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Abstract. In this paper we introduce a new method for computing the
orientation for compound shapes. If the method is applied to single com-
ponent shapes the computed orientation is consistent with the shape
orientation defined by the axis of the least second moment of inertia. If
the new method is applied to compound shapes this is not the case, and
consequently the presented method is both new and different.
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1 Introduction

Determining the orientation of a shape is often performed in computer vision
so as to enable subsequent analysis to be carried out in the shape’s local frame
of reference (thereby simplifying that analysis). While for many shapes their
orientations are obvious and can be computed easily, the orientation of other
shapes may be ambiguous, subtle, or ill defined. The difficulty of the task can
be seen from the multiplicity of mechanisms used in human perception in which
orientation can be determined by axes of symmetry and elongation [I], as well
as cues from local contour, texture, and context [9].

The most common computational method for determining a shape’s orienta-
tion is based on the axis of the least second moment of inertia [46]. Although
straightforward and efficient to compute it breaks down in some circumstances —
for example, problems arise when working with symmetric shapes [T1[12]. This
Suitability of those methods strongly depends on the particular situation in
which they are applied, as they each have their relative strengths and weak-
nesses (e.g. relating to robustness to noise, classes of shape that can be oriented,
number of parameters, computational efficiency).

In this paper we focus on the orientation of shape consisting of several com-
ponents. We introduce a new approach to the shape orientation problem and,
after that, we extend the method to shapes that consists of several components.
We consider a line that maximises the integral of the squared lengths of the
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projections of line segments whose end points belong to the shape onto this
line. Then we define the orientation of the shape by the slope of such a line.
It turns out that, if applied to single component shapes, such a method for
computing shape orientation is consistent with the standard method based on
the line of the least second moment of inertia. Such a new approach leads to a
natural definition of the orientation of compound shapes. The computed orien-
tation of compound shapes differs from the orientation of compound shapes by
the standard method. In some situations the new compounded shapes is more
appropriate than the orientation computed by the standard method.

The paper is organized as follows. In the next section we give a short sketch of
the standard method for computing of shape orientation. In Section 3 we intro-
duce a new approach for orienting shapes. Section 4 adopts the new introduced
approach to the orientation of compound shapes. Section 5 discusses the prop-
erties of the new method and gives some illustrative examples. Section 6 gives
concluding comments.

2 The Standard Method

The most standard method for computation of shape orientation is based on the
axis of the least second moment of inertia. The axis of the least second moment of
inertia ([416]) is the line which minimises the integral of the squares of distances
of the points (belonging to the shape) to the line. The integral is

I(a, S, p) = // (x,y,a,p) dx dy (1)

where 7(z,y, a, p) is the perpendicular distance from the point (x,y) to the line
given in the form X -sina —Y -cosa = p. It is well known that the axis

of the least moment of inertia passes through the shape centroid. The centroid

is computed as (zézgg, ZZ;E?;) where mg o(S) is the zeroth order moment of

S and mq(S) and mg1(S) are the first order moments of S. In general, the
moment my 4(S) is defined as m, 4 = [[ 2Py? dz dy and has order p+ ¢. Thus,
5

if the shape S is translated by the vector — (zégggg, Zg;ggg) (such that the

centroid of S coincides with the origin) then it is possible to set p = 0. Since
the squared distance of a point (z,y) to the line X -sina — Y - cosa = 0 is
(r-sina—y-cosa)? the function F(a, S) that should be minimised in order to
compute the orientation of S can be expressed as

9~ (= 228) s~ o 2223 ) s

—(m _(ml,O(S))2 sin?a m ~ (moa($)*)
_< 20(5) mo,0(5) ) " ( 0.2(5) mo,0(5) )

m1,0(S) - mo1(S) )
- <m171(5’) - m99(5) ) - sin(2«). (2)
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Definition 1. The orientation of a given shape S is defined by the angle o for
which the function F(«a,S) reaches the minimum.

Elementary mathematics says that the angle o which defines the orientation of
S (as given by Definition 1) satisfies the following equation:

sin(2a) 2-m11(95)

cos(2a) m2,0(S) — Mo 2(S)’ 3)

P a
where m, 4(S)= [/ (:E — Z;ZE?;) (y — 2;252;) dzdy are centralised moments.
% , ,

3 An Alternative Approach

In this section we start with a different motivation for the definition of shape
orientation. It will turn out that this approach in its basic variant (when single
component shapes are considered) leads to the same shape orientation as if
computed based on the axis of the least moment of inertia, but the application
to compound shapes leads to an essentially new method.

Let S be a given shape, and consider the line segments [AB] whose end points
A and B are points from S. Let @ denote the unit vector in the direction
@, ie, @ = (cosa,sina). Also, let pr—[AB] be the projection of the line
segment [AB] onto a line that makes an angle o with the z-axis, while [pr— [AB]
denotes the length of such a projection. Then, it seems very natural to define
the orientation of the shape S by the direction that maximises the integral

JJ J[ Ipr-[AB]?> dz dy du dv  of the squared length of projections of such
AeS,BeS
edges onto a line having this direction. Thus we give the following definition.

