and Pl(P) = Z 31(67:)-

e; 1s an edge of P e; ©s an edge of P

Since isometric polygons do not necessarily have the same perimeter under the /; metric, we shall use P; (P, o)
for the {; perimeter of the polygon which is obtained by the rotating P by the angle o with the origin as the

centre of rotation. If the same rotation is applied to the edge e, the {; perimeter of the obtained edge will be
denoted as 1 (e, ).

It the oriented angle between the positively oriented z-axis and the vector A;_1A; is denoted by ¢, (i =

1,2,...n), then obviously l; (e;, o) = la(e;)-(| cos(d;+)|+| sin(p;+a)|). Thus, by using 1 < |cos B|+|sin 5] < /2
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Figure 2. A non rectilinear 5-gon. The used denotations are illustrated.

(for any 3), we have the next two relations between P, (P) and Pa(P).
The first one is

P2(P) = ZZZ(ei) < ZZZ(ei) . (| cos(¢; + )| + | sin(@; + )|) = P1(P, o) (1)

NOTE 2.1. Let us notice that Po(P) = P1(P,a) if and only if |cos(¢; + a)| + |sin(e; + a)| = 1 holds for all
edges e;, 1 < i <mn. The second one is

Pu(Pa) = la(es) - (|cos(éi + @)| + |sin(@i + @)]) < V2- ) la(es) < V2 Pa(P), (2)

NOTE 2.2. Similarly to Note 2.1, P1(P) = V/2-P1(P, ) if and only if | cos(d; + o)| + |sin(¢; + )| = V2 holds
for all edges e;, 1 <1 < n.

We will exploit the following property of rectilinear polygons which is derived from (2) and formulated as a
theorem.
THEOREM 2.2. A given polygon P is rectilinear if and only if there exmsts & such that

Pi(P,a) = V2-Pa(P).

Proof. If the given polygon P is rectilinear, then the rotation of P, such that the angles between edges of P

3-m 5w T-
and the coordinate axes belong to the set {7—;—, —f’ ——4—7-{, ——4—-7—3}, preserves the equation P1(P, o) = V2 Po(P)

where « is the rotation angle.

On the other hand, if P1(P,a) = v2-P5(P) then (by Note 2.2) it must be | cos(¢; +a)| +|sin(¢; +a)| = V2
V2

for all edges e;, 1 <1 < n, of the given n-gon P. That implies | cos(¢; + a)| = | sin(¢; +a)| = = for all 7, with
1 < i < n — but it means that all edges of P are either parallel or orthogonal to the same line. This completes

the proof. [
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3. THE BASIC IDEA AND NECESSARY MATHEMATICS

Theorem 2.2 gives a useful characterisation of rectilinear polygons and gives the basic idea for the polygon
rectilinearity measurement described in this paper. In the first stage, Theorem 2.2 together with P1(F) <

| P1(P)
V2-Pa(P) (see (2)) suggests that the ratio —— 0
P1(P)

—————— has the following “good” properties:
V2 - Pa(P)

can be used as a rectilinearity measure for the polygon

P. More precisely, the ratio

al) it is a positive number;
a2) it is defined for any polygon P;
ad) it can be calculated easily;

a4) for any non rectilinear polygon it is strictly less than 1. For any given rectilinear polygon it is exactly 1
if the coordinate axes are suitably chosen.

P1(P)
V2 - P2(P)

But, on the other hand has the following “bad” properties:

bl) it is not invariant under similarity (even isometric) transformations;

’Pl(P,a)
V2 - P2(P)

P 2
easily (from (1)) that there exists no polygon P such that P1(P) = (O, £ )

b2) the infimum for the set of values of Q(P, o) = is not zero. For an example, it can be seen

V2 - P2 (P) -

In this section we develop necessary mathematical tools in order to define a function R(P) which satisfies
al)-a4) but not bl) and b2).

P P
The problem described by bl) can be avoided by considering max M instead of —P—l-(—-—)-——, but
a€[0,27] /2 - Po(P) V2 - Po(P)
it opens the question of how to compute this maximum.
Further, (1) and (2) give
2 P 2 P
£ < —-—7—1-(——)-— <1, and consequently, £ < max M— <1
2 T V2. Pa(P) 2 T agf0,2n] /2 - Py(P)
Pl (P ) Pl (P . O{)

for any polygon P. But, while the inequality < 1 is sharp, and moreover, = 1

\/Q_PQ(P) a€(0,27] \/§P1(P)

is satisfied if and only if P is a rectilinear polygon (due to Theorem 2.2), it can be seen easily that there

Pl(P, Of) \/§

exists no polygon P such that max ————— = . Namely, if an n-gon P satisfies the last equality, then

a€[0,27] \/2— . P (P) _2—
Pl (Pa O{O) \/§

for some oy we have —————— = —— which (see Note 2.1) would imply {;(e;, ag) = l2(e;) or, equivalently,
V2 P1(P)

o; + ag € {0,7/2,37/2,2n} for any edge e; where 1 < ¢ < n. So, P must be rectilinear and due to Theorem
2.2, the considered maximum must be equal to 1, which is a contradiction.

