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Abstract

The paper introduces a shape measure intended to describe the extent to which a closed polygon is

rectilinear. Other than somewhat obvious measures of rectilinearity (e.g. the sum of the differences of

each corner’s angle from 90
◦) there has been little work in deriving a measure that is straightforward to

compute, is invarient under scale and translation, and corresponds with the intuitive notion of rectilinear

shapes.

There are applications in a number of different areas of computer vision and photogrammetry. Recti-

linear structures often correspond to human-made structure, and are therefore justified as attentional cues

for further processing. For instance, in aerial image processing and reconstruction, where building foot-

prints are often rectilinear on the local ground plane, building structures, once recognized as rectilinear

can be matched to corresponding shapes in other views for stereo reconstruction. Perceptual grouping

algorithms may seek to complete shapes based on the assumption that the object is question is rectilinear.

Using the proposed measure, such systems can verify this assumption.

Keywords: Shape, polygons, rectilinearity, measurement.

1 Introduction

Shape plays an important part in the processing of visual information, and is actively being investigated in a

wide spectrum of areas, from art [24] through to science [7]. Within computer vision there have been many

applications of shape to aid in the analysis of images, and standard shape descriptors include compactness,

eccentricity [22], circularity [10], ellipticity [18], and rectangularity [19]. Many of these shapes are based on

geometric patterns, which naturally closely correspond to many manufactured items (from ball bearings to

skyscrapers), justifying their applicability. While their usefulness in the broader area of perception may be

questioned, it has in fact been shown that regular shapes (e.g. rectangles versus general quadrilaterals) have

particular significance in the human visual system [8].

This paper describes a shape measure that has received little attention: rectilinearity. While there exist a

variety of approaches to computing the related measure of rectangularity [19], rectilinearity covers a wider

space of shapes since the number of sides of the model shape is variable. This means that it is not convenient
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to fit the model1 to the data and measure the discrepancies between the two, which is the approach that is

often applied to compute compactness and rectangularity.

Figure 1: Automatic building detection by the Ascender II system [9].

One of our motivations in developing a rectilinearity shape measure is to provide a useful tool for the

analysis of buildings in aerial photographs. Over the last 10–20 years there has been considerable research

in this area with the goal of providing automatic photointerpretation which would be particularly useful for

cartographers [12, 15, 17] – see for instance an example from the Ascender II system [4, 9] in Fig. 1. Such

systems are typically based on perceptual grouping of edges and incorporate additional information such as

shadows, colour, contextual information, miscellaneous knowledge-based rules, as well as shape (typically

rectangular). Since many buildings appear rectilinear from an overhead view then such a shape measure

could be used in a hypothesis and test paradigm to remove unlikely candidates which have inappropriate

shapes. In addition to photointerpretation, detection of buildings can be used to provide control points for

registration [11]. More generally, shape attributes have been used to select similar structures in image pairs

to determine correspondences used to determine the image registration parameters. Dare et al. [5] suggested

incorporating rectilinearity, although it was not implemented, while Ventura et al. [23] showed results in

which eccentricity was employed.

As well as filtering out non-rectilinear shapes it is sometimes also useful to retain only non-rectilinear

shapes. For example, in one study [21], in order to detect landslide induced changes between a time-lapsed

pair of images, rectangular regions of change were eliminated since they arose from new buildings or fields

with altered cultivation patterns. In general, distinguishing carpented artifacts from natural backgrounds is an

obvious application.

Another set of applications relate to the modification of an input shape driven by the maximisation of the

rectilinearity measure, and three instances are given here.

• Shape from contour – Brady & Yuille [1] determined 3D surface orientation from a 2D contour by

deprojecting it so as to maximise the contour’s compactness. In a similar manner, if it is known that the

target shape is rectilinear, then the rectilinearity measure can replace compactness. It is interesting to

note that whereas one of the assumptions of the statistical approach to shape from contour [26] is that

1Fitting a rectilinear shape is possible, as demonstrated by Brunn et al. [2], but is complex, and potentially unreliable and

inaccurate. Other related work involves fitting x-monotonic rectilinear curves [6] and determining rectilinear paths whilst avoiding

obstacles [3]. Our proposed approach avoids fitting, and is therefore simpler and faster.
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the distribution of tangent angles along the curve is uniform, the rectilinear version works best under

the opposite conditions.

