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A FAMILY OF CONSTRUCTIONS OF APPROXIMATE ELLIPSES

PAUL L. ROSIN

Department of Computer Science
Cardiff University,

PO Box 916, Cardiff, CF24 3XF,
United Kingdom

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

Several constructions for piecewise circular approximations to ellipses are examined. It is shown that
a simple approach based on positioning the arc centres based on factors of the difference in major and
minor axes lengths generates a family of tangent continuous solutions that can provide near optimal
approximations for specific aspect ratios.
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1. Introduction

Ellipses have long played a part in architecture. For instance, more than 4000 years ago in
the Middle Minoan period a large oval house was built in Crete[1], while up to the present
day in many parts of Africa, India, and Europe oval huts and houses were commonplace [2].
The Romans embraced the ellipse, and employed it on a vast scale in their ampitheatres [3].
In the Baroque period of the Renaissance the ellipse was onceagain applied, mostly in the
design of churches [4]. An elliptical theme recurs in Georgian architecture [5], appearing
at all scales from decorative ceiling plaster details, to the plan for drawing rooms, to entire
terraces of houses. Right through to modern times the ellipse has remained a popular form
in architecture, and some more recent examples from the lastfive years are the Church of
San Giovanni Battista, by Mario Botta [6], the Ruskin Library by Richard MacCormac [7],
and Walsall bus station by Allford, Hall, Monaghan, and Morris [8]. Thus the ellipse
remains one of the standard shape primitives (along with thecircle, square, triangle, etc.)
that figure prominently in ancient and modern design (architectural, engineering, graphical,
etc.), and is therefore worthy of particular attention.

Although the ellipse provides more dynamic possibilities than the relatively static forms
of straight lines and circles it also introduces complications. In particular, it is more dif-
ficult to lay out, and its continuously varying curvature means that for precise building
construction a large range of brick shapes should be used [9]. Another consideration is
that its perimeter is difficult to calculate; this is important not only for the estimation of
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materials, but is also necessary if a wall’s length is to be subdivided at regular intervals
for the placement of columns, windows, etc. A quantitative indication of this overhead is
given by the Georgian author on building, Batty Langley who suggests that workmanship
and materials be charged an additional 50% when constructing elliptical walls as compared
to straight walls [10].

2. Approximate Constructions of the Ellipse

This brings us to the approximation of ellipses by circular arcs. We know that these approx-
imations were extensively used by artisans, artists, architects, etc. from the Renaissance
times onwards [11], and there has been considerable debate as to their earlier application
by the Romans [12]. The advantage of a piecewise circular approximation is that it offers
the possibility of simple construction and simple analysis(e.g. of perimeter) while retain-
ing effectively the same shape as the ellipse. There are manyareas in computer graphics
where this is beneficial, e.g. rendering [13], intersections with other graphics primitives,
font generation [14], drawing dashed ellipses (with constant sized dash spacing), etc.

Moreover, with circular arcs it is straightforward to generate parallels, avoiding the
eighth order equations necessary for ellipses [15]. An application in architecture can be
seen in the rows of seats in ampitheatres, while in CAD the offset curves of paths made
by NC milling machines are another example [16].a Likewise, calculating normals (useful
for ellipse fitting for instance [17]) is trivial for circles; in comparison a quartic needs to be
solved for the ellipse.
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Fig. 1. Geometry of the four-arc approximate ellipse with tangent continuity at arc joins.

There are various criteria that could be considered in deciding on a good approximation.
For instance, the difference in area, perimeter, or diagonal lengths relative to the true ellipse
could be minimised [18]. However, in the first instance it seems worthwhile to constrain the
solution to tangent continuous constructions. If the ellipse to be approximated has semi-
major and semi-minor axes of lengtha andb then in the simplest scheme the approximation
consists of four circular arcs with centres(±h, 0) and (0,±k) and radiia − h andb +

aAs an example, TCAM Development’s TwinCAD package cannot generate true parallels to an ellipse, but instead
approximate them either using projected circles or polylines.



