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Abstract

Given the enormous number of available methods for finding polygo-
nal approximations to curves techniques are required to assess different
algorithms. Some of the standard approaches are shown to be unsuit-
able if the approximations contain varying numbers of lines. Instead,
we suggest assessing an algorithm’s results relative to an optimal poly-
gon, and describe a measure which combines the relative fidelity and
efficiency of a curve segmentation. We use this measure to compare
the application of fifteen algorithms to a curve first used by Teh and
Chin [28]; their ISEs are assessed relative to the optimal ISE.

1 Introduction

Over the last 30 years there has been a substantial and continual interest in the
piecewise linear approximation of (mostly plane) curves. In this paper we shall
restrict ourself to approaches which require the polygon vertices to lie on the curve.
Thus, given a curve C = {z;,y;}}Y, the goal is to find the subset of dominant
points D = {z;,y;}M, where M < N and D C C. Several algorithms have
been described for determining the optimal polygonal approximation according to
various criteria [5, 16, 27]. Since these algorithms are computationally expensive
(usually between O(N?) and O(N?)) they tend not to be used in practise. Instead
many efficient sub-optimal algorithms have been developed, often running in O(N).

Surprisingly, given the plethora of algorithms now available, many authors pro-
vide little analysis of their performance, but rely or resort instead to a qualitative
demonstration, merely plotting their resulting segmentation. Naturally, this is
unsatisfactory since it is difficult to assess the relative merits of the various algo-
rithms, and a more quantitative approach is necessary [11]. Fischler and Wolf [6]
rated curve segmentation results using human observers. However, a more con-
venient and repeatable approach would be preferable. Several recent papers on
dominant point detection have quantified their performance based on: the per-
centage of missed points versus the percentage of false points [12]; the numbers
of missed and false points versus different corner angles and different settings of
the algorithm’s parameters [31]; and location error versus noise standard devia-
tion, corner angle, and curve length [31]. The disadvantage of these approaches is
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that in order to simplify the problem of requiring ground truth information (i.e.
the location of the corners) the algorithms were tested on simple synthetic curves
made up from two noise free arcs [12] or two noisy straight lines [31]. Such curves
are not necessarily indicative of real curves extracted from images. Kadonaga and
Abe [10] used both approaches to compare several algorithms: 1/ invariance under
rotation, scaling, and reflection was tested by determining the percentage of sim-
ilar dominant points detected on the transformed and untransformed curves, and
2/ curve segmentation results were assessed by subjective human evaluation. On
individual test cases they found a poor correlation between the two assessment
methods, although this was improved by averaging assessments over 10 curves.
Further problems encountered with human subjects were the variation in evalua-
tion between subjects, different degrees of confidence in grading different points,
and the presence of several possible but mutually exclusive dominant points. A
problem when determining numbers of detected or missed dominant points is the
need to allow for some shifting of the detected position of the points (e.g. +1
pixel). However, the degree of allowable shift should depend on the shape of the
curve since a shift is permissible on a low curvature section of curve but not at
high curvature sections.

Further considerations were provided by Aoyama and Kawagoe [3] who cata-
logued the various distortions introduced by the approximation process. In ad-
dition to metric displacement and deflection (termed physical distortions) there
were also logical distortions. These could arise from the shifting of breakpoints,
affecting local geometric features such as corners, spikes, and smooth connect-
ing points (e.g. between a straight and curved section of the curve), as well as
parallel and perpendicular lines. At a more global level, qualitative relation dis-
tortions include change in topology (e.g. creating self intersections) and the loss of
symmetries. Unfortunately, while these are all important issues affecting the per-
formance of polygonal approximation algorithms it is not obvious how to quantify
and combine their effects.

2 Sarkar’s FOM

Most practical interest in assessing polygonisation algorithms has been restricted
to quantifying the physical distortions introduced by the approximation process.
The two most common measures that are sometimes provided are the compression
ratio CR = & and the integral square error (ISE) between the curve C and the
approximating polygon. However, there is a tradeoff between these two measures
since a high compression ratio leads to an excessive distortion of the polygon (i.e.
a high ISE); alternatively, maintaining a low ISE can lead to a low compression
ratio. This means that comparing algorithms based on one or the other measure
alone is of no value as it does not solve the problem of comparing two or more
polygonal approximations with different numbers of lines. To capture this tradeoff
Sarkar [26] combined the two measures as a ratio, producing a normalised figure
of merit FOM = €& = X Similar approaches were used by Held et al. [9]
and Rosin and West [24].

