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Abstract

Due to their simplicity and ease of handling quadrarcs have been used to provide a piece-

wise circular approximation to ellipses for many hundreds of years. Like biarcs there are many

possible criteria for choosing joint positions between the arcs. This paper provides an alge-

braic formulation of 10 of these quadrarc constructions. For a range of ellipse eccentricities

these quadrarcs are assessed quantitatively in terms of Euclidean distance error and tangent

discontinuity.
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1 Introduction

The approximation of curves by piecewise analytic functions is widespread, and occurs in a diverse
range of disciplines such as architecture, art, astronomy, building, and engineering. Many primi-
tives have been used such as straight lines, conics, etc, and many techniques have been developed
over the years. In this paper we will restrict our analysis to a very specific instance of this problem:
the approximation of ellipses by piecewise circular arcs.

The reason that we concentrate on such a narrow field is that the ellipse is a common shape
that often appears as a component of an object, especially man-made ones. Therefore ellipses have
been found to be useful in the areas of CAD/CAM modelling, computer graphics, computer vision
among others. In computer vision, where the images of objects are analysed, circular as well as
elliptical sections are projected into the image as ellipses, emphasising their ubiquity.

Since it is easy enough to generate an exact ellipse why should it be necessary to make piecewise
circular approximations? Although the ellipse has a simple enough analytic expression with linear
parameters, some aspects are problematic.

• For instance, its curvature is continuously varying. Thus while circular sections can be
detected in image curves relatively easily by testing for constant curvature such methods
cannot be readily extended to work with ellipses.
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• Some applications such as fitting ellipses to scattered data require some error estimate to be
minimised. The most natural error estimate for a point is the Euclidean distance from the
point along the normal to the ellipse. Unfortunately this requires solving a quartic equation,
and choosing the minimum of the four solutions. In practise this is rarely carried out, and
approximations to the Euclidean distance are used instead.

• The parallels of an ellipse are not ellipses themselves, but are eighth order polynomials [6].
Determining such parallels is useful in applications such as architecture which requires parallel
rows of columns, etc., and in CAD where the offset curves of paths made by NC milling
machines need to be determined [4].

These and other operations are much simplified when circular arcs are used as approximations;
calculating normals is trivial while parallels to circular arcs are also circular.

Bolton introduced the biarc to the CAD community less than thirty years ago [3]. Since
then a substantial volume of literature has flourished, relating to various alternative criteria in its
construction [15, 16, 18] and its application to a variety of curves such as B-splines [14], spirals [9],
and NURBS [11]. A related construct, not so well known to the CAD community, but which has
been in use for centuries if not millennia, is the quadrarc [7] which consists of four circular arcs
approximating an ellipse.1 Some famous examples are the parallel colonnades in the Piazza del
San Pietro and the parallel rows of seats in the Colosseum in Rome [7]. James Stirling applied it
in the field of astronomy to aid his analysis of the elliptic orbits of planets, and it has been used for
many years in masonry to help create the semi-elliptic arch, and is called the five, seven, etc centre
method depending on how many arcs make up the approximation. Its importance is illustrated by
the fact that in 1839 a whole book was devoted to the arch [13], and various circular approximations
to the ellipse were described. A more recent example is to accurately approximate errors, enabling
improved ellipse fitting [17]. Another potential use is by milling or drafting machines that are often
capable of generating either straight lines and circular arcs, requiring ellipses and other curves to
be approximated. As Gridgeman states [7]:

But even with an adequate knowledge of the geometry and constructability of the
ellipse, designers and artists at all times must have been tempted to use instead a
quadrarc pseudoellipse because of its immeasurably superior ease of handling.

Over the years (and before the advent of computers) many ingenious manual methods were
developed to construct true or approximate ellipses. Examples are the trammel, foci (pin and
string), concentric (auxiliary) circle, parallel (rectangle), intersecting arc, four centre, and eight
centre methods. Latterly various mechanical devices (ellipsographs) appeared in the nineteenth
century [1]. The four centre method corresponds to the quadrarc, while the eight centre and other
such methods approximate the ellipse by eight or more circular arcs. Looking through textbooks
on technical drawing and building reveals a large number of alternative methods for constructing
such approximations. Since the quadrarcs were originally intended to be constructed using a
compass and ruler an important criterion for their design was their ease of manual construction.
However, even though this requirement does not apply for computer design or computer vision
some of the quadrarcs appear to give good approximations. Ideally we would like to find the
quadrarc that produces the minimum error. Unfortunately as we will see, this cannot be easily
found analytically. Therefore we will examine the various suboptimal quadrarc approximations
that have been developed over the years and judge their relative merits. In order to do so we have
first converted these geometric methods into their algebraic forms for more convenient analysis.

