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Abstract. An orientability measure determines how orientable a shape
is; i.e. how reliable an estimate of its orientation is likely to be. This is
valuable since many methods for computing orientation fail for certain
shapes. In this paper several existing orientability measures are discussed
and several new orientability measures are introduced. The measures are
compared and tested on synthetic and real data.

1 Introduction

It is often useful to determine the orientation of a shape. For instance, in robot-
ics to locate a good grasping position. In computer vision, processing is often
performed with respect to an object centred and oriented coordinate frame of
reference. This can effectively provide descriptions invariant to certain geometric
transforms of the object, and speeds up subsequent operations such as matching.

Several schemes exist for estimating the orientation of a shape, but two prob-
lems arise. First, some shapes inherently have no well defined orientation — for
example a circle. Second, even for shapes with a well defined orientation some
methods fail to identify that orientation. This latter limitation applies to the
most common method for estimating orientation based on the line which min-
imises the integral of the squares of distances of the points (belonging to the
shape) to the line [I0]. This line passes through the centroid of the shape S, and
so the squared distance function of interior points to the line at orientation 6 is

F9) = //(x~sin97y~cost9)2 dx dy (1)
5

where S has been translated such that its centroid lies on the origin. F(0) is
minimised when 9
# (2)
H20 — Ho2

where p,q are the central moments of order p + ¢. However, under certain con-
ditions, namely

tan 20 =

Hi1 = p20 — fo2 =0 (3)

F(6) is a constant function, and the method fails. Not only does this hold for
all n-fold rotationally symmetric shapes with n > 2 [I2] but also for many more
general shapes [I1]. This can be demonstrated by constructing some examples.
One way we have constructed a simple polygonal example of such an irregular
asymmetric shape is to express the conditions () for six vertices using line
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Fig. 1. Shapes whose orientation is undefined according to the standard method given
by (@). The pre-normalised shapes are shown in outline. In all cases p11 = p20—po2 = 0.

P

moments [9]. After setting coordinate values for four of the vertices the remainder
are determined by numerically solving the set of equations. For example, starting
with the values {(—40,0), (—40,100), (0,300), (300,300)} yields the remaining
values {(97.9, —437.2), (—550.6,277.5)} — see figure [Ih.

A more general approach by Siile and Ditrich [I1] enables an arbitrary shape
to be normalised by a shearing and anisotropic scaling to yield a new shape that
satisfies ([B]) — some examples of such shapes are shown in figure [[b—d.

This limitation of the standard method for orientation estimation has led
to the development of methods that can cope in these circumstances. Several
are based on higher powers of the distance function F'(f) and/or higher order
moments (including Zernike and generalised complex as well as geometric mo-
ments) [SITTIT2/T4]. Nevertheless, these new orientation estimators are not ideal
either, since they may still fail in some cases, and are typically sensitive to noise
as a consequence of the higher orders of moments used.

The problems associated with orientation estimation suggest that a measure
of shape orientability, whose purpose is to describe the degree to which a shape
has distinct (but not necessarily unique) orientation, would be useful although
there is little previous work in this area [IJI6]. Orientability quantifies the likely
reliability and stability of orientation estimates. For instance, even minor changes
in a shape due to digitization or noise effects can substantially alter orientation
estimates for shapes with low orientability [16].

2 Orientability Measures

In this section various schemes (new and old) are described for measuring ori-
entability. There are certain basic properties that we expect all orientability
measures to possess (which makes them easier to use and easier to compare):

a) The measured orientability is in the interval [0, 1] for any shape;
b) A circle has the measured orientability equal to 0;
¢) The measured orientability is invariant wrt similarity transformations.

In addition, it would be desirable if

d) The only shape with measured orientability equal to 0 is a circle;
e) The only shape with measured orientability equal to 1 is a straight line
segment (i.e. the limit of a rectangle as its aspect ratio tends to infinity).
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2.1 Moment Based Methods

Elongation. Consider the covariance matrix constructed from the second order
central moments of the shape

H20 HM11
H11 Ho2

The eigenvalues of C' — denoted by I; and I, — provide the variances of the shape
along the major and minor principal axes. and can be used to form a measure
of elongation [5], which in turn is an indication of orientability:

L =L A ApE o+ (po — po2)? | VP

L+ H20 + Ho2 D,

Dp

where @1 and @, are the first two rotation and translation moment invariants [5].
The same measure can be derived from the distance function F'(0) [10]:

m-min{F(0) | 6 € [0,7)}

Dp=1-
r JTF9)-do

When conditions (@) hold, and consequently F(6) is constant, then D = 0.
Thus, apart from the only true unorientable shape of a circle, the elongation
measure underestimates all the other shapes that satisfy (3.