So, for our purpose it is necessary to determine the maximal possible p such that the max

a€l0,27] /2 - P2 (P)
2.4/2

-

belongs to the interval [u, 1] for any polygon P. The next two lemmas together show p =
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LEMMA 3.1. The inequality
73]_ (P,, Of) 2 - \/§

max ———— >

a€[0,27] \/§ - P (P) T

holds for any polygon P.

Proof. We prove the statement by a contradiction. Let us assume the contrary, i.e., there exists an n-gon P
such that

—\/——7—;1:(;3—;((1])3) < \/i - or equivalently, P;_j}%_) < -;;—, for any « € [0, 2mn].
Since %%)— is a continuous, nonconstant function which is less than or equal to %, we have
27 2
P{}l)i____fl’;;) do < /%-da — 8. (3)
0 0

By using (3) we have:

21 27T

Pl(Paa) _ 1 , - e (Y do = : - €;, ) - AL
5> /W'da = Pu(P) /(E“ : >) do = 505 - /ll( » @) d

0 0

27
1 T 1 T
= : l>(e;) - (|sin(o; + )| + |cos(o; + o)) - da | = : 8« la(e; = 8.
s 3 | [ ateo) into )|+ |eos(o + ) i (Z . >)
=+ \0
The contradiction 8 > 8 finishes the proot. [
So, in accordance with the above discussion, Lemma 3.1 shows that the required number p is not smaller

2.4/ 2.4/2 2.+/2
T

than

. The next lemma shows that p is not bigger than - and consequently p =
™

P1(P, . . .
LEMMA 3.2. The infimum for the set of values max —-—1£———E—)—— for all possible choices of polygon P 1s

a€[0,27] /2 - Py(P)
22

T

., 1.€.,

L ]
el

inf
Pell

{ P1(P, ) } 2 V2

ITlax
fﬂ'

a€l0,27] /2 - Py(P)

Proof. To prove the statement (taking into acaunt Lemma 3.1) it is enough to find a sequence of polygons

P;, Py, Ps5, ... such that
: ( P (P.n, O:) ) ) . \/§
lim may ————e————"_ |
n—oo \ a€l0,27] \/5 : P2 (P’n) T

We will prove that the sequence of regular n-gons P, inscribed into the unit circle satisties the previous equality.
Namely, it can be easily seen that the sequence of the Euclidean perimeters of P, tends to the perimeter of the

unit circle, 1.e.,

lim Po(Pp) = 27 (4)
but also
lim P(P,,a) = 8 (5)
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Figure 3. A regular 11-gon inscribed into the unit circle with the centre placed at the origin.

holds independently on the choice of «. Precisely, if it is considered that (for any «a € [0,27]) the [; perimeter
P1(Fn, o) equals the sum of the projections of all edges of P, onto z and y axes, than it follows that this sum
tends to 8 as n — oo (see Fig. 3 for an illustration). Since the limits in (4) and (5) are independent on o we

have ( PL(Pr.a) ) 0. /3

Imrax
T

a€(0,27] \/5 : PQ(PR)

Ilm ——————~2 — lim

which finishes the proof. [

Y

4. A RECTILINEARITY MEASURE

P
By using the proposed properties of the function max ——-————-Pl( Q)
a€[0,27] /2 - Py(P)

we give the following definition for a

rectilinearity measurement of polygons.

DEFINITION 4.1. For arbitrary polygon P we aefine its rectilinearity R(P) as:

- 7l . Pl(P,Od) _2-\/§
~(E) = T—242 (ag[ﬁ%{ﬂ]\/g-Pz(P) 0 ) |

T'he following theorem summarises the properties of the polygon rectilinearity measure proposed here.

1HEOREM 4.2. For any polygon P, we have:
t) R(P) is determined and R(P) € (0, 1];
1) R(P)=1 if and only if P is a rectilinear polygon;
1t) inf (R(P)) = 0,

Pell

36 Proc. of SPIE Vol. 4794



w) R(P) is invariant under similarity transformations.