2 Quadrarc Properties

Before describing any specific quadrarcs let us start by identifying the problem. We wish to
approximate an ellipse specified by

x2

a2
+

y2

b2
= 1 (1)

1Banchoff and Giblin [2] use the term PC ellipse instead, and note that it is the solution to the curve of fixed
length that surrounds a pair of equal radius disks and encloses the maximum area.
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by a quadrarc consisting of four circular arcs with centres (±h, 0) and (0,±k) and radii a − h

and b + k respectively such that they pass through the extremal points of the ellipse. Two more
common additional constraints can be added concerning the joint between the arcs. To ensure
tangent continuity the arcs’ centres must lie on the common normal to the joint and the geometry
will be as shown in figure 1. The radii are the lines kj and hj and have lengths

hj = a− h

hj = kj − kh = (b+ k)−
√

h2 + k2.

Solving these equations for h gives

h =
k − a−b

2
k

a−b
− 1

. (2)

Given tangent continuity the coordinates of the joint are determined by finding the intersection of
the normal kj and one of the two circular arcs. For instance, taking the arc centred at (h, 0) gives
the following equations for the line and circle

y =
k

h
x− k

y2 + (x− h)2 = (a− h)2

which are solved for (x, y) to obtain
(

h

[

a− h√
k2 + h2

+ 1

]

, k
a− h√
k2 + h2

)

(3)

where h and k are limited to the range h = [a− b, a] and k = [ (a−b)(a+b)
2b ,∞]. The path of possible

continuous tangent joints is given by the thick gray line in figure 2. If we substitute (2) in (3)
and eliminate k we can show (after much manipulation) that the path is circular with centre
1
2 (a− b, b− a) and radius

√

a2+b2

2 .

b

-k

ah(0,0)

j

Figure 1: Arrangement of quadarc with tangent continuity

The constraint that the intersection of the arcs lie on the ellipse is considerably more complex
to express. If the tangent constraint is not incorporated then the intersection of the arcs is at

1

2p

(

−a2h+ b2h+ 2ah2 + 2bhk + kt,−a2k + b2k + 2bk2 + 2ahk − ht
)

(4)

where

p = h2 + k2

q = a− h

r = b+ k

t = 2hk ±
√

−p2 − (q2 − r2)2 + 2p(q2 + r2).
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Figure 2: Locus of continuous tangent joints

Substituting (4) into (1) gives a fourth order polynomial in h and k. Although the constraint
is complex, given a point on the ellipse (x, y) it is at least straightforward by rearranging (1) to
determine the values of h and k such that (x, y) is the point of intersection of the arcs, namely

h =
a2 − x2 − y2

2(a− x)

k =
b2 − x2 − y2

2(y − b)
. (5)

This will be of use later.

3 Alternative Quadrarcs

We now list several alternative quadrarcs which have been culled from a variety of books on
technical drawing, building, etc. Plots of all the quadrarcs are shown in figure 3. The first example
is by Knowlton [21] who describes a simple method which places the arc joint three quarters of the
way along the diagonal of the bounding rectangle. The joint does not lie on the ellipse and the
tangent is not continuous at the joint. The resulting values for h and k are

h =
7a2 − 9b2

8a

k =
9a2 − 7b2

8b
.

With a small modification Knowlton’s method can be adapted to make the joint lie closer to
the ellipse. Since the diagonals intersect the ellipse at 1√

2
(a, b) we just shift the arc joint from 0.75

to 1√
2
≈ 0.707 along the diagonal

h =
a2 − b2

2a(2−
√
2)

k =
a2 − b2

2b(2−
√
2)

.

This makes one of the intersection points of the arcs lie on the ellipse. However, we are actually
using the other intersection point which does not lie on the ellipse. Nevertheless, the resulting
approximation is an improvement on Knowlton’s basic method.
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(a) Knowlton .75 (b) Knowlton .707 (c) Mott

(d) French (e) Hewitt method 3 (f) Hewitt method 4
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(g) Hewitt method 5 (h) Slantz (i) Stirling

(j) Gridgeman (k) optimal G1 (l) Su & Liu biarc

Figure 3: Quadrarc circles approximating an ellipse with a

b
= 2
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Another simple method, given by Mott [12] (which appears there as method 7.8), fixes the
smaller circles and determines the remaining two circles by constructing an equilateral triangle,
giving

h =
k√
3
=

a

2
.