Unfortunately, Sarkar’s FOM is also unsuitable as a measure since it requires
the M x ISE term to be constant. Otherwise, approximations with different num-
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bers of lines cannot be compared in a meaningful way. It can be demonstrated
that M x ISE is not constant by analysing the simple example of a circle. The
optimal polygonal approximation for most error criteria (including ISE) is a reg-
ular polygon inscribed in the circle. For a regular M sided polygon inscribed in a
circle of radius r the ISE (i.e. the Ey norm) can be calculated as

1 2
Ey = Mr? (gsin%—l—gsin%—ﬁﬂcos%).

Plotting out the theoretical optimal FOM for a circle (figure 1) it can be seen that
the measure is biased to favour approximations with large numbers of lines.
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Figure 1: Theoretical FOM of optimal polygonal approx. for a circle (r = 10)

There are of course many other criteria available in place of ISE, and we can
carry out the same analysis on them to see if any of them would fare better for
inclusion in the FOM. For instance, in addition to F3, E; and E., are popular
norms. The E; error corresponds to the area between the polygon and circle

2
Ey(M) =7r? — Mr sin2—7T =7r? (ﬂ'—%sin2—w>.

The E error uses the maximum deviation between the polygon and circle, given
by
T .9 T
Eo(M)=r (1 cos M) = 2rsin S
Lowe [13] suggested that long approximating lines should be permitted greater
deviations than short lines, and so he normalised the deviations by dividing them
by the length of the approximating line. For a circle this gives

r(l—cosf) 1 T
Eaoyp(M) = M — _gan
M) = E ™

A rather different measure, which was maximised by Sato [27], is the length of the
polygon
™
L =2Mrsin —.
rsin o

However, it can be seen that none of the above criteria provide a FOM that is
constant for varying values of M. Of course, using the circle model the FOM
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could be corrected to provide invariance in M. For instance, using E. /gy, the
corrected FOM would be tan
an 57
FOM = —2M
oo/L
Alternatively, if the summed absolute difference in orientation (SADO) between
the sides of the polygon and the corresponding sections of the curve is used, then

for a circle the error is )
2mer
Eo(M) = —+

which would be suitable for the FOM since it is a linear function of M, and
SO %—f is constant over all M. However, for more general curves there is another
problem relating to the effect that natural scales have on the error of the polygonal
approximation.

The natural scales of a curve are those scales at which the curve displays some
qualitative shape which is distinctive compared to other scales [23]. Previously we
detected these scales by performing Gaussian smoothing. For instance, consider
a circle superimposed with a sine wave as shown in figure 2a. Smoothing the
curve over a large range of scales will have little effect except for distorting the
bumps, and so all these smoothed versions of the curve are qualitatively similar.
Eventually increasing the smoothing will eliminate the bumps, resulting in a simple
circle. Thus the curve has two natural scales: the bumpy circle, and the simple
circle. The errors of an approximation polygon will vary considerably according
to which natural scale the approximation is taking place at. For instance, for
the sinusoidal circle, when minimising ISE, the first series of polygons (3 — 7
lines) are regular polygons which are just approximating the circular component.
The next set of polygons (8 — 28 lines) coarsely approximate the bumps by
triangles. Finally, increasing the number of sides improves the approximation to
the sinusoidal shape of the bumps. This is experimentally verified by finding the
optimal polygons with respect to some of the above criteria. For instance, looking
at the plots of ISE and SADO against number of sides in figures 2b and 2¢ the
three qualitatively distinct sets of polygons over the above ranges are evident as
three sections of the curve with different slopes.
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Figure 2: Effects of natural scales on approximation error
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Figure 3: Effects of natural scales on the shape of the approximations

Some of the polygons obtained when minimising ISE are plotted in figure 3.
The regular polygons at M = 3 and 7 are shown. After M = 7 the additional
sides introduce bumps which are added one at a time (e.g. M =9 and 19) until
all the bumps are represented (M = 28). The rate of reduction of error reduces
thereafter. Even with M = 70 sides the increased definition of the sinusoidal
undulations is relatively minor.

