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1 Introduction

There has been a long history in the approximation of ellipses by circular arcs in order to simplify their
construction and manipulation. This was of use for a wide variety of applications such as mathematics
(generating figures), astronomy (analysing orbits), art (marking out large oval frames for ceiling painting),
architecture (building masonry arches, floor plans, etc), and, more recently, the conversion of fonts from
a general conic specification to circular arcs [6, 7]. Documented evidence goes as far back as the Italian
Renaissance when various schemes were published by the architect Sebastiano Serlio in the sixteenth cen-
tury [5]. More contentiously, it has been argued that fifteen centuries previously the Romans used such
approximations when designing and building their ampitheatres [4]. Looking yet another fifteen centuries
further back takes us to the construction of the megalithic stone “circles”, which were in fact often elliptical
or egg shaped. Many theories concerning megalithic man’s knowledge of geometry have been propounded,
some of which are based on piecewise circular approximations [14].
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Figure 1: Geometry of the five-centred arch

More recently there have been many techniques published in the technical drawing literature (see for
example Browning [2]), most of which concentrate on the three-centred arch (i.e. three arcs are used to
construct the semi-ellipse, and so the full ellipse would be made up from four arcs), e.g. Rosin [13]. In this
paper we look at the next step in improving accuracy: insertion of an additional arc between each of the
previous arcs to form the five-centred arch. Figure 1a shows the basic geometry. The ellipse has semi-major
and semi-minor axes of length a and b respectively. The three approximating arcs are drawn in one of the
quadrants, and have parameters

arc A1: centre (0,−k), radius r1

arc A2: centre (x2, y2), radius r2

arc A3: centre (h, 0), radius r3.

The remaining arcs are determined by reflecting these three about the two axes. A constraint that is usually
included so as to simplify the construction and to ensure a reasonable appearance is that A1 and A3 pass
through the vertices of the ellipse: (0, b) and (a, 0). Another common constraint is to set the radii of A1
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and A3 to match the ellipse’s curvatures at its vertices. Since the curvature at (0, b) and (a, 0) is b

a2 and a

b2

this fixes the centres to

h =
a2 − b2

a

k =
a2 − b2

b
.
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Figure 2: The ellipse being approximated (a = 200, b = 100) is drawn bold. The two circular loci of
C1 constraints for each end of A2 are shown for r2 = 141; their intersections lie on the elliptical locus of
tangent constraints.

It is well known that the visual appearance of the approximation is improved if all the arcs join smoothly.
This enables the arrangement to be simplified to the geometry shown in figure 1b. Given the previous
constraint on A1 and A3 only one variable remains: the centre of A2, and this can be specified by the length
of r2. To identify the locus of centres of A2 we first note that if tangent continuity holds with A3 then
the locus is a circle with centre (h, 0) and radius r2 − (a − h). Likewise, the locus of centres of A2 with
tangent continuity with A1 is a circle with centre (0,−k) and radius (k + b) − r2. On eliminating r2 from
the equations of these two circles we obtain the locus of centres of A2 which has continuous tangents with
both its neighbouring arcs. Interestingly, as seen in figure 2, this takes the form of an ellipse (which we call
the C1 constraint ellipse) whose parameters (semi-major and semi-minor axes, orientation of major axis
measured from the vertical, and centre) are

a′ =
a3 − b3

2ab

b′ =
a − b

2

θ′ = tan−1 b

a

xc′ =
a2 − b2

2a
=

h

2

yc′ = −a2 − b2

2b
= −k

2
.

In addition we note that its foci lie at (h, 0) and (0,−k). As shown in figure 3 the C1 constraint ellipse
lies on a plane in XY R space

r = A − By

where

A =
a3 + b3

2ab

B =
(a + b)

√
a2 + b2

a2 + ab + b2
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Figure 3: C1 constraint ellipse plotted in XY R space

Figure 4: A “C1” five-centred arch produced by a solution on the far side of the C1 constraint ellipse plotted
in figure 3; despite matching tangents at their joins the solution is invalid since the arcs double back.
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and y is measured along the major axis of the continuity ellipse. As we move away from the intended
ellipse the central arc’s radius that is required for tangent continuity increases linearly. For a given radius r2

there are two centres on the C1 constraint ellipse, but only the one closer to the origin provides the desired
solution. Plotting out an example of the other class of solutions we see in figure 4 that the arcs double back
on each other.
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Figure 5: The ellipse being approximated is drawn bold. Both the elliptical locus of tangent continuity
constraints and the evolute specifying the constraint of matching A2’s curvature to the ellipse’s at the point
of contact are shown.

An alternative constraint is that A2 should touch the ellipse and match its curvature at that point just as
arcs A1 and A3 do. Another way of stating this is that the centre of A2 lies on the evolute of the ellipse
which is described by the astroid-like Lamé curve

(ax)
2

3 + (by)
2

3 = (a2 − b2)
2

3 ,

which is plotted in one quadrant in figure 5. It can be seen that the two constraints are incompatible.