A Family of Constructions of Approximate Ellipses3

k respectively which pass through the extremal points of the ellipse. To ensure tangent
continuity the arcs’ centres must lie on the common normal tothe joint and the geometry
will be as shown in figure 1. The radii are the lineskj andhj and have lengths

hj = a− h

hj = kj − kh = (b+ k)−
√

h2 + k2

which leads to the constraint
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Fig. 2. Diagrams illustrating various four-centred arc construction procedures.

Computing the optimal construction can be computationallyexpensive as it is often
not possible in closed form. For instance Rosin [19] performed a one dimensional search
over a range of values ofh to find the best four-arc in terms of various error norms; i.e.
L1 =

∑

i ei,L2 =
∑

i e
2
i , andL∞ = maxi ei, whereei is an approximation to the distance

from a pointpi on the arc along the normal to the ellipse, andpi are uniformly sampled
along the four-arcs.

More recently, for the case of theL∞ norm Qian and Qian [20] provided a more ef-
ficient solution. They provide an analytic dimensionless function of the optimalh

a
versus
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Table 1. Simple fractional factors forh andk. Included are the aspect ratios at which the construction minimises
the maximum error.

h 11/10 10/9 9/8 8/7 7/6 6/5 11/9 5/4 9/7 13/10 4/3

k 6 11/2 5 9/2 4 7/2 13/4 3 11/4 8/3 5/2

a/b 7.71 6.91 6.11 5.32 4.53 3.75 3.36 2.97 2.58 2.45 2.20

h 11/8 7/5 10/7 13/9 3/2 14/9 11/7 8/5 13/8 5/3 17/10

k 7/3 9/4 13/6 17/8 2 19/10 15/8 11/6 9/5 7/4 12/7

a/b 1.94 1.82 1.69 1.63 1.44 1.29 – – – – –

b
a

in implicit form. Its solution still requires a one dimensional search, although a good
explicit approximation to the implicit function can be madewhich enables a direct, fast
solution.

For any particular ellipse there is a range of possible solutions to this equation and the
literature includes various construction methods which provide particular solutions [19, 21].
Diagrams illustrating the construction of several typicalexamples are shown in figure 2.
Further details can be found in [19, 21].

In all cases the methods fixh andk to some factors of(a − b), and can be split into
three categories. The first uses constant rational factors and is exemplified by French’s
method with factors

{

3

2
, 2
}

. Next, are methods in which the factors are still constants,
but are now irrational. Two such constructions are Hewitt’smethod 3 and the construction
mentioned in Gridgeman [18]. Their factors are

{

1√
3−1

,
√
3√

3−1

}

and
{

1

1+
√
2
, 1

1+
√
2

}

re-

spectively. Finally, the remainder such as Hewitt’s method5 and Simpson’s construction

produce factors which are functions ofa andb. These are
{

a+b+
√
a2+b2

2a
, a+b+

√
a2+b2

2b

}

and
{

a+b+
√
a2+6ab+b2

a−b+
√
a2+6ab+b2

, a+3b+
√
a2+6ab+b2

4b

}

respectively.

If the approximation errors are calculated [19] then we see that for most constructions
the error monotonically increases with increasing aspect ratio (figure 3a). The exceptions
are the first two constructions which have local optima. Investigating further we consider
additional constant factors of(a−b). If k = f×(a−b) then maintaining tangent continuity
requiresh = 2f−1

2f−2
. This enables all the simple values ofh andk using just small fractional

values to be generated as shown in table 1. It should be noted that the constructions do not
work for all aspect ratios. That is, if the desired aspect ratio is too large then the circles
centred at(0,±k) touch the other two circles on the wrong side of theX axis, and so the
ellipse approximation is not formed correctly. Thus the breakdown point can be determined
as occurring when the circles centred at(0,±k) intersect theX axis on the inside of the
ellipse rather than the outside, which is ata

b
= 2f − 1.