Again the joint is neither G1 nor lying on the ellipse.
A third simple method is provided by French [5] (shown by him as figure 75) and is based on

differences in the lengths of the axes

h =
3

4
k =

3

2
(a− b).

Unlike the preceding methods this one is G1.
Hewitt’s method 3 [8] is also G1, and is based on an equilateral triangle and the intersection of

various arcs and lines

h =
√
3k =

3(a− b)√
3− 1

.

Hewitt’s method 4, which is not G1, uses the bounding rectangle and bisects and intersects
various lines, resulting in

h =
5a2 − 4b2

6a

k =
4a2 − 6b2

6b
.

Hewitt’s method 5 is G1 and defines several arcs; through their intersections are constructed
various lines which intersect with the axes, giving

h =
(a− b)(a+ b+

√
a2 + b2)

2a

k =
(a− b)(a+ b+

√
a2 + b2)

2b
.

The Slantz method [22], which is not G1, starts with intersecting arcs followed by constructing
an equilateral triangle, producing

h =
k√
3
=

4

3
(a− b).

Finally Gridgeman [7] provides a method using the following values for h and k

h = k = (1 +
1√
2
)(a− b).

Although he states that they correspond to a popular construction method for G1 quadrarcs, it
does not match any of the methods I have found in the textbooks.

Regarding the two constraints on the arcs we previously mentioned we can see that the above
methods satisfy either none or one of the constraints. If we incorporate both the tangent con-
straint (2) and also constrain the joint (3) to lie on the ellipse (1) then, apart from several degen-
erate solutions containing circles with zero radius, we get

h =
(a− b)

(

a+ b+
√
a2 + 6ab+ b2

)

a− b+
√
a2 + 6ab+ b2

k =
(a− b)

(

a+ 3b+
√
a2 + 6ab+ b2

)

4b
. (6)

This in fact is equivalent to Stirling’s approximation of an ellipse [20] which we previously used
for ellipse fitting [17]. The combination of constraints should hopefully provide a visually pleasing
and accurate approximation. The following section will enable us to see how close it comes to an
optimal approximation.
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3.1 Criteria Optimisation

We can introduce additional constraints to the ones mentioned so far. For instance, Gridgeman
considers combining the tangent constraint with constraints setting the area or perimeter equal
to the underlying ellipse’s. A potentially more useful constraint would be to find the quadrarc
with minimum error. If the joint is constrained to lie on the ellipse this simplifies the equations,
but it is still difficult to perform the minimisation analytically. If the true Euclidean distance
is minimised then the summed error functional involves elliptic integrals. Even if the simplest
distance approximation is used instead – the algebraic distance – the expression cannot be solved
analytically.

Therefore, instead we estimate the error between the ellipse and the quadrarcs by the following
numerical procedure. Knowing the intersection of the two circular arcs their subtended angles can
be calculated. We will denote these by θ1 and θ2, and their radii by r1 = b + k and r2 = a − h.
The pair of arcs are then divided into approximately n equal arclength sections. This is achieved

by dividing the two arcs into n1 = round
(

nr1θ1

r1θ1+r2θ2

)

and n2 = n − n1 sections respectively. The

arcs are stepped along from their ends, the angle increment being θ1

n1

and θ2

n2

respectively. At
each such point on the arc we obtain an approximation ei to the distance along the normal to the
ellipse using the confocal conic method [17]. This approximate distance is then used to generate
the various error norms; i.e. L1 =

∑

i
ei, L2 =

∑

i
e2
i
, and L∞ = max ei. In our experiments we

set n = 1000, but little difference was found when n was increased or decreased by a factor of ten.
To determine the optimal tangent continuous quadarc for a particular pair of values of a and

b we perform a 1D search over the range of h (and the associated k) values satisfying (2) to find
the minimum error. The result of a

b
= 2 plotted in figure 3 shows that this produces an extremely

accurate approximation. Furthermore, the error plots in figure 7 confirm that the optimal G1 does
not correspond to any of the methods from the literature that we have considered here.

