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Abstract — In this paper we study neural network over-
fitting on synthetically generated and real remote sensing
data. The effect of overfitting is shown by: 1) visualis-
ing the shape of the decision boundaries in feature space
during the learning process, and 2) by plotting the classi-
fication accuracy of independent test sets versus the num-
ber of training cycles. A solution to the overfitting prob-
lem is proposed that involves pre-processing the training
data. The method relies on obtaining an increase of spec-
tral coherence of individual training classes by applying
k-nearest neighbour filtering. Points in feature space with
class labels inconsistent with those of the majority of their
neighbours are removed. This effectively simplifies the
training data, and removes outliers and local inconsisten-
cies. It is shown that using this approach can reduce the
overfitting effect and increase the resulting classification
accuracy.

OVERFITTING

Neural networks have become increasing popular over
the last decade as an alternative to statistical approaches
for classification of multispectral remote sensing data [2,
3]. Contrary to statistical classifiers, neural networks do
not rely on an a priori model of data distributions. As
a result they are often used as black box systems. How-
ever, there are various parameters that need to be chosen
carefully in order to produce good results. Examples in-
clude network type, size and architecture, training step
size, stop criterion, learning algorithms, and data repre-
sentation. In this paper we restrict ourselves to multilayer
perceptron networks with backpropagation as a supervised
learning algorithm.

We focus on one particular problem with learning which
is typical for neural networks: their generalisation capa-
bilities. Generalisation is the ability to train with one
data set and then successfully classify independent test
sets. Although continued training will increase the train-
ing set accuracy, the danger exists that test set accuracy
decreases after a certain point. This is attributable to
overfitting since only individual training samples are avail-
able rather than the true underlying distribution. This

can cause some distortion or displacement of the decision
boundaries.

It has been shown that overfitting is related to the net-
work capacity, which itself is determined by the number of
training samples and the number of weights [1] and vari-
ance of the training set [8]. This suggests that appropriate
network parameters can be selected on a theoretical basis.
Unfortunately, there are several problems:

e It has been proposed that the practical capacity of
neural networks is less than their theoretical capac-
ity [5, 7].

e Weigend [10] showed that in practice small networks
can overfit as well as large networks.

e Schaffer [9] considers the avoidance of overfitting
as just the introduction of an application depen-
dent bias. This implies that there is no general
non-parametric method to eliminate overfitting in all
cases. Instead, the degree of bias needs to be carefully
tuned to the data, otherwise it may degrade perfor-
mance.

e Overfitting is a local distortion of the decision bound-
aries, and there is no reason to assume that this oc-
curs simultaneously in the entire feature space — it
may occur in different areas at different times. This
implies that in some areas in feature space training
should be continued while in other areas overfitting
has already occurred. Therefore some kind of local
learning may be necessary, e.g. Bottou and Vap-
nik [4].

In order to get a clear idea of when and where overfit-
ting occurs we first experimented on a synthetically gen-
erated data set. For this experiment we used two two-
dimensional Gaussian distributions. Both distributions
are symmetric and have the same variance, resulting in
a theoretically optimal linear discrimination rule equidis-
tant between the two distribution means. The means of
the distributions are separated by four standard devia-
tions, resulting in some overlap which might cause over-
fitting behaviour. The sample sizes of both distributions



Figure 1: Feature space subdivision after 1 (a & b), 2000 (c
& d), and 4000 (e & f) epochs showing overfitting. Figures
a, ¢, e show training data from class 1. Figures b, d, f show
training data from class 2.

are identical. This means that overfitting will not affect
the overall position of the decision boundary but will only
affect its shape. Fig. 1 shows three snapshots of the divi-
sion of feature space during training, respectively after 1,
2000, and 4000 epochs of the backpropagation algorithm.
The effect of overfitting is clearly visible in fig. 1c-f since
the decision line deviates from the correct straight line,
and small patches in the overlap region are incorrectly de-
lineated resulting in incorrectly labelled islands in feature
space.