3 Relative Measures

The qualitatively different structures of a curve’s shape at different scales means
that it would be extremely difficult to find an effective figure of merit that can
be fairly applied to compare approximations with different numbers of points that
is only a function of an absolute error measure taken at a single scale (i.e. a
fixed value of M). Another approach, taken by Ventura and Chen [30], was to
assess their algorithms with respect to the reference segmentation of an optimal
algorithm. They used the percentage relative difference, calculated as

E

12a roxr ~ (9
PRD = —2eProz _ opt 100
l;opt

where Egpproz is the error incurred by the suboptimal algorithm to be tested, and
Eqpt is the error incurred by the optimal algorithm; both algorithms are set to
produce the same number of lines. This approach has the significant advantage
that it enables approximations with any number of lines to be compared. We
advocate a similar method, but will first split the assessment into two components:
fidelity and efficiency. Fidelity measures how well the suboptimal polygon fits
the curve relative to the optimal polygon in terms of the approximation error.
Efficiency measures how compact the suboptimal polygonal representation of the
curve is, relative to the optimal polygon which incurs the same error. They are
defined as
. . ZiWo;mt
Fidelity = % 100

approx

Efficiency = _Mopt x 100
approx
where Myppror is the number of lines in the approximating polygon produced
by the suboptimal algorithm and M,y is the number of lines that the optimal
algorithm would require to produce the same error as the suboptimal algorithm
(i.e. Egpproz)- Since an exact value of M, is not generally available it is calculated
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by linear interpolation of the two closest integer values of M produced by the
optimal algorithm.

Depending on the shape of the curve, the two measures may vary considerably.
A combined measure is taken as their geometric mean

Eopt M opt

Eappro:p approx

Merit = \/Fidelity x Efficiency = x 100.

One problem remains — how should the error be quantified? In section 2 we
listed various possible measures: E1, Ea, Ex, Ex /1, L, and Ey, any one of which
may be suitable. However, they were all based on the approximating polygon.
Since dominant point detection algorithms do not explicitly assume a connecting
polygon then some other type of error measure may be more appropriate. For in-
stance, the approximation criteria of local symmetry [15] or stability of curvature
maxima over scale [18] used to detect dominant points may be applicable. One
approach to tackle the suitability of different measures is to apply goal-directed
evaluation [29]. Given that the curves are being approximated for some specific
task (e.g. construction of higher level features or model matching) the appropri-
ateness of various error measures could be evaluated with respect to the benefits
they provide the task.

4 An Example: Teh and Chin’s Curve

To demonstrate the new measures we will apply them to the results of various
algorithms which have been applied to the curve presented in figure 6 of Teh and
Chin [28]. Teh and Chin tabulated the ISE of many algorithms when applied to
this curve, and the results of applying other algorithms have been subsequently
provided in the literature (either visually or with their ISE). Therefore we shall
analyse the algorithms with reference to the optimal polygonal representation using
the Eo criterion. The optimal solutions were found using dynamic programming
(e.g. Perez and Vidal [16]) run for all values of M = [3,50]. In table 4 are shown
the results of the algorithms with the parameters as specified by Teh and Chin or
the original authors as applicable. Melen and Ozanian’s [14] algorithm was run
with s = 4 and ¢t = 10. Since Lowe’s algorithm makes no provision for closed
curves the starting point was selected by hand. The modified version of Lowe’s
algorithm by Rosin and West [24] which includes a merging stage was also applied,
but the results for this example were identical to Lowe’s. Figure 4 plots the curve
of the optimal ISE error for all the values of M as well as the results of the various
suboptimal algorithms.

We can see that for this example Lowe’s algorithm performs extremely well —
close to the optimum, achieving a merit rating of 97.1, substantially outperforming
all the other algorithms. For instance, Melen and Ozanian’s algorithm incurred
five times the ISE using the same number of lines, thereby receiving a merit rating
of only 28.8, ranking 17th. More valuable is the ability to compare the results
of very different polygonal approximations with different numbers of lines. For
instance, although Rosenfeld and Weszka (a), Teh and Chin, and Rosenfeld and
Johnston (b) respectively generated 14, 22, and 30 points with associated ISEs of
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[ METHOD [ #Pts | ISE | Fid. | Effic. | Merit | Rank |
Rosenfeld & Johnston [21] (a) | 12 92.37 | 28.1 | 58.7 | 40.6 15
Rosenfeld & Johnston (b) 30 8.85 | 29.8 | 67.2 | 44.7 12
Rosenfeld & Weszka [22] (a) 14 59.12 | 29.4 | 65.3 | 43.8 13
Rosenfeld & Weszka (b) 34 15.40 | 12.5 | 43.1 | 23.2 20
Freeman & Davis [7] (a) 17 79.53 | 15.4 | 45.7 | 26.5 19
Freeman & Davis (b) 19 23.31 | 43.1 | 65.8 | 53.3 9
Sankar & Sharma [25] 10 | 769.53 | 5.1 | 41.5 | 145 20
Anderson & Bezdek [1] (a) 18 36.14 | 31.0 | 57.9 424 14
Anderson & Bezdek (b) 29 6.43 | 46.7 | 782 | 604 6
Teh & Chin [28] 22 20.61 | 34.0 | 59.2 44.9 11
Ansari & Huang [2] 28 17.83 | 18.8 | 49.5 | 30.5 17
Melen & Ozanian [14] 13 122.44 1 16.9 | 49.1 28.8 18
Sarkar [26] 1 point method 19 17.38 | 57.8 | 73.7 | 65.3 4
Sarkar 2 point method 20 13.65 | 66.0 | 78.9 72.2 3
Lowe [13] 13 | 21.66 | 95.7 | 986 | 971 | 1
Ray & Ray [20] (1) 20 | 11.82 | 25.4 | 60.0 | 39.0 | 16
Ray & Ray [19] (2) 27 115 | 32.2 | 65.6 46.0 10
Arcelli & Ramella [4] 10 75.10 | 51.8 | 80.3 | 64.5 5
Held, Abe & Arcelli [9] 17 28.50 | 429 | 68.3 54.1 8
Rattarangsi & Chin [18] 9 130.13 | 48.1 | 69.1 | 57.7 7
Ramer [17] 26 5.27 | 76.9 | 92.6 84.4 2