Higher Powers of Distance. One way to correctly determine the orientation
of rotationally symmetric shapes is to use higher powers of distance in (), i.e.

F(,p) = //(:E-sinﬁ—y-cosﬁ)p dx dy.
S

For shapes with N fold rotational symmetry Tsai and Chou [12] used p = N,
while Zunié et al. [14] used p = 2N. In a similar manner, a higher order elongation
measure can be computed (and thereby an orientability measure). For instance

min{F(0,p) | 0 € 0,2 7]}

Dep) =1 = o F G p) (G 0.2 0]

is able to distinguish a circular from rotationally symmetric shapes for sufficiently
large values of p.

2.2 Geometric Methods

Bounding Rectangles. Zunié et al. [I6] described a new measure of orientabil-
ity based on bounding rectangles. For a given shape S let R(S, #) be the minimal
area rectangle whose edges make an angle # with the coordinate axes and which
includes S and let A(R(S,0)) be the area of R(S,6). Let

Apin(S) = eg[lgg){A(R(S»é’))} and A,q0(S) = Ggl[gﬁ){A(R(Sﬁ)) b
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Fig. 2. The minimum area bounding rectangles (three are shown as examples) at all
orientations for this shape have constant area but varying aspect ratio; Do = 0

The orientability of the shape S is defined as:
Ain(S) —a-A(S)
Aoz (S) —a-A(S)

where A(S) denotes the area of S, and the a- A(S) terms (« € [0, 1]) have been
included to enable shapes that have identical convex hulls to be differentiated.

D, satisfies the required properties (a), (b) and (c¢), but not property (d).
In fact, D, = 0 holds not only for the circle, but for all members of the class
of curves of constant width (of which the circle is just one instance). The most
famous example is the Reuleaux triangle. At all § the minimum area bounding
rectangles R(S,6) will be identical squares. Furthermore, it is also possible to
have other shapes with varying width that nevertheless have D, = 0. In such
cases the aspect ratio of R(S,0) varies over 6, but A(R(S,#)) remains constant,
as shown in figure 2.

Da(S) = 1 -

Fig. 3. This shape has orientability Dp = 0

Projection of Edges. In place of () Zuni¢ [13] suggested computing the
orientation that maximises the squared projection of the shape’s boundary. If
the edges in polygon P have angles 6; and lengths [;, ¢ = 1...n, with respect to
the x-axis, then the required orientation 6y can be found as

i=1"1

S 12 cos20;

1=1"

tan 260) =

We then compute orientability using the squared projection values at 6y and
bo + 5 as

iy 17 sin (6; — fo)
S 2 cos (6 — O)

Dp=1- (4)
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A problem with this approach is that it can give unexpected results in some
instances, see for example figure [B] which has Dp = 0 since the edge angles are
distributed evenly in two orthogonal directions like a square. Given the measure’s
sensitivity to local deviations in edge orientations, if the boundary is extracted
from an image then it needs to have simplification (polygonal approximation)
applied to eliminate these variations.

However, this leads to another problem: variations in the sampling rate. For
instance, consider an elongated rectangle from which points are selected along
the boundary. Sampling at regular intervals will produce a high value of Dp.
However, the value of Dp can be arbitrarily reduced by sampling the long side
more densely than the short side. Since the projected lengths are squared then
the effect in (@) of the segments from the long side will decrease.

A solution to both these problems can be found in a technique previously em-
ployed for measuring rectilinearity [7]. The original data rather than its polygonal
approximation is used, but is smoothed over a range of scales. The maximum
orientability over scale is then selected. If a curve is smoothed using the geo-
metric heat flow equation then it becomes more and more circular, eventually
shrinking to a circular point in finite time [3]. Thus blurring will not increase
orientability unless it reveals an elongated global structure that was effectively
masked from the measure Dp by local edges whose orientations are not aligned
with the global structure.

Weighting of Edges. Duchéne et al. [I] describe a method for estimating
orientation which also includes a confidence factor which can be used as an
orientability measure. Orientations are considered for 6 € [0,7). The absolute
difference in orientation ¢; of each edge from 6 is taken modulo 7. For each edge,
if ¢; < 6 then it contributes the following weight w; = 1;(1 — ‘%) Orientation is
taken as the value of # maximising » . ; w;. The same process is carried out to
compute orientability as

Dw = max 721',:1 el
0€l0,%) perim(P)

except that ¢; are now taken modulo 7.
Note that if 6 = 7 then the measure is over the interval ( %, 1] rather than

[0,1). Duchéne et al. set 6 = {5, and in our experiments we have done likewise.