Definition 2. The orientation of a given shape S is defined by the angle o where

the function
G(a,S) = ////|prﬁ>[AB]|2 dx dy du dv (4)

A=(z,y)eS
B=(u,v)eS

reaches its maximum.

Even though Definition 1 and Definition 2 come from different motivations
it turns out that they are equivalent. Theorem 1 shows that the difference
G(a,S) —2-mg,o(S)-F(a,S) depends only on the shape S but not on the an-
gle a. Furthermore, this implies that the maximum of G(«, S) and minimum of
F(a, S) are reached at the same point. In other words, the orientations computed
by Definition 1 and Definition 2 are consistent.

Theorem 1. The following equality holds:

G(a,S) —2-mp,0(S) - Fla,S)
=2 ((m2,0(S) + mo2(9)) - mo,0(S) — (m1,0(S))* — (mM0,1(5))?). (5)
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Fig. 1. Projections of all the line segments whose endpoints lie in S are considered,
irrespective of whether the line segment intersects the boundary of S

Proof. Let A = (z,y) and B = (u,v). Then by using trivial equalities:

Ipr-[AB]]> = |(z — u,y — v) - (cos o, sin ) |? and
//// wPyluvt dz dy du dv = my () - My (9)
SxS

we complete the proof easily. Indeed,
G(a,S) —2-mgo(S)- Fla,S)
/// Ipro[AB|? dz dy du dv — 2-mqo(S) - F(a, S)

SxS

//// x—u)-cosa+ (y—v)-sine)? dr dy du dv —2-moo(S) - F(, S)

SxS
= 2(m2,0(5) + mo,2(5)) - mo,0(S) — 2(m1,0(5))* — 2(mo,1(5))*. U

4 Orientation of Compound Objects

Image analysis often deals with groups of shapes or with shapes that are com-
posed of several parts. The desired properties of the computed orientation of
such compound shapes can vary. Sometimes it is reasonable that the computed
orientation is derived from the orientations of components of compound shape,
whereas in other cases it is preferable that the orientation is a global property
of the whole compound object. In this section we introduce a new definition for
computing the orientation of such compound shapes and give some examples of
computed orientations. The definition of such an orientation follows naturally
from Definition 2.
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Definition 3. Let S be a compound object which consists of m disjoint shapes
S1, S, ..., Spm. Then the orientation of S is defined by the angle that mazimises
the function Geomp(c, S) defined by

Geomp(a, S) = i /// |pr [AB]|*dz dy du dv. (6)

=1 4 Z(aes;
B=(u,v)€S;

The above definition allows an easy computation of the defined orientation.

Theorem 2. The angle o where the function Geomp(a, S) reaches the mazimum
satisfies the following equation

1

sin(2a) ; (m1,1(8i) - mo,0(Si) — m1,0(S:) - mo,1(5:))

((m2,0(Si) —m0,2(5i)) - m0,0(S:) + (m0,1(5:))? — (m1,0(5:))?)

I
=

cos(2a)

or

N
Il
—

2. f: m1,1(Si) - mo,0(S:i)
R . @
(T2,0(Si) — Mo0,2(Si)) - mo,0(Si)

or

N
Il
—

Proof. Similarly as in the proof of Theorem 1, setting dGcomp(e, S)/da = 0 the
proof follows easily. O

The following notes are given to point out some properties of Geomp(v, ).

Note 1. The computed orientation of a single component object (based on F'(«, .S)

and G(«, S)) breaks down when 77 1(S) = T2,0(S) — Mig,2(S) = 0 because un-

der these conditions F'(a, S) and G(«, S) became constant functions (see (2) and

(5)). Consequently no direction can be selected as a shape orientation. Analo-

gously, when Z ml,l(Si) = Z (WQ,O(Si) - mo,g(si)) = 0 holds then the ori-
= :

=1

i=
entation of the compound shape S = S; U...U S, cannot be computed by
Geomp(a, S).

Note 2. Any component S; of a compound shape S = S; U...U S, that is
considered unorientable by G(«, S;) (i.e. G(«, S;) = const.) will not contribute
to (@), and is therefore ignored in the computation of Geomp(a,S). That is
because G(O[, Sz) = const. implies ﬁl,l(Si) =0 and mQ,O(Si) = ﬁO,Q(Si).

Note 3. If all components S; of a given shape S have identical orientation ac-
cording to G(«, S;) then this same orientation is also computed by Geomp(, S).

