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ABSTRACT

In this paper we present an audio driven system capabl e of video-
realistic synthesis of a speaker uttering novel phrases. The audio
input signal requires no phonetic labelling and is speaker inde-
pendent. The system requires only a small training set of video
and produces fully co-articulated realistic facial synthesis. Nat-
ural mouth and face dynamics are learned in training to allow
new facial poses, unseen in the training video, to be rendered.
To improve specificity and synthesis quality the appearance of a
speaker’s mouth and face are modelled separately and combined
to produce the final video. To achieve this we have developed a
novel approach which utilizesa hierarchical and non-linear PCA
model which couples speech and appearance.

The model is highly compact making it suitable for awiderange
of real-time applications in multimedia and telecommunications
using standard hardware.

1. INTRODUCTION

Realistic computer generated facial animation is a very
difficult task. Mouth animation provides perhaps the
greatest challenge since the process of speaking involves
the sophisticated cooperation of dozens of musclesin the
face, mouth and neck [1] and realistic animations must in-
clude movement of the tongue and visibility of the teeth.
Classical facial animation methods, first used for cartoon
animation and still used in a similar form today in many
cutting edge films, are usually tedious processes requiring
an animator to examine aspeech track, note frame times of
significant speech events and produce key frames at these
events.

What is desirable is afacial animation system capable of
producing animation solely from audio incorporating both
redlistic facia synthesis and a means of identifying sig-
nificant audio events and choosing appropriate facial pos-
tures.

In this paper we present a low bandwidth image based
system capable of producing fully co-articulated video-
realistic facial animation from an audio sound track. The
system learns the facial dynamics of a speaker and uses
this as afoundation to synthesize novel facial animations.
For training, the process requires only a small corpus of

audio and video from a speaker uttering a set of words.
These words are chosen to target a set of visualy distin-
guishable speech postures (Viseme). However, no pho-
netic annotation needs to be applied to the audio before
facial synthesis. Once training has been completed new
speech can be supplied in the form of an audio input and
synchronized video realistic facial animation is produced.
After training the system can be applied to synthesize
video with previously unheard speakers. The final video
is of the person used in the training phase.

During the training phase a human operator must prepare
the video data by placing landmarks at key facial features.
Thereafter the system is purely data driven and relies on
the assumption that our mouth and face appearance data
has a strong correlation with our speech data.

To achieve facial synthesis and animation we introduce
a hierarchical non-linear speech-appearance model built
from data extracted from the training set. The faceis de-
composed into parts to form a hierarchy where the root
corresponds to a non-linear model of the whole face and
sub-nodes non-linearly model smaller, more specific fa-
cial areas. This structure allows us to better represent
small facia variations and learn more precisely their re-
lationship with speech. For the purpose of this paper we
only extend the hierarchy to include the face and mouth.

2. BACKGROUND

Modern facial animation systems may be classified into
one of two categories: model based and image based sys-
tems. Model based methodstypically consist of 3D polyg-
onal facial models controlled by streams of input param-
eters. The first parameter driven 3D facial animation sys-
tem was by Parke in the 1970's [2]. Parke defined a set
of parameters that account for observable variation in the
face and used these parameters to animate a 3D mesh
model. Since then parameterized model based systems
have increased in popularity and complexity. Some em-
ploy concepts such as Action Units (AU'’s) [3] [4] and
Animation Units [5] to control facial configurations while
others attempt to model facial anatomy in more detail by
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modelling the tongue and jaw [6] or the facial muscles[7].

When animating model based systems from speech amap-
ping may be learned between the parameters required for
animation and a phoneme stream. Kalberer et a [8] cap-
ture facial poses associated with visemes, define a one-
to-one mapping between visemes and phonemes and de-
scribe a viseme morphing method. Given a phoneme
stream a set of visemes is produced which are warped
between to provide smooth animation. Text-to-Speech
(TTS) systems capable of producing phoneme streams
given atyped input are popular devices for animating such
systems[9].

One issue with many model based facial animation sys-
tems, except for the most sophisticated [6], is their inabil-
ity to realistically model the teeth and tongue. If a map-
ping between speech and the parameters which drivea3D
facial model is derived, as is popular in many phoneme
driven parameterized models [8] [10], then essentidly it
isonly acorrelation between the outer shape of aface and
the speech that islearned. Information such asthe position
of thetongue and the visibility of the teeth, which provide
helpful features in categorising phonemes and strong vi-
sual cues in activities such as lip-reading, are discarded.
Image based systems are able to learn the shape of a face
(e.g. the outline of the outer and inner lips) along with
its appearance (i.e. are teeth visible?) thus providing a
richer set of features with which to train a classification
based system.

Image based synthesis systems have applications in track-
ing [11], face identification [12] , behavioural modelling
[13] and animation [14] [15] [16]. An Appearance Model
[17] is one such image based system. A single vector of
parametersis used as the input to ajoint statistical model
of shape and texture variation, the outputs of which de-
fine the texture of an object and the shape that it is warped
to. The drawback of appearance models isthat collecting
training data can be an arduous task. Each image in the
training set must be labelled with landmarks defining fea-
tures of interest. These landmarks form the shape data for
an image. Ezzat et a [14] describe another model of im-
age appearance which they call a Multidimensional Mor-
phable Model (MMM). A MMM is defined using optical
flow parameters between a reference image and a set of
prototype images that define appearance. Optical flow is
used as an alternative to land-marking images as it can be
done automatically [18].