• Snakes are used to refine an initial shape, optimising a function which most typically combines generic

constrains such as smoothness as well as fidelity to the original data [14]. In certain applications it may

be possible to include more specific constraints, such as a rectilinearity component, which are then

likely to improve the object delineation/reconstruction.

• Partitioning – a simple scheme for partitioning shapes was developed using a weighted sum of the

convexity of the subparts as the splitting criterion [20]. In most cases the results using the convexity

measure seemed to match human perception. Again, in specific situations rectilinearity would be more

appropriate, e.g. to separate adjoining rectilinear buildings whose boundaries have become merged

somewhere in the image acquisition/precessing chain.

Let us conclude this introduction by noticing that a variety of rectilinearity measures for polygons which

are based only on a measure of the angles of the considered polygon can be derived very easily. But such

a defined rectilinearity measure would imply that all polygons with the same angles have the same esti-

mated rectilinearity which is not acceptable. In view of example from Fig. 2 (a), the angles of P (h) are
π
2
, π
2
, π
2
, 3π

4
, 3π

4
for all h ∈ (0, 1), but it is natural to expect that polygons P (h) for very small h (then P (h)

is “almost” a square) are more rectilinear than polygons P (h) with h very close to 1 (then P (h) is “almost”

a triangle). Both rectilinearity measures introduced here agree that the rectilinearity of P (h) decrease when

h varies from 0 to 1 – the graphs of rectilinearity measures of P (h) are displayed on Fig. 2, (b) and (c) (for

more details see Section 4).
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Figure 2: (a) Polygons P (h) are expected to have the different measured rectilinearity when h varies from 0

(correspond to a square) to 1 (correspond to a triangle). (b) and (c) display the graphs of the rectilinearity of

P (h) measured by R1 and R2, respectively.

2 Definitions and Denotations

We start this section with a formal definition of rectilinear polygons (see Fig. 3 for an example).

Definition 2.1 A polygon P is rectilinear if its interior angles belong to the set
{

π
2
, 3·π

2

}

.
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Figure 3: For the given rectilinear 20-gon P , its l1 perimeter Per1(P ) has the minimum value if the coordinate

axes are chosen to be parallel with u and v, while it reaches its maximum if the coordinate axes are parallel to p
and q. The minimum and maximum values correspond to Per1(P, 2π−α) and Per1(P,

7π
4
−α), respectively,

if x and y are taken to be the coordinate axes.

Also, we will use the following definitions and denotations (see Fig. 4 for some illustrations). The set of all

polygons will be denoted by Π. For a given n-gon P having vertices denoted by A0, A1, . . . , An−1, An = A0,

its edges will be denoted as ei = [Ai−1, Ai] for i = 1, 2, . . . , n. The Euclidean length of the straight line

segment e = [(x1, y1), (x2, y2)] is l2(e) =
√

(x1 − x2)2 + (y1 − y2)2, while the length of e according to the l1
metric is l1(e) = |x1 − x2|+ |y1 − y2|.

Per2(P ) will denote the Euclidean perimeter of P , while Per1(P ) will denote the perimeter of P in the

sense of l1 metrics. So, Per2(P ) =
∑

ei is an edge of P

l2(ei) and Per1(P ) =
∑

ei is an edge of P

l1(ei). Since

isometric polygons do not necessarily have the same perimeter under the l1 metric, we shall use Per1(P, α)
for the l1 perimeter of the polygon which is obtained by the rotating P by the angle α with the origin as the

center of rotation. If the same rotation is applied to the edge e, the l1 perimeter of the obtained edge will be

denoted as l1(e, α).

If the oriented angle between the positively oriented x-axis and the vector
−−−−→
Ai−1Ai is denoted by φi

(i = 1, 2, . . . n), then obviously l1(ei, α) = l2(ei) · (| cos(φi + α)| + | sin(φi + α)|). Thus, by using 1 ≤
| cos β|+ | sin β| ≤

√
2 (for any β), we have the next relations between Per1(P ) and Per2(P ).

Per2(P ) =
n
∑

i=1

l2(ei) ≤ Per1(P, α) =
n
∑

i=1

l2(ei) · (| cos(φi + α)|+ | sin(φi + α)|) ≤
√
2 · Per2(P, α) (1)

Note 2.1 Let us notice that Per2(P ) = Per1(P, α) if and only if | cos(φi+α)|+ | sin(φi+α)| = 1 holds for

all edges ei, 1 ≤ i ≤ n. Analogously, Per1(P ) =
√
2·Per1(P, α) if and only if | cos(φi+α)|+| sin(φi+α)| =√

2 holds for all edges ei, 1 ≤ i ≤ n.