2 Some Previous Constructions
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Figure 6: Lockwood’s five-centred arch

We will now examine several proposed five-centred arches described in earlier issues of the Mathemat-
ical Gazette. Lockwood [10] shows a graphical construction that provides tangent continuity (see figure 6).
The centres of A1 and A3 are determined by drawing the perpendicular to AB through D. The intersections

4



with the axes at X and Z are equivalent to h and −k in our notation. Smooth joins are implemented by
keeping AX +XY +Y Z = BZ, which in combination with the values for h and k provide another means
of determining the elliptical locus of tangent continuity. To eliminate the final variable Lockwood suggests
setting XY = Y Z.1 Since r1 = AX + XY , r2 = BZ = 2XY + AX , and r3 = AX this effectively
makes r2 = r1+r3

2
. Assuming the geometry for tangent continuity this leads to the linear constraint

y = − b

a
x − (a2 − b2)2

2a2b

which is the extension of the C1 constraint ellipse’s minor axis. This enables the centre of A2 to be found
rather more simply by finding its intersection with one of the circular loci of constraints (see figure 6b),
yielding:

a − b

2

[

a + b

a
− a√

a2 + b2
,−a + b

b
+

b√
a2 + b2

]

.
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Figure 7: Walker’s five-centred arch

Walker [15] states that the most appropriate radius for A2 is the geometric mean r2 =
√

r1r3 =
√

ab

which he matches to the ellipse’s radius of curvature at the point of contact. He constructs OD =
√

ab and
then draws parallel to DA the line OC of length a − b, which locates the centre of A2 at
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Figure 8: Chaplin’s five-centred arch construction

Chaplin [3] describes another method for ensuring that A2 matches the ellipse’s radius of curvature.
OD equal to a is drawn at 45◦ and a vertical is dropped from D to the ellipse at C (figure 8). The line CR

1In fact, Lockwood originally described his approach considerably earlier [8]. His construction was later much simplified by
Lodge, who also provided the XY = Y Z constraint [11].
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is drawn parallel to OH and the intersection with OW locates R, the centre of A2, at

(

a2 − b2

2
√

2a
,
a2 − b2

2
√

2b

)

=
1

2
√

2
(h, k).

The eccentric angle of C is π

4
, making it straightforward to calculate the radius of curvature as

r2 =

(

a2 + b2
)

3

2

2
√

2ab
=

(

r
2

3

1 + r
2

3

3

)
3

2

2
√

2
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Figure 9: Different A2 centres on the ellipse’s evolute and C1 constraint ellipse: Walker = black; Lockwood
= dark gray; Chaplin = light gray; LS fit = white.
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Figure 10: (a) Distance between the C1 constraint ellipse and the ellipse’s evolute parameterised by r2.
(b) Approximation error of tangent continuous arcs. The C1 arcs with radii equal to Chaplin and Walker’s
constructions are also included. (c) Replotting error against distance shows how Walker’s construction is a
good compromise to minimising error and discontinuity.

Both Walker and Chaplin intended that the three specified arcs should be joined using additional arcs
(e.g. using French curves). On examination the reason becomes clear; if the arcs both touch the ellipse
and match its curvature at these points then they will not touch or cross each other since moving along the
evolute in one quadrant, e.g. from (0,−k) to (h, 0), all the osculating circles lie inside each other.2

Figure 9 shows the position along either the evolute or the C1 constraint ellipse of the centres of the
alternative choices for A2. In order to determine the significance of the various positions we now look

2For the same reason three-centred arches cannot match the curvatures at the ellipse’s vertices – unlike all the five-centred arches
considered so far. However, Rosin [13] describes a construction which effectively matches curvatures and rescales h and k by

1

2(2−
√

2)
. This decreases and increases r1 and r3 respectively, providing a valid (but not C1) join as well as improving the similarity

between the mean circular arc and ellipse curvatures.
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more closely at the relationship between the evolute, the C1 constraint ellipse, and the quality of the arc
approximation. For this task the parametric form of the evolute is useful

x(t) =
a2 − b2

a
cos3 t

y(t) = −a2 − b2

b
sin3 t

where t ∈ [ 3
2
π, 2π] for the first quadrant. Stepping along the C1 constraint ellipse and the evolute the

shortest distance between them is numerically estimated, as shown in figure 10a. It can be seen that Walker’s
method is almost (but not quite) on the position of the evolute that is closest to the elliptical locus. Thus it
could be considered as a good compromise between the two conflicting constraints: tangent continuity and
curvature matching. Moreover, on retaining r2 but shifting A2 to provide C1 continuity the approximation
errors (figure 10b) show that Walker’s method is better than the other two in this respect too. Replotting
the error against distance in figure 10c further shows that Walker’s construction is a good compromise to
minimising both the approximation error and tangent discontinuity since it lies close to both optima.

3 Improved Approximations
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Figure 11: The optimal and other values of r2 when tangent continuity is enforced at the joints and curvature
matching at the ellipse’s vertices. Also shown are the incurred errors.