Note 4. From ([Z)) it can be seen that components of S contribute a weight pro-
portional to mg o(S;)3.
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The cubic weighting given to components in (7)) seems excessive since it will
tend to cause the larger components to strongly dominate the computed ori-
entation. For instance, is a compound object S consists of a shape S; and the
shape S} which is the dilation of a shape Sy by a factor r, ie. S5 =1 Sy =
{(r-z,r-y) | (z,y) € Sa} and, consequently, the size of S} increases when r in-
creases too. Then, mq o(S%) = r2-m0.0(S2), M1.1(55) = r8-m1.1(S2), Ma0(Sh) =
S M 0(S2), Mo,2(55) = 1Mo 2(S2). Entering the above estimates into (7) we
obtain that sin(2«a)/ cos(2a) equals

2. ml,l(Sl) . m0,0(51) +2- r6 : m1,1(52) : mO,O(SQ)
(Ti2,0(S1) — M0.2(S1)) - mo,0(S1) + 8 - (M2,0(S2) — Mo.2(52)) - Mmo,0(S2)

and obviously the influence of S5 to the computed orientation of S could be very
big if the dilation factor r is much bigger than 1. This suggests a modification
of (@) to enforce instead a linear weighting by area, namely:

T

) m1,1(S:)/mo,0(S:)
sin(2a) _ =1 . (8)
(T2,0(Ss) — M0,2(S5))/mo,0(Ss)

cos(2a)

or

Il
—

(2

If the orientation o of S = S; U S, = S; Ur - Sy is computed by (8) then

. 2-71,1(S1)/mo,0(S1)+2-r2- 71,1 (S2) /mo,0(S2)
SIH(QQ)/ COS(20[) equals (m2,0(Sl)*mo,lzl(sll))/mg,?)(si)+!‘2'(mz,lol(S;*mf?,;(Sj))/mO,O(Sﬂ ’

It is not difficult to imagine the situation where the size change of components
of a compound objects should have no effect on the computed orientation. For
instance, objects may be the same size in nature, but appear different sizes in the
image due to varying distances from the camera. If we would like to avoid any
impact of the size of the components on the computed orientation of a compound

2 3% 0.1(50)/ (m0.0(51)?

sin(2a)
cos(2a)

object then we can use the formula: — .
igl(ﬁz,o(Svt)—ﬁo,z(si))/(mo,O(Si))z

Following on from Note 2, any component that is almost unorientable by
G(e, S;) will have little effect on the computation of Geomp(a, S). Thus we can
say that Geomp(a, S) is not the same as computing a simple circular mean] of the
orientations produced by G(a,S;) since Geomp(v, S) weights the contributions
of components according to both their area and their orientability.

The new methods (given by (7) and (8)) for computing orientation are demon-
strated on some trademarks in figure 2l In figure Zh-c the computed orienta-
tions computed from Geomp(a, S) are different and preferable to those based on
F(a, S) (in which the trade marks are considered as single component objects).

! The circular mean p of a set of n orientation samples 6; is defined as [§]:
w if S>0and C >0
pu=< p+m ifC<0
w+2rif S<0and C >0
where ¢/ =tan™' 2, C = 23" cosf;, S= 137"  sinb;.
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W e
W D K B

88.5°,88.6°,—0.9°  —64.2°, —71.1°, —28.1° —65.54°,89.94°, —4.4°  24.0°, —4.8°,13.9°
(e) (f) () (h)

Fig. 2. Orientations of trademarks are shown computed by (@), (8), and (3)

Fig. 3. Orientations computed by (8) of multiple components are overlaid

The computed orientations for the shape in figure 2 are very close and coinci-
dent with the one of the shape’s symmetry axes. Some inconsistency is caused
by the discretization process.

The trademark in figure 2k has reflective symmetry, and so the orientation
given by Geomp(a, S) is along the symmetric axis as opposed to the standard
method for estimating orientation. The individual orientations of the components
are {—63.7°,61.7°}. When one component is reduced in size (figure[2f) the larger
component dominates ([l) whereas this effect is reduced by (). In figure 2 four
quarter area components combine to have identical effect to a single full size
component, and the orientation given by (8] is close to 90° again. The larger
component still strongly dominates ().
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Figure[Zh gives an example of a shape that is unorientable by (@) and (&) — see
Note 1. The individual component orientations of {65.5°, —54.7°, 5.6°} are well
defined; |T2,0(S;) — Mo,2(S:)| + |m1,1(S;)| are around the value 400. However,

3

3
| > (M2,0(Si) —Mo,2(S:)) | + | > m1,1(S;)] is only equal to 6. This explains the
i=1 =1

inconsistency between the orientation estimates from (7)) and (8] despite the
component areas being almost equal.

The new method is further demonstrated on several natural scenes in figure 3l
The overall orientations: 47.16°, 87.68°, and 82.87° computed by (8) are appro-
priate and seems to be more acceptable than orientations —15.6°, —8.1° and
—4.3° computed by minimizing F(a, S). Note that in the last example the tilted
blob has only a minor impact on the overall orientation estimated by (8.

5 Conclusion

In this paper we have considered an alternative approach for the computation of
shape orientation. One benefit of such a new approach is that it leads to a new
method for computing the orientation of compound objects which consist of sev-
eral components. It was shown that such a defined compound shape orientation
has several attractive properties. The computed orientations are given for several
examples and they are reasonable. If applied to a single component objects the
new defined shape orientation is consistent with the standard method for shape
orientation computation, but the methods are different when applied to shapes
consisting of several components. It is not possible to say that orientations com-
puted by one of the methods are better then the orientations computed by the
other one. A final judgement can be given only based on knowing the particular
application where the methods are applied.
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