Similarly, a 1D search is sufficient to numerically estimate the optimal joint constrained to lie
on the ellipse but not constrained to be G1. We step along the ellipse using the parametric form
of (1)

x = a cos θ

y = b sin θ

and calculate the appropriate values of h and k at each point using (5). We always choose the
intersection point furthest from the ellipse centre. Since it is sometimes the other intersection point
that lies on the ellipse, then the constraint can fail. This occurs when the circle at the pointed end
becomes bigger than the tangential circle calculated using Stirling’s method, see (6), i.e.

k >
(a− b)

(

a+ 3b+
√
a2 + 6ab+ b2

)

4b
.

In fact, on performing the minimisation we found the optimum error occurs when the two arcs
have tangent continuity. In other words, Stirling’s method provides the minimum error under the
constraint that the joint lies on the ellipse.

In summary, the quadrarc construction methods can be classified according to the two con-
straints considered in this paper. There are four possible combinations of the constraints being
met or not, as shown in table 1. The classification of the various quadrarc methods using this
scheme is shown in table 2. It is interesting to note that there are no methods of type III.

Type Joint on Ellipse Tangent Continuity of Arcs

I × ×
II ×

√

III
√

×
IV

√ √

Table 1: Classification of quadrarc constraints

8



Method Type

Knowlton .75 I
Knowlton .707 I
Mott I
French II
Hewitt method 3 II
Hewitt method 4 I
Hewitt method 5 II
Slantz I
Stirling IV
Gridgeman II
optimal G1 II
Su & Liu biarc II

Table 2: Classification of quadrarc methods

3.2 Caveats

For those methods without tangent continuity (types I and III) there is the question of which
intersection point of the two arcs to use as the joint. We choose the point closer to the pointed end
of the ellipse since it provides a more pleasing curve, avoiding the concavities resulting from the
other intersection point. However, this does not necessarily provide a more accurate approximation.
For instance, figure 4 shows that using Hewitt’s method 4 the error curves cross over such that for
moderately low eccentricity the more central intersection point produces a lower error.

2 3
a/b

10000

100000

su
m

m
ed

 s
qu

ar
ed

 e
rr

or

far intersection
central intersection

Figure 4: Error crossover for different arc intersection points

Although not mentioned in any of the textbooks cited an additional problem for those methods
without tangent continuity is that, depending on the eccentricity of the ellipse, it is possible for the
intersection point to lie on the wrong side of the major axis, thereby invalidating the approximation.
An example is given in figure 5. To find the breakdown point we solve for the general intersection
point setting y = 0 in (4). The various ranges of failure are given in table 3.

3.3 Biarcs

To conclude the catalogue of quadrarcs the biarc is included as a more contemporary method of
construction. The biarc is constrained to pass through two points with specified tangents at these
points. In addition the arcs joint is G1. These five conditions leave one degree of freedom which
can be eliminated using many different criteria [3, 19]. As an example we use the method given
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Figure 5: Breakdown of Mott’s method when a

b
= 3

Y
Y’

X

b

a

(x1’,y1’)

(x2’,y2’)
θ2

θ1
L

X’

Figure 6: Construction of Su & Liu biarc
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Method breakdown range

Mott a

b
>

√
7+

√
3

2 ≈ 2.1889
French a

b
> 3

Hewitt 4 a

b
<

√
2 ≈ 1.4142

Slatz a

b
> 8√

3
− 1 ≈ 3.6188

Gridgeman a

b
> 1 +

√
2 ≈ 2.4142

Table 3: Breakdown points of quadrarc methods

by Su and Liu which keeps the ratio of the arc radii as close as possible to one. The construction
follows figure 6. For an ellipse we can readily calculate:

θ1 = tan−1 b

a

θ2 = tan−1 a

b

L =
√

a2 + b2

which enables the radii of the arcs to be determined as

R1 =
L sin θ2

2

2 sin θ1

2 sin θ1−θ2

2

R2 =
L sin θ1

2

2 sin θ2

2 sin θ1−θ2

2

.

In the coordinate frame X ′Y ′ the coordinates of the arc centres are

(x1, y1) = (−R1 sin θ1, R1 cos θ1)

(x2, y2) = (−R1 sin θ1, R2 cos θ2).