Proof. The item i) follows from (2), definition of R(P), and Lemma 3.1. The item ¢) is a direct consequence
of Theorem 2.2. The item #4) is the statement of Lemma 3.2. To prove iv) let us notice that R(P) is invariant

P1 (Pa Od)

under all isometric transformations — whch follows from the definition. Also,
V2 - Pa(P)

R(P) are invariants under any transformation of the form (z,y) — (A -z, A - y) for any choice of A # 0, P, and
«. That completes the proof. [

and consequently

Some examples of polygons with their computed rectilinearity are given in Fig. 4.

5. COMPUTATION OF R(P)

The question which remains open is how to compute R(P) effectively for a given polygon P. Since P2(P) can
be easily calculated from the vertices of P it remains to describe the computation of the maximum value of
P1 (P, &) when o varies from 0 to 27. In this section we describe a procedure for such a computation.

Let us consider an edge e; (1 <7 < n) of a given n-gon P. From trivial equalities

52(62') . COS((ZSZ' —+ Od) + lg(ei) y sin(gbi -+ Oz) fOI‘ = :—Qf)i, % = ¢z]

I (e, ) = —l5(e;) - cos(@; + @) + l2(e;) - sin(¢; + o) for a€l[f — ¢sm— @i

P\ = —Io(e;) - cos(@; + ) — la(e;) - sin(@; + ) for « € |m— ¢, -3-’2-1 — ;)
[2(e;) - cos(p; + a) — l2(e;) - sin(¢p; + o) for o €[ — ¢, 27 — ¢4 .

it holds that there is an integer £ < 4-n and a sequence 0 < o < ap < ... < <2 such that

Z aj q - lz (63) . COS(QZ% + Oé) -+ blﬂj ' ZQ (62) . SiIl(Qf)i +- Oé) it a € [051, Oéz]

=1

5" ag ;- la(e;) - cos(p; + ) + ba; - l2(e;) - sin(¢; + ) o€ o, 3]
=1
Pi(P,a) =14 creeeeee

Z ak_lﬂ- - Zg(ei) . COS((Z5§ —+ Of) -+ bk_..lﬂg y 32(62') . sin(gzb?; -+ Oz) if o & [ak_l, Ofk]

1=1

Z ak.; * lg(ei) ' COS(@i -+ Od) - bk,i ' lg(ei) ' Sin(qﬁi —+ O{) it o € [Odk, 27T + 051] :
=1

where

or precisely, for any i € {1,2,...,n} and any 7 € {1,2,...,k}

dijs — 1 it COS(Qbi + Oé) >0 for a € (Ozj, Odj_|_1) (6)

a;; = —1 if cos(¢;+a)<0 for ae€ (ay,0j41) (7)
and analogously,

bis = 1 if sin(¢;+a) >0 for o€ (a5, aj+1) (8)

;i = —1 if sin(¢; +a) <0 for o€ (aj,aj41) (9)
NOTE 5.1. For any angle a, € {a1, a0, ...,ar} C [0, 27] there is an edge €4, 1 < g < n such that the rotation

of e, for the angle oy belong to one of coordinate axes. Since some of such angles can cotncide, depending of
the given n-gon the tnequality k < 4 -n can be strict.

What is important for us is

0 < Pl(P, Od) — _Pf(P, Qf) if « % {@1,@2, .« . 90%}' (10)
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By solving the differential equation from (10), or by applying the formulas
cos(a+ (3) = cosa-cos3 — sina -sin 3

sin(v + ) = cosa-sinf8 + sina-cos 3

to the previously given explicit expression for P (P, a), we have:

c1-cosa+dy-sina for « € |ag,as)

Co + COS @ + do - sin & for a € |ag,as]
Pi(Pa) =< .ol

Cr_1-Cosa+di_1-sina for o€ |ap_1, ozl

Cr - COS & + dj, - sin « for o € |og,2m + aq],

where the constants ¢1,dq, co,ds, ..., ct,dr can be calculated by solving the systems

Pi(P,a;) = «¢j-cosa; + dj-sina; (11)

Pi(P,ajt1) Cj - COSQjyr1 + dj-sinogqg (12)

for any j € {1,2,...,k}, or directly as

C; = Z(aj,i - Zg(ei) - COS (;25?, -+ bi’j * Zg(e?;) - 81N (Zf)z) for ] - 1, 2, v oy K (13)
1=1
and )
dj — Z(—aj,?; ' lg(ez') -Sin(i)i ‘l’b{,’j -lg(ei) * COS (Zf)—,,) for ] — 1,2,...,]€ : (14)
=1

For a given 7 (1 < j < k), if

P1(P, a)

has a solution (3; which belongs to the open interval (o, ;+1), this solution is unique on the given interval
(because of (10)). Further, P{ (P, 3;) < 0 gives

—cj-sina + d;-cosa = 0 (15)

Pl(Paﬁj) — max Pi(P, o).

o€ (0,0 41)

IT such a solution does not exist then P; (P, o) reaches the maximum in one of the interval endpoints, i.e.,

max Pi1(P,a) = max{Pi(P,a;), P1(P,a;y1)}. (16)

ae(aj ?O‘j-!-l)

In any case,
Fj — max 791 (P, Oé)

aE(o; ?C“j+1)

can be calculated by comparing at most three values: P (P, «;), Pi(P, aj4+1), and Pi(P, 5;), if B; € (v, j41)
satisfying (15) exists. Finally, for a given polygon P the function P; (P, «) reaches its maximum on [0, 27] and
this maximum is:

5 T 0) = max L)

S0, we have the next simple procedure for the computing of R(P).