So far we have considered several possibilities from the literature for selecting the radius for A2. Alter-
natively, in an attempt to improve the approximation, we can numerically estimate the optimal value for r2.
Its solution over a range of ellipse eccentricities is shown in figure 11a, and its least squares cubic fit is

r2

b
= 0.519763 + 0.407721

a

b
+ 0.055386

(a

b

)2

+ 0.000002
(a

b

)3

implying that the quadratic is a sufficient model. Re-expressed in terms of the radii of the outer two arcs
and somewhat simplified gives

r2 =
1

2
r

2

3

1 r
1

3

3 +
2

5
r

1

3

1 r
2

3

3 +
19

333
r3

which can be seen from figure 11a to provide a good fit to the optimum. The actual errors in the approxi-
mations produced by the different schemes are shown in figure 11b.3 Lockwood’s proposal (the arithmetic
mean) for r2 does poorly for elongated ellipses. For ellipses with b

a
< 1

2
Walker’s proposal (the geometric

mean) is almost as good as the optimal solution. The optimum and the LS fit are clearly superior for elon-
gated ellipses. For close to round ellipses the LS approximation to the optimum is inadequate, and the other
methods do better; nevertheless, all produce low errors. An example of the five-centred arch approximations
of ellipses is shown in figure 12.

Future investigations will consider making further improvements by relaxing some of the constraints.
For instance, to simplify matters all the previous examples and our analysis has fixed the outer two arcs

3The errors with respect to the ellipse with b = 100 were calculated by sampling the three circular arcs into 1000 equal arclength
sections. The error at each point was calculated using an accurate estimate of the length of the perpendicular to the ellipse developed
by Rosin [12].
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Figure 12: Five-centred arch approximations of an ellipse with b
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Figure 13: Iso-contour lines of error plots obtained by modifying A1 and A3. Empty areas correspond to
invalid solutions. The circle indicates the standard values of h and k to match the ellipse’s curvature.
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(passing them thorough the ellipse’s vertices and matching its curvature there too) and considered different
choices for the central arc. However, there is no reason to suppose that the values of r1 and r3 are particu-
larly suitable in terms of minimising the distance (whether mean or maximum) between the ellipse and the
circular arcs. This can be illustrated by fixing r2 to a function of r1 and r3 while the latter two are varied
under the constraint that the arcs are C1. The error plots in figure 13 show that for all the choices of r2

that we have considered in this paper (Chaplin’s and the LS fit radii lie within the range of Lockwood and
Walker’s radii) more accurate approximations can be obtained by reducing h and k (i.e. decreasing r1 and
increasing r3).

4 Perimeter Estimates
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Figure 14: Percentage error in perimeter estimate for ellipse with a = 1

As a final analysis, the five-centred arches’ perimeters are calculated based on the subtended angle θi of
each arc Ai in a quadrant

4 (θ1r1 + θ2r2 + θ3r3)

and their accuracies are compared against the true perimeter and also three approximations, the first being
relatively crude, the second is an often used and effective one by Ramanujan, while the third is the best
from Almkkvist and Berndt’s extensive list of approximations [1]:

P1 =
√

2
√

a2 + b2π

P2 =
(

3 (a + b) −
√

(3a + b) (a + 3b)
)

π

P3 =
256 − 48λ2 − 21λ4

256 − 112λ2 + 3λ4
π(a + b)

where λ = a−b

a+b
. In addition a new perimeter estimator has been devised with particular attention to elon-

gated ellipses:

P4 = 4a − b2 (2π − 4) ln( b

a
)

a − b
.

Both the general and particular solutions to the arches’ perimeters are rather cumbersome and so are not
included here with the exception of Lockwood’s [9]

b2

a
tan−1 a

b
+

a2

b
tan−1 b

a
.

The perimeter estimate errors with respect to the true ellipse perimeter are plotted in figure 14 for a range
of eccentricities. P1 is very much worse than the arches’ estimates, P2 is better for moderate eccentricities,
while P3 is better yet and gives relatively good results even for highly elongated ellipses. Nevertheless,
the percentage errors for all the above monotonically increase with increasing eccentricity. In contrast, the
arches’ percentage errors peak at around b

a
equal to 0.2 or 0.3 but their perimeter estimates converge to

the correct values of 4a and 2πa at b

a
= 0 and b

a
= 1 respectively. While P1, P2, and P3 provide correct

solutions for circles, for b

a
= 0 they yield

√
2πa ≈ 4.443a, (3 −

√
3)πa ≈ 3.983a, and 187

147
πa ≈ 3.996a
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respectively. Although P4 performs very well for highly elongated ellipses its errors elsewhere are rather
high. The ranking of the arches’ estimates is the least squares fit, followed by Walker’s and then Lockwood’s
methods. Note however that for almost round ellipses the least squares fit does poorly as noted previously.

5 Concluding Remarks

While the approximation of an ellipse by circular arcs appears to be a simple problem, investigation un-
covers a wealth of possibilities. This paper shows that, in combination with some additional common
constraints, the two most common constraints – matching all the circular arcs to the ellipse’s curvature at
the point of contact, and maintaining tangent continuity at the joins – are incompatible. However, it was
shown that Walker’s proposal (setting the inner arc’s radius equal to the geometric mean of the radii of the
two outer arcs) provides a good tradeoff between the two constraints. Further improvements were made
using numerical estimation, enabling extremely good approximations.
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