These are transformed back to the XY axes after a rotation of −θ1 and translation of (0, b), giving
(x′

1, y
′
1) and (x′

2, y
′
2). Finally, converting to our previous specification of quadrarcs,

h = x′
2

k = y′1.

4 Performance Analysis

Figure 7 shows the estimated errors incurred by the various quadrarcs using the L1, L2, and L∞

norms. The first point to note is that none of the traditional methods are optimal, although some
get close. We expected that Stirling’s quadrarc should fare well given that it is G1 and the joint
lies on the ellipse. It does, but is still outperformed by several others in terms of L1 and L2 error.
Even though it satisfied neither of these constraints, Knowlton .707 consistently received a lower
L1 error. Hewitt 5 performed better on both L1 and L2 error and gave identical results to Su &
Liu’s biarc. On occasion did Hewitt 3 and Slantz also performed well but degraded badly for highly
eccentric ellipses. Some of the other methods such as Mott, French, and Gridgeman degraded even
earlier, at only moderate eccentricity. Knowlton .75 and Hewitt 4 never perform well.

The results for the L∞ error are more spread out. Hewitt 3 does very well here (and on the
other error norms too) at a

b
≈ 2. Apart from that, Stirling usually fares best, with Hewitt 5 and

then Knowlton .707 as the next best contenders.
We note that that Su & Liu’s biarc gave identical results to Hewitt’s method 5, although it is

difficult
To measure the tangent discontinuity incurred by some of the quadrarcs the difference in the

angle of the normals at the joint is shown in figure 8. We can see that despite the low approximation
error shown by Knowlton .707 the discontinuity becomes considerable as the ellipse eccentricity
increases.
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Figure 7: Errors for quadrarcs according to L1, L2, and L∞ norms
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Figure 8: Tangent discontinuity

5 Using Additional Arcs

Having covered a considerable range of quadrarc approximations a logical progression would be to
improve the ellipse approximation by using more than four circular arcs. Again the technical draw-
ing and building literature provides some examples, although rather fewer in number than quadrarc
construction methods. An example of a G1 eight arc approximation is given by McKay [10]. Four
arcs corresponding to the quadrarc elements are used as before, and are calculated as

h =
√
3(a− b)

k = 2(a− b),

and four additional arcs with centres (±x1,±y1) and radius r1 are inserted

x1 =

√
3

2
(a− b)

y1 = −
a− b

2

r1 = 2a− b−
√
3(a− b).

Again, care must be taken as the method breaks down at a

b
>

√
3√

3−1
≈ 2.366 when the circle

furthest from the ellipse centre shrinks to zero radius.
An alternative eight arc approximation (which is not G1) is given by Nicholson [13] (in article 6).

It breaks down for low eccentricity ellipses as the inner two circles do not intersect, but formulating
the exact conditions is rather complex [13]

h =
a2 − b2

a

k =
a2 − b2

b

x1 =
(a2 − b2)(2a− b)

a(3a− b)
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y1 = −
a2 − b2

2(3a− b)

r1 =
b2

a
+

√
5(a2 − b2)

2(3a− b)
.

Nicholson extends the method to find a twelve arc circle in article 7, and describes how it can made
to generate any number of subarcs. However, we have found difficulties with it, and find that the
inner circles rarely, if ever, intersect.

Surprisingly, when we plot their errors (see figure 9) we see that the eight centred approxi-
mations do not seem to offer any advantages over quadrarcs. McKay’s method is clearly inferior
to many quadrarcs while Nicholson’s performs at a comparable level to the best quadrarcs. An
example of the component circles are shown in figure 10.
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Figure 9: Errors for quadarcs and eight centre approximations (L2 norm)

6 Conclusion

A wide selection of quadrarcs have been analysed to assess their suitability for approximating
ellipses. Stirling’s method has the advantage of possessing tangent continuity and has a low
maximum deviation at all eccentricities. However, the simpler Knowlton .707 and Hewitt 5 methods
are also good candidates. In particular the Hewitt 5 method has lower L1 and L2 errors than
Stirling’s method, and also has continuous tangents. Unlike some of the other methods considered,
none of the above break down for extreme eccentricities. Surprisingly, these quadrarcs perform
sufficiently well that the eight arc approximations that we tested provide no advantages.

Experimentally it was found that Su & Liu’s biarc was identical to Hewitt’s method 5 although
their construction methods differ. In the future it would be interesting to analyse alternative biarcs
constructions to compare them with the quadrarcs described in this paper.
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