Circularity Measures. Since a circle should produce an extreme value of
orientability it seems reasonable that some of the measures of circularity can
be used to measure orientability. Let the circumscribed circle, inscribed (i.e.
largest empty) circle and convex hull of polygon P be denoted by CC(P),
IC(P) and CH(P). These geometric constructions are robust with respect to
perturbations of the boundary which makes them suitable for use as elements of
shape descriptors. Moreover, the inscribed circle can be computed in O(nlogn)
time [6] and the other two can be computed in linear time [2[4]. Note that
IC(P) < CH(P) < CC(P).
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Only for the least orientable shape — a circle — does CC(P) = IC(P) = CH(P),
and so they can be simply combined to form the following orientability measures,
which can be based on either area or perimeter values:

_ area(CH(P)) . _ area(IC(P)) .
Ci=1- area(CC(P))’ Co=1- area(CH(P))’

Cs=1— = (M 2) L0y = 1 — erim(C(P))

7—2 \ perim(CC(P)) ~ = perim(CH(P)) *

Incorporating the circumscribed circle in the measure will ensure that protru-
sions are counted against circularity (and therefore in favour of orientability)
while the inscribed circle will ensure that intrusions are treated likewise: counted
against circularity and in favour of orientability. Further possibilities are also pos-
sible, using for instance linear combinations of the above such as aC; + (1 — a)Cq
or different scale normalisations (e.g. using polygon diameter).

3 Experiments

To visualise the similarities and differences between the various orientability
measures they have been applied to order some simple shapes as shown in fig-
ure Ml Overall we can see that the circle is always assigned a low orientability
score while the rectangle receives a high score, but there are many differences in
behaviour for intermediate shapes.

As expected, the low order moments measure Dy is unable to discriminate
between the rotationally symmetric shapes which all are assigned a value close
to zero (the difference from zero being due to numerical and digitisation errors).
In addition, two shapes — the rippled pear and the donkey — have been nor-
malised according to Siifile and Ditrich’s scheme [11], and consequently also have
approximately zero values. Using higher order powers overcomes this problem,
as seen in the ranking by Dg(50). Since this is still effectively an area based
measure then small area features, such as the indentation in the circle (second
shape from left), have little effect.

As explained in section 221 D,, has a problem with certain shapes such as the
irregular Reuleaux shape, fourth from the left for D,—¢.9, and the third shape
from the left, also described in figure 2l The effect of increasing the value of «
is demonstrated: the circle and rectangle have identical values to their modified
version with deep intrusions at a = 0, but are increasingly discriminated as «
increases. Note however that D,—1.o assigns a square the same peak value of one
as a rectangle since A,,;, = A.

Putting the edge projection method in a multi-scale context (Dp) enables
it to successfully cope with the zigzag rectangle (second on the right). Also,
being boundary based it is very sensitive to the deep (but narrow) indentations
which make the modified circle and rectangle much more orientable. It also
discriminates between the plain square and the modified version with the zigzag
pattern on the top and bottom, but fails however to distinguish between a square,
cross and a circle.

As mentioned previously, Duchéne et al.’s method [I] (Dy ) does not reach
the lower bound of zero, even for a circle. Another point to note is that all the
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Fig. 4. Shapes ranked according to various orientability measures

rectilinear shapes achieve a value of one, suggesting that this is actually more of
a rectilinearity measure [I5]7] rather than an orientability measure.

The circularity measures that incorporate the inscribed circle (C2, C4) are more
sensitive to intrusions that the remaining circularity measures, which makes the
modified circle and rectangle more orientable. At least in these examples there
does not appear to be a significant difference between the area and perimeter
based versions.

Note that several measures cannot distinguish the ‘U’ shape from a square:
Da=0.0, Dw, C1, C3. Also, the shapes are more clearly ordered by some mea-
sures; e.g. half the shapes have almost identical Dr values. Quantifying this
for each measure by the median of the differences in the ordered values gives
{.004, .024, .037,.051,.049, .015, .016, .040, .046, .058, .051 }, confirming that D,

and the circularity measures perform well in this respect.
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Conclusions

Several orientability measures have been described and tested. While they all
operate successfully for extremes of orientability — i.e. a circle and an elongated
rectangle — performance is varied for intermediate shapes. Many of the measures
cannot distinguish between dissimilar shapes, e.g. the class of rotationally sym-
metric shapes, constant width shapes, or squares versus circles. Future work will
look at applying the orientability measures as shape descriptors, and evaluating
their effectiveness for various object classification tasks.
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