PROCEDURE R(P) Computation
Input: The vertices Ag, A;1,...,A,—1 of a given n-gon P.
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1. Step.

For anyi,i = 1,2,...n, compute the angle ¢;, and compute the angle-values {ag, oo, ..., 0} in accordance
with Note 5.1.

Sort them in the increasing order, i.e., 0 < a3 <oz <... < ap S 27T

2. Step.
Assign either +1 or —1 to a;; and b;; for any ¢ from {1,2,... n} and any j from {1,2,...,k}
(% in accordance with (6)-(9) *).

3. Step.
Compute ¢; and d; by using (11) and (12) (or equivalently (13) and (14)).

4. Step.
" Forany j € {1,2,...,k}
If the equation (15) has the solution 3; on the interval (o, aj41)
then compute I'; as Py (P, 3;)
else compute I'; as max{P1(P,a;), P1(P, aj+1)}
(x in accordance with (16). Note: apy1 = a1 + 27 *).

5. Step.
Determine I" as the maximum of {I'y,T'2,... '} then compute R(P) as

T 2-\@)

R(P) = W_Q_\/_Q_.(\/ﬁ.P2(P)— s

(% in accordance with Definition 4.1 *).

Output: R(P).

6. SOME EXAMPLES AND CONCLUDING REMARKS

The rectilinearity measure is applied to a (perfect) rectilinear polygon in the top left hand polygon in Fig. 4
which is then degraded in various ways. The first row demonstrates the effect of increasing levels of local noise
applied to the polygon’s vertices. In the second row the polygon is edited, eliminating vertices, which effectively
rounds corners and increases its convexity. A shearing transformation is applied in the third row. Finally, the
polygon is warped, and the axis aligned edges are increasingly rounded. All examples show that the rectilinearity
measure is well behaved: increasing distortion consistently decreases the computed value. Note also that the
orientations that maximised Q(P, &) match our expectations except at high noise levels when the rectilinearity
measure has dropped close to zero. For each of the maximally degraded polygons (i.e. the rightmost examples
in each row) Fig. 5 plots Q(P, ). It can be seen that it 1s well behaved and, despite the effects of noise and
other distortions which introduce local maxima, the main peak remains distinct.

Let us conclude this paper with comments related to the rectilinearity measure derived by analysing the
equation Py (P) = P1(P, a) which has a solution for some o if and only if P is a rectilinear polygon. A similar
analysis! to those presented here led to the rectilinearity measure R1(P) defined by

4 Ps(P) T
Rl(P) 44— (ag[l(?:};ﬂ] P4 (.P, Oﬁ) 4) '

If we consider the third polygon on the second row and the third polygon on the third row from Fig. 4, we see
that there exist polygons P and () such that

R(P) < R(Q) and Ri(P) > Ri(Q).

so, we can conclude that rectilinearity measures R and 'R, are essentialy different even though they are derived
‘n a similar manner. That is, there exists no monotonic function f, such that f (R(P)) = R1(P) holds for any

polygon.

Proc. of SPIE Vol. 4794 89



1.000 (1.000) 0.927 (0.849) 0.497 (0.334) 0.072 (0.041) 0.061 (0.038)
0.966 (0.860) 0.918 (0.813) 0.658 (0.603) 0.639 (0.508) 0.466 (0.277)
0.945 (0.668) 0.880 (0.516) 0.779 (0.425) 0.694 (0.380) 0.583 (0.351)
0.971 (0.748) 0.864 (0.457) 0.674 (0.287) 0.499 (0.204) 0.315 (0.134)

Figure 4. Examples of polygons with their rectilinearity measured as proposed in this paper. Polygons are rotated to
the orientations plus 45° that maximised Q(P, a). In the brackets are given rectangularity values measured by R;.*

0.05 0.5
0.2
A
‘" 0.00 S 0.0
= )
- -
-0.05
0.5
00 05 10 15 00 05 10 15 00 05 10 15 00 05 10 15
angle angle angle

Figure 5. Plots of normalised Q(P, «) for each of the rightmost examples in Fig. 4.
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