We will exploit a characterization of rectilinear polygons given by the next theorem.

Theorem 2.1 A polygon P is rectilinear if and only if there exists α such that Per1(P, α) = Per2(P ).

Proof. If P is rectilinear then a rotation of P such that the edges of P become parallel to the coordinate axes

preserves the equality Per2(P ) = Per1(P, α), where α is the rotation angle.
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On the other hand, Per2(P ) = Per1(P, α) implies | cos(φi + α)| + | sin(φi + α)| = 1, or equivalently,

either cos(φi + α) = 0 or sin(φi + α) = 0 for all edges ei (1 ≤ i ≤ n) of the given n-gon P . Consequently,

we have that all edges of P are either parallel or orthogonal to the same line, i.e., P is rectilinear. [[]]

3 The Basic Idea and Necessary Mathematics

Theorem 2.1 gives a useful characterisation of rectilinear polygons and gives the basic idea for the polygon

rectilinearity measurement proposed in this paper. In the first stage, Theorem 2.1 together with Per2(P ) ≤
Per1(P ) (see (1)) suggests that the ratio

Per2(P )
Per1(P )

can be used as a rectilinearity measure for the polygon P .

Precisely,
Per2(P )
Per1(P )

has the following “good” properties:

a1) it is always a strictly positive number;

a2) it is defined for any polygon P ;

a3) it can be calculated easily;

a4) for any non rectilinear polygon it is strictly less than 1 and for any given rectilinear polygon it is exactly

1 if the coordinate axes are suitable chosen.

But, on the other side
Per2(P )
Per1(P )

has the following “bad” properties:

b1) it is not invariant under rotational transformations;

b2) the infimum for the set of values of Q1(P, α) =
Per2(P )
Per1(P,α)

is not zero. For an example, it can be easily

seen (from (1)) that there exists no polygon P such that
Per2(P )
Per1(P )

∈
(

0,
√
2
2

)

.

In this section we develop necessary mathematical tools in order to define a function which satisfies a1)–a5)

but not b1) and b2).

The problems described by b1) can be avoided by considering max
α∈[0,2π]

Per2(P )
Per1(P,α)

instead of
Per2(P )
Per1(P )

, but

it opens the question of how to compute those maximum values. It turns out that can be designed a simple

procedures for such calculations. It will described later – see Section 5.

Further, the inequalities from (1) give
√
2
2

≤ max
α∈[0,2π]

Per2(P )
Per1(P,α)

≤ 1 for any polygon P . But, while

the inequality
Per2(P )
Per1(P )

≤ 1 is sharp, and moreover, the equality max
α∈[0,2π]

Per2(P )
Per1(P,α)

= 1 is satisfied if and

only if P is a rectilinear polygon (due to Theorem 2.1), it can be easily seen that there exists no polygon

P such that max
α∈[0,2π]

Per2(P )
Per1(P,α)

=
√
2
2
. Namely, if an n-gon P satisfies the last equality, then for some α0 we

have
Per2(P )

Per1(P,α0)
=

√
2
2

which (by (1)) would imply
√
2 · l2(ei) = l1(ei, α0) or, equivalently, φi + α0 ∈

{π/4, 3π/4, 5π/4, 7π/4, 9π/4, 11π/4, } for any edge ei where 1 ≤ i ≤ n. Thus, P must be rectilinear, and

due to Theorem 2.1, the considered maximum must be equal to 1, which is a contradiction.

So, for our purpose it is necessary to determine the maximal possible µ such that max
α∈[0,2π]

Per2(P )

Per1(P, α)
belongs to the interval [µ, 1] for any polygon P . The next lemma shows that µ = π

4
, and moreover, there is

no polygon P such that max
α∈[0,2π]

Per2(P )
Per1(P,α)

= π
4
.
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Figure 4: A regular 11-gon inscribed into the unit circle with the center placed at the origin.

Lemma 3.1 a) The inequality max
α∈[0,2π]

Per2(P )
Per1(P,α)

> π
4

holds for any polygon P .

b) For any ε > 0 there is a polygon P such that max
α∈[0,2π]

Per2(P )
Per1(P,α)

< π
4
+ ε, or equivalently

inf
P∈Π

{

max
α∈[0,2π]

Per2(P )
Per1(P,α)

}

= π
4
.