Control and animation of image based model parameters
using a speech signal may come from a TTS system[10]
[14] or from a processed audio input [19] [16] [14]. In
[14] the audio signal must first be phonetically aligned.
The phoneme stream is then mapped to a trajectory of
MMM parameters which are used to synthesize anima-
tionin MMM space. The draw back of this systemis that

the audio must be phonetically analyzed and aligned be-
fore synthesis. Also, sinceit is simply a set of standard-
ized phonetic information that is supplied to the system,
information in the speech, such as intonation and emo-
tional content, isignored. This restricts the application in
its ability to deliver novel facial animation in areas apart
from those chosen for synthesis. This is further empha-
sized by thefact that it is only the bottom of theface, from
the bottom of the nose to the jaw line, that is modelled.
A post-processing step re-attaches the computed area to
a segment of the original video. This essentially means
that synthesis of an emotional phrase would be computed
without facial emotion, unless there existed a part of the
origina training video where the speaker conveys similar
emotion for a similar duration, in which case this would
have to be manually identified and attached to the synthe-
sized region.

In Voice Puppetry [19] no phonetic aignment is neces-
sary. A Hidden Markov Model (HMM) is trained using
frames from alarge video data set. The occupancy matri-
ces of each state in the HMM are then used to determine
the audio features of each facial state. Given an audio in-
put a facial state sequence is then estimated and a trajec-
tory of facial configurationsis produced using an inverse
Viterbi algorithm. This system provides more flexibilty
than in [14] since the audio is not in phoneme form, and
retains artefacts in the speech not directly associated with
mouth animation making it capable of synthesising facial
expression. However, the system is restricted in that the
animations produced are not video-realistic since it is the
mouth and face shape which is synthesized and not its ap-
pearance.

Our system provides the audio-based flexibilty of Voice
Puppetry with the video-realism of Poggio, Gieger and
Ezzats MMM based system. Like Poggio et a we con-
struct a model of facial shape and appearance in a high
dimensional space based on an appearance model. We
choose to use an appearance model because of its dimen-
sional reduction of facial parameters and the low band-
width video realism obtainable. We associate image pa-
rameters with speech parameters from our training set
to construct a hierarchical structure of speech-appearance
models which we use for synthesis. This synthesis model
is then capable of handling speech inputs without any
alignment, making it suitable for real time or network ap-
plications. The hierarchical structure of our model pro-
duces significantly improved facial animation compared
with similar non-hierarchical systems, which we show in
our results.

The next section gives an overview of the process. Sec-
tion 4 describes the training process and Sections 5 to 7
describe how our hierarchical facial model is constructed
and utilized. Sections8to 11 present test casesand discus-
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Figure 1: Hierarchical facial model overview.

sions based on the results as well as our plans for further
work and conclusions.

3. SYSTEM OVERVIEW

The system can be broken into four stages. Training,
Model Learning, Facia Synthesis and Video Production.
In the training phase a video is captured of speaker utter-
ing alist of words targeting different visemes. A human
operator then annotates the training set placing landmarks
at the boundaries of facial features. This process is made
semi-automatic with the use of an Active Shape Model
(ASM) [20]. The system then extractsthe landmarksfrom
the training set and builds a hierarchical model of the face.

Figure 1 gives a diagrammatic overview of our hierarchi-
cal face model. For the purpose of this paper we extend
the hierarchy to only include the overall face and mouth
nodes. The root node is built from normalized data for
the entire face, which when maodelled captures global fa-
cial variation. Sub-sets of this data are used to build nodes
for the next level in the hierarchy which capturein greater
detail variations of facial sub-parts. Full and sub-facial
appearance is represented using appearance model param-
eters while speech is processed using Mel-Cepstral anal-
ysis [21] before being dimensionally reduced using Prin-
ciple Component Analysis (PCA). At each node we build
a high dimensional speech-appearance manifold approxi-
mated non-linearly with a number of Gaussian probabil-
ity density functions capable of synthesising texture and
shape from speech.

During the facial synthesis stage the incoming audio is
processed every 40ms. Mel-Cepstral analysisis then ap-
plied and the signa is projected into its reduced dimen-
sional form. For each node in the hierarchical model we
then do the following. The input signal is classified into
a cluster based on the smallest Mahalanobis distance to
the centre of each cluster and appearance parameters are
calculated by exploiting the locally linear relationship be-
tween speech and appearance in this cluster.

In thefinal stage synthesized facial information from sub-
nodes is combined to construct an entire face.

4. TRAINING AND PRE-PROCESSING

Thetraining process requires the capture of approximately
40 seconds of video with which to build our hierarchical
model and create associ ations between appearance param-
eters and audio parameters. We recorded a speaker utter-
ing a list of words that target different visually distinct
speech postures. These words were chosen based on the
work of Nitchie [22] and are summarized in Table 1. It
should be noted that for training any substantially long
viseme rich phrase would also suffice.

Table 1: Training vocabulary.

| Word Spoken | Mouth Posture Name
“We' Narrow
“Fit”, “Heavy” Lip to teeth
“Mock”, “Bin”, “ Spark”, Lips shut
“pin®
“Moon” Puckered lips
“We”, “Wharf”, “ Good” Small oval
“Farm” Widely open
“Up”, “Upon”, “Fur” Elliptical
“Free’ Elliptical puckered

“Pit”, “Believe”, “ Youth” Relaxed narrow
“Thin”, “Then” Front tongue
“Time