On plotting the errors a distinct pattern can be seen (figure 3b). The range of fac-
tors produces a family of solutions from which each member provides a close to optimal
approximation at one aspect ratio.b Outwith that point the errors increase rapidly to sub-
stantial values that are particularly noticeable at low aspect ratios. Such behaviour is in

bThe optimal approximation (described in more detail in [19]) iscalculated numerically, and relates to the fit that
minimises the maximum Euclidean distance between the ellipse and the tangent continuous four-arc construction.
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Fig. 3. a) Maximum error in the constructions producing tangent continuous ellipse approximation. b) Maximum
error in the ellipse approximation as a function of aspect ratio. The thin black lines show errors from the family
of constructions listed in table 1. A characteristic pattern is evident: in addition to the expected zero error for a
circle most constructions have another local optimum. This is located at increasing aspect ratios ask increases (h
decreases). c) Approximation errors of
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,
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}

factors. d) Approximation errors of every
third factor ensures a more accurate approximation than Hewitt’s method 5.

contrast to many other methods such as Simpson’s and Hewitt’s method 5 in which the
error increases monotonically with increasing aspect ratio.

Instances of the(a − b) factor approach cannot compete against Hewitt’s method 5
in terms of consistently good performance. Nevertheless itdoes mean that constructions
providing accurate approximations can be achieved by selecting the appropriate factor to
suit the desired aspect ratio, although this requires considerable computing power. How-
ever, even in the Renaissance it would have been feasible to experimentally test various
factors and aspect ratios and derive a few simplec values and their range of applicability.
For instance, a good choice would be the three simple sets of factors

{
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}

,
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}
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}

which produce constructions tuned to aspect ratios 6.11, 2.97, and 1.44. As can be
seen from figures 3c and 4, selecting the appropriate construction gives for the most part

cSince the denominators of these factors are all powers of two they are especially straightforward to determine by
geometric constructions as a length can be repeatedly bisected using a compass and straight edge.
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more accurate approximations than Hewitt’s method 5, whichis the most accurate straight-
forward construction we know of.d Alternatively, selecting every third set of factors from
table 1 generates a set of four-arcs that ensure a more accurate approximation than Hewitt’s
method 5 as shown in figure 3d.

It is interesting to note that Gridgeman’s construction which is the special case for
h = k can be considered as a limiting case in which the local optimum coincides with the
global optimum ata

b
= 1. In other words, this construction is particularly poor since it

only works well for near circular ellipses.
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Fig. 4. Approximation of ellipses with (a) & (b)a
b

= 7, (c) & (d) a

b
= 5, (e) & (f) a

b
= 1.5. Even outwith

its optimal aspect ratio the
{
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8
, 5
}

(a − b) factor method does well compared to Hewitt’s method 5. However,
eventually the errors incurred by the factor method become significant, and it is clearly outperformed by Hewitt’s
method 5 in the last example.

3. Conclusions

In many areas such as CAD, architecture, engineering, construction, and computer vision
there is a need to approximate ellipses by a simpler representation such as circular arcs.
With modern computing power it is possible to apply iterative numerical methods to de-
termine the optimal approximation. Nevertheless, for manyapplications it is sufficient and
more convenient to be able to use a simple and direct method. Stirling’s oval is one of
the best of the closed form solutions, producing a consistently accurate approximation.

dAlthough Simpson’s construction gives better approximations it is not useful in practise since it requires the
ellipse to be drawn first to guide the approximation! Of course, although the geometric construction is limited the
algebraic form is still useful as providing an accurate approximation.
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The advantage of the(a − b) factor method described in this paper is that it is extremely
straightforward. Selecting just three simple pairs of factors (corresponding to compact,
medium, and elongated ellipses) enables accurate approximations to be generated with the
minimum of effort.
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