Proof. We prove the statement a) by a contradiction. Let us assume the contrary, i.e., there exists an n-gon P
such that

Per2(P )
Per1(P,α)

≤ π
4

or equivalently,
Per1(P,α)
Per2(P )

≥ 4
π

for any α ∈ [0, 2π]. Since
Per1(P,α)
Per2(P )

is a continuous

non constant function (for more details see Section 5) depending on α (if P is fixed), and since it is assumed

to be greater or equal to 4
π

then
∫ 2π
0

Per1(P,α)
Per2(P )

· dα >
∫ 2π
0

4
π
· dα = 8. Using the last inequality we derive:

8 <

2π
∫

0

Per1(P, α)

Per2(P )
· dα =

1

Per2(P )
·

2π
∫

0

(

n
∑

i=1

l1(ei, α)

)

· dα =
1

Per2(P )
·

n
∑

i=1





2π
∫

0

l1(ei, α) · dα




=
1

Per2(P )
·

n
∑

i=1





2π
∫

0

l2(ei) · (| sin(φi + α)|+ | cos(φi + α)|) · dα


 =
1

Per2(P )
·
(

n
∑

i=1

8 · l2(ei)
)

= 8.

The obtained contradiction 8 < 8 proves a).

To prove the statement b) it is enough to find a sequence of polygons P3, P4, P5, . . . such that lim
n→∞

(

max
α∈[0,2π]

Per2(P
Per1(Pn

π
4
. We will prove that the sequence of regular n-gons Pn inscribed into the unit circle satisfies the previous

equality. Namely, it can be easily seen that the sequence of the Euclidean perimeters of Pn tends to the

perimeter of the unit circle, i.e., limn→∞ Per2(Pn) = 2 · π but also limn→∞Per1(Pn, α) = 8
holds independently on the choice of α. Precisely, if it is considered that (for any α ∈ [0, 2π]) the l1 perimeter

Per1(Pn, α) equals the sum of the projections of all edges of Pn onto x and y axes, than it follows that this

sum tends to 8 as n → ∞ (see Fig. 4 for an illustration). Since two last limits are independent on α we have

limn→∞
Per2(Pn)
Per1(Pn,α)

= limn→∞
(

maxα∈[0,2π]
Per2(Pn)
Per1(Pn,α)

)

= π
4
, what proves b). [[]]
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4 Rectilinearity Measures

Motivated by the proved properties of the function max
α∈[0,2π]

Per2(P )
Per1(P,α)

we give the following definition for the

new rectilinearity measurement of polygons.

Definition 4.1 For an arbitrary polygon P we define its rectilinearity R1(P ) as

R1(P ) =
4

4− π
·
(

max
α∈[0,2π]

Per2(P )

Per1(P, α)
− π

4

)

.

The following theorem summarises the properties of the polygon rectilinearity measure proposed here.

Theorem 4.1 For any polygon P , we have:

i) R1(P ) is well defined and R1(P ) ∈ (0, 1] for any polygon P ;

ii) R1(P ) = 1 if and only if P is rectilinear;

iii) inf
P∈Π

(R1(P )) = 0;

iv) R1(P ) is invariant under similarity transformations.

Proof. For a fixed P ,
Per2(P )
Per1(P,α)

is a continuous function depending on α (for more details see the next

section). Consequently, it must reach its minimum on the closed interval [0, 2π], i.e., R1(P ) is well defined.

R1(P ) ∈ (0, 1] follows from (1), Definition 4.1, and Lemma 3.1.

The item ii) is a direct consequence of Theorem 2.1.

The item iii) is the statement of Lemma 3.1.

To prove iv) let us notice that R1(P ) is invariant under all isometric transformations – which follows from

the definition. Also,
Per2(P )
Per1(P,α)

and consequently R1(P ) are invariant under any transformation of the form

(x, y) → (λ · x, λ · y) for any choice of λ 6= 0, P , and α. That completes the proof. [[]]

Let us conclude this section mentioning that starting form
√
2
2

≤ Per1(P )√
2·Per2(P )

≤ 1 (see (1)) another

rectilinearity measure can be derived. We give the next theorem without proof.