Table 1: Assessment of various algorithms applied to Teh and Chin’s curve

59.12, 20.61, and 8.85, it is now possible to see that they are all roughly on par
since they have the similar ratings of 43.8, 44.9, and 44.7.

Of course, to properly assess the general effectiveness of the algorithms they
would need to be tested on many more curves. Moreover, since most of the al-
gorithms have some sort of scale parameter, these algorithms should be tested
over the full range of scales. For instance, figure 5 shows the ISE curves plot-
ted for the algorithms of Melen and Ozanian (s = 2 and varying t), Ramer, and
Rosenfeld and Johnston. Unlike the optimal algorithm they do not display ISE
that monotonically decreases with increasing numbers of points. Where Rosen-
feld and Johnston’s algorithm produced several different ISE values for the same
number of points the lower value was plotted. This highlights the problem that
assessing an algorithm at a single scale may not accurately reflect its performance
at different values of its scale parameter. This can be solved by averaging the
merit values over all scales, giving 26.1 for Melen and Ozanian, 71.8 for Ramer,
and 44.5 for Rosenfeld and Johnston. Another problem is that the relationship
between an algorithm’s parameter may not predictable reflect the scale of analy-
sis. This is demonstrated by plotting the number of points detected by Rosenfeld
and Johnston’s algorithm against the smoothing parameter m in figure 6 — several
fluctuations are evident.
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Figure 4: ISE of optimal and other algorithms

5 Conclusions

This paper tackles the need for a technique that is able to assess different algo-
rithms for finding polygonal approximations to curves. The standard approaches
which use ISE, CR, or their combination as % are shown to be unsuitable if
the approximations contain varying numbers of lines. Moreover, it was shown
that if a curve contains several natural scales (which is the case for all non-trivial
curves) then no measure that does not take the shape of the curve into account
is likely to be suitable. In their place it is suggested that to ensure invariance
to the numbers of lines an algorithm’s results should be assessed relative to some
“gold standard” which must be available for each possible number of lines. The
proposed assessment combines the fidelity and efficiency of an algorithm’s results,
i.e. how well the suboptimal polygon fits the curve, and the compactness of the
suboptimal polygonal representation of the curve.

Of course, this leaves the problem of what to choose as the gold standard. Our
solution is to use the optimal polygon for the given number of lines according
to some criterion. An example was given using the Fy; measure to test fifteen
algorithms applied to Teh and Chin’s curve. More generally, the appropriate
criterion can be selected according to the task that the lines are intended for. The
goal-directed approach could be applied to rate the polygonisation algorithms
based on their performance on the task. However, it is often probably more useful
to have a task-independent assessment of the algorithms so that they do not have
to be re-evaluated for every individual task.

A weakness of the assessment criteria used in this paper is that they do not
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directly evaluate the various distortions described by Aoyama and Kawagoe [3],
particularly since the specific aim of some algorithms [3, 8] is represent signifi-
cant points (e.g. spikes) extremely accurately, potentially at the cost of increasing
other errors. Also not considered in this paper is the assessment of an algorithm’s
robustness under systematic distortions of the data, e.g. blurring, ranges and
different types of noise, rotations, scaling (including subsampling), and occlusion
(i.e. deletion of the ends of open curves). The latter task should prove straightfor-
ward, but the former problem of determining and then measuring such structural
deviations is more difficult, and is an open area for investigation.
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