EFFECTS OF FEATURE SPACE
FILTERING ON OVERFITTING

We experimented with a data filtering technique in or-
der to reduce sensitivity of the neural network learning
process to outliers causing overfitting. We assume that
sample pixels from a class exhibit spectral coherence. In
other words, pixels from the same class should have sim-
ilar spectral values, and therefore any pixels with very
different spectral characteristics are outliers and are likely
to cause confusion during the training phase. As shown in
fig. 1 overtraining can force neural networks to construct
local boundaries around outliers, rather than generalis-
ing by absorbing them in the surrounding class. In this
experiment we investigate how increasing the spectral co-
herence of the feature space values decreases the likelihood
that this problem occurs. We increase spectral coherence
by deleting outliers in the training set. This is achieved
by applying K-nearest neighbour filtering to the spectral
values in the training set. K-nearest neighbour filtering
compares each pixel in the training set to its K nearest
neighbours defined in terms of Euclidean distances in fea-
ture space. If the class label of the central pixel is different
from the majority of its K neighbours the pixel is consid-
ered an outlier and deleted from the training set. Deleting
the pixel was shown to be more effective than relabelling
it [6]. Increasing the value of the parameter K increases
the degree of smoothing.

Overfitting behaviour is detected by plotting classifica-
tion accuracy of the network during the iterative training
process with respect to an independent test set. The test
set was generated by taking another random sample from
the two distributions. We hypothesise that overfitting oc-
curs when this accuracy starts to decrease. At the same
time the classification accuracy of the training data will
generally continue to increase since it is the error on this
training set that is being minimised by the backpropaga-
tion algorithm.

Each graph in fig. 2 shows the results of the neural net-
work training and testing classification accuracy during
the learning process applied to the synthetic data set de-
scribed above. The different graphs represent different de-
grees of K-nearest neighbour filtering applied to the train-
ing data before initialising the learning process. Fig. 2a
shows learning without data filtering, while figs. 2b-d show
K set to 4, 16, and 64 respectively. All experiments made
use of the same neural network architecture, consisting of
2 hidden layers with 15 nodes per hidden layer. Match-
ing our hypothesis, the graphs show that the overfitting
behaviour — a decrease in the test set accuracy during
training — is reduced with increased filtering of the train-
ing data. Moreover, the final test set accuracies are im-



1004 1004

27 —— train 99
777777 o \Jf\_\_ﬂ_f_,f
> >
] ]
- -
5 94 5 94
131 131
3 3
E E
974
9 T T T 1 9 T T T 1
500 1000 1500 2000 500 1000 1500 2000
epochs epochs
a)K=0 b)K=4
100 1009
994 99
> >
] ]
- -
5 94 5 94
131 131
3 3
E E
974 Q7 T
9 T T T 1 9 T T T 1
500 1000 1500 2000 500 1000 1500 2000
epochs epochs
)K=16 d)K=64

Figure 2: Overfitting as a function of test set accuracy for
different degrees of feature space filtering

proved with increased filtering of the training data. Since
the distributions of the two classes overlap, 100% test set
accuracy is not possible, even with the optimal decision
boundary (a vertical straight line equidistant from the two
class means). Theoretically the peak of the test set accu-
racy curve is the optimal point to stop training. Because
of the noisiness of this curve, however, it is difficult to use
this as a reliable criterion.

The same experiments were also performed on a real
data set taken from the 6 non-thermal bands of a Landsat-
TM image of Portugal in 1991. This means that every
data sample consists of six feature measures. The labels
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Figure 3: Overfitting and feature space filtering for a prac-
tical test case

in the training data were obtained from an on-site sur-
vey of the area and divided into 16 land cover classes. To
make the experiment representative of real conditions the
training and test data sets were obtained from separate
areas. The training set contained 8047 samples, while the
test set contained 4458 samples. The neural network ar-
chitecture used in this case had 6 input nodes, two hidden
layers with 20 nodes each, and 16 nodes in the output
layer. Whereas in the synthetic example increased filter-
ing of the training set consistently improved the test set
accuracy, this is unlikely to occur in real situations where
the optimal decision boundaries are more complex. Our
experiments with a range of degrees of filtering show that
for the Portugal data set the optimal amount of filtering
is K=64. For the unfiltered training data, fig. 3a shows
the typical overfitting behaviour where test set accuracy
drops with increased training. In contrast, with K=64 fil-
tering, fig. 3b shows that the test set accuracy improves
with increased training. According to our hypothesis this
is because overfitting is avoided.
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