Theorem 4.2 Let us define the rectilinearity measure for polygons in the following way

R2(P ) =
π

π − 2 ·
√
2
·
(

max
α∈[0,2π]

Per1(P, α)√
2 · Per2(P )

− 2 ·
√
2

π

)

. (2)

Then i) R2(P ) is well defined and R2(P ) ∈ (0, 1], ii) R2(P ) = 1 if and only if P is rectilinear, iii)

inf
P∈Π

(R2(P )) = 0, and iv) R2(P ) is invariant under similarity transformations.

Let us go back to the example of the polygon P (h) from Fig. 2. Elementary mathematics shows that

min
α∈[0,2π]

Per1(P (h), α) = 4 for any h ∈ [0, 1] and max
α∈[0,2π]

Per1(P (h), α) = 2 ·
√
8− 4 · h+ h2 for h ∈ [0, 1].

Also, Per2(P (h)) = 4 − (2 −
√
2) · h if h ∈ [0, 1]. Based on this, R1(P (h)) = 1 − (2−

√
2)·h

4−π
, i.e.,

R1(P (h)) behaves as a linear function which reaches its maximum 1 for h = 0 (P (0) corresponds to a

square) and reaches the minimum 2+
√
2−π

4−π
≈ 0.3176 for h = 1 (P (1) corresponds to a triangle). Also,

R2(P (h)) = π

π−2·
√
2
·
(

2·
√
8−4·h+h2√

2·(4−(2−
√
2)·h) −

2·
√
2

π

)

and decrease from 1 = R2(P (0)) to R2(P (1)) ≈ 0.2598.

As shown above, the rectilinearity measures R1 and R2 are different. Moreover, as the examples of their

application to synthetic (see Fig. 5) and real (see Fig. 11) polygons demonstrate, they produce different rank-

ings. Nevertheless, we are not able to give a preference for either one, since both have the same computational

complexity and match against human performance (see Section 7) to roughly the same degree.
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5 Computation of R1(P )

In this section we will show how to compute R1(P ) effectively if a polygon P is given. Since Per2(P ) can

be easily calculated from the vertices of P it remains to describe the computation of the minimum value of

Per1(P, α) (necessary for the computation of R1(P )).
Let an edge ei (1 ≤ i ≤ n) of a given n-gon P be given. Trivially,

l1(ei, α) = l2(ei) · (| cos(φi + α)|+ | sin(φi + α)|) = a(α) · l2(ei) · cos(φi + α) + b(α) · l2(ei) · sin(φi + α)
where a(α) and b(α) take +1 or −1 depending on α. Consequently, there is an integer k and a sequence

0 ≤ α1 < α2 < . . . < αk ≤ 2π such that

Per1(P, α) =
n
∑

i=1

aj,i · l2(ei) · cos(φi + α) + bj,i · l2(ei) · sin(φi + α) if α ∈ [αj , αj+1] (3)

where αk+1 = α1 + 2π and {aj,i, bj,i | 1 ≤ j ≤ k, 1 ≤ i ≤ n} ⊂ {+1,−1}.

Note 5.1 For any angle αp ∈ {α1, α2, . . . , αk} ⊂ [0, 2π] there is an edge eq, 1 ≤ q ≤ n such that the

rotation of eq for the angle αp belong to one of coordinate axes – so, k ≤ 4 · n. Since some of such angles

can coincide, depending of the given n-gon the inequality k ≤ 4 · n can be strict.

What is important for us is the next consequence of (3): 0 < Per1(P, α) = −Per′′1(P, α) if α /∈
{α1, α2, . . . , αk}, which implies that Per1(P, α) does not have any local minimum inside the open inter-

vals: (α1, α2), (α2, α3), . . . , (αk−1, αk), (αk, 2π + α1). In other words, we have min
α∈[0,2π]

Per1(P, α) =

min{Per1(P, α1), Per1(P, α2), . . . , Per1(P, αk−1), Per1(P, αk)}, which proves the following theorem.

Theorem 5.1 For a given polygon P its measured rectilinearity R1(P ) can be computed as

R1(P ) =
4

4− π
·
(

Per2(P )

min{Per1(P, α1), Per1(P, α2), . . . , Per1(P, αk−1), Per1(P, αk)}
− π

4

)

.

The previous theorem shows that the rectilinearity of a given n-gon (even defined by using the maximum value

of a nonlinear function on an interval domain) can be computed by comparing easily computable values in

at most 4 · n points. A straightforward application of Theorem 5.1 gives O(n2) as an upper bound for

R1(P ) computation. In practise, for n = 2500 R1(P ) is calculated within 5 milliseconds on a Sun Ultra 10

workstation.

6 Some Examples

To test the effectiveness of the rectilinearity measures they are first applied to a (perfect) rectilinear polygon

located as the top left hand shape in Fig. 5 which is then degraded in various ways. The first row demonstrates

the effect of increasing levels of local noise applied to the polygon’s vertices. In the second row the polygon is

edited, eliminating vertices, which effectively rounds corners and increases its convexity. A shearing transfor-

mation is applied in the third row. Finally, the polygon is warped, and the axis aligned edges are increasingly

rounded. All examples show that the rectilinearity measure is well behaved; increasing distortion consistently

decreases the computed value. Note also that the orientations that maximised Q1(P, α) = Per2(P )
Per1(P,α)

match

our expectations except at high noise levels when the rectilinearity measure has dropped close to zero. Also

of note is the difference in orientation of skewed rectilinear shapes as determined by R1 and R2. Whilst

R1 aligns one of the shape’s edge orientations with the axis it can be shown that R2 consistently places the

8



1.000 (1.000) 0.849 (0.927) 0.334 (0.497) 0.041 (0.072) 0.038 (0.061)

0.860 (0.966) 0.813 (0.918) 0.603 (0.658) 0.508 (0.639) 0.277 (0.466)

0.668 (0.945) 0.516 (0.880) 0.425 (0.779) 0.380 (0.694) 0.351 (0.583)

0.748 (0.971) 0.457 (0.864) 0.287 (0.674) 0.204 (0.499) 0.134 (0.315)

Figure 5: Examples of polygons rotated to the orientations that maximised Q1(P, α). Underneath are the

rectilinearity values measured using R1, with the R2 values in brackets.
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Figure 6: Plots of normalised Q1(P, α) for each of the rightmost examples in Fig. 5.

shape’s axis in between the two edge orientations. For each of the maximally degraded polygons (i.e. the

rightmost examples in each row) Fig. 6 plots Q1(P, α). It can be seen that it is well behaved and, despite the

effects of noise and other distortions which introduce local maxima, the main peak remains distinct.

Another example is shown, applied to real data from a Digital Elevation Model (DEM), i.e., a depth

map (see Fig. 7 (a)). Simple noise filtering and segmentation techniques were applied to produce a set of

polygons. Fig. 7 (b) plots the regions filled with intensities proportional to their rectilinearity (R1); thus

rectilinear shapes should appear bright. In some cases the computed rectilinearity does not correspond well

with human perception. The problem arises from errors in the boundary due to the various steps in data

processing, resulting in the distribution of edge orientation being fairly uniform, therefore producing a low

rectilinearity value.

As a possible means of reconciling this inconsistency between our perceptual and measured evaluation

of rectilinearity we note that relatively small adjustments to the polygon could greatly increase the values of

Q1(P ). Thus we apply such a process, moving vertices such that they maximise Q1(P ) while minimising the

9



(a) (b)

Figure 7: (a) A DEM of Hanover; (b) segmented regions with intensities proportional to R1 rectilinearity.

ω = 0.3; R1 = 0.236 ω = 0.6; R1 = 0.748 ω = 1.0; R1 = 0.891

Figure 8: Evolved snakes with different weighting factors. Increasing ω produces greater rectilinearity.

shift in vertex location. This is a version of the popular snake methodology, but with a more specifically shape

based internal force than the usual smoothness term. A similar scheme of “shape correction” has already

been applied by Brunn et al. [2] who applied an iterative MDL vertex shifting and removal scheme, and by

Mayer [16] who used constrained snakes. Our approach is rather simpler: it uses the greedy algorithm [25]

and at each trial vertex shift computes the rectilinearity R1 and the mean distance D between the original

and adjusted curve which are combined as the functional to be maximised: F (ω) = ωR1 − (1− ω)D, where

ω is a weighting term specifying the relative importance between the two terms. The effects of enforcing

increasing degrees of rectilinearity on a building from Fig. 7 are shown in Fig. 8. Applying the snake-based

rectilinearity process to the full set of regions in Fig. 7 is given for two values of ω in Fig. 9.

A final example is taken from the trademark retrieval study by Jain and Vailaya [13]. From a database

of 1100 binary trademark images a human drawn query (boxed trademark in Fig. 10 (a)) was input. The

top ranked images according to five human subjects [13] are shown in Fig. 10 (a). Beyond the obvious best

matched image the remaining images show the difficulty caused by the subjective nature of the task. Jain and

Vailaya find an initial match using a distance made up from a weighted combination of the dissimilarities

computed from the edge histogram and the first seven moment invariants (Fig. 10 (b)). They continue to

refine the match using a deformable template, region filling, etc. We compare their initial results against

the following set of simple shape descriptors: circularity, ellipticity, the first four moment invariants, and

the circularity, ellipticity, triangularity, and aspect ratio of the convex hull. Matching was performed using

a normalised Euclidean distance classifier in which the convex hull measures were downweighted a quarter

relative to the other measures. Fig. 10 (c) shows that the correct match is found in second place. The addition

10



(a) ω = 0.3 (b) ω = 0.6

Figure 9: Applying rectilinear snakes to “correct” the regions from Fig. 7 in order to improve rectilinearity

(measured by R1). Regions intensities are proportional to rectilinearity.

of rectilinearity improves performance (Fig. 10 (d)); not only does the correct match move from second to first

place, but amongst the remaining matches there is now another from the human ground truth set. Moreover,

the sixth ranked shape is also qualitatively similar to the bull.

(a) Hand drawn trademark query (boxed) and the top nine images retrieved by human subjects

(b) Top ten images retrieved by Jain and Vailaya’s pruning stage

(c) Top ten images using simple shape descriptors

(d) Top ten images using simple shape descriptors plus rectilinearity

Figure 10: Top ten retrieved trademarks

7 Comparison against Human Perception

Having defined new computational schemes for measuring rectilinearity it is of interest to check how they

compare against human perception. 22 human subjects were asked to rank order the 37 shapes in Fig. 11

according to rectilinearity.2 The average rank for each shape over the human subjects was calculated, and the

2The subjects were naive adults. The concept of rectilinearity was explained to them in two ways: a perfect rectilinear shape

could be composed of horizontal and vertical lines if oriented appropriately; alternatively, the internal angles should be ±90
◦. No
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(a) R1

(b) R2

Figure 11: Shapes ranked by rectilinearity measures.

shapes sorted accordingly are displayed in Fig. 12. The average rank of each shape is shown in Fig. 13 (sorted

into ascending order) and the error bars show that there was substantial variability in the human rankings. It

is interesting to note that the first five shapes have lower errors and form a group that was considered to be

more readily discernible as rectilinear. They also closely match the computer generated rankings. The last

three or four shapes can also be seen to stand out as being more definitely non-rectilinear. This matches up

with the comments from many of the subjects that they had difficulty in performing accurate ordering of the

large middle group of shapes.

Figure 12: Shapes sorted by mean human subject ranking

A more quantitative analysis was carried out by calculating the Spearman rank-order correlation coeffi-

cient. Comparing the scores of the human subjects against the mean human ranking produced a correlation

coefficient of 0.799 with standard deviation 0.086. Comparing the measures described in this paper against

the mean human ranking produced: 0.886 (R1), 0.815 (R2), demonstrating that the algorithms are consistent

with human perception. Despite the variability in the rankings all the results (human and computer) exhibit

high correlation against the mean human ranking (at the 0.01 significance level).

time limit was given, and the task typically took about five minutes. The shapes were presented as circular cut outs, randomly laid

out so that there was no initial preferred orientation or ordering.
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Figure 13: Mean ranking of the 37 shapes in figures 11 according to 22 human subjects. Error bars are marked

at one standard deviation.

8 Concluding Remarks

This paper has looked at the problem of efficiently measuring the rectilinearity of polygons. Based on a simple

characterisation of rectilinear polygons two rectilinearity measures for polygons have been defined. Although

R1(P ) and R2(P ) are derived from the same source and give similar results, they are indeed different. Thus

in Fig. 11, while there are substantial similarities and the mean difference in rank is only about two or three,

many individual differences are evident. Tests showed that both correspond well with human judgement of

rectilinearity.

The results presented have concentrated on the application of the measures to individual polygons. How-

ever, when applying R1(P ) and R2(P ) to sets of polygons extracted from an image the result will be de-

pendent on how the image is clustered into polygons in the first place. In such situations the rectilinearity

measure can be used to drive an appropriate grouping (i.e. selection) from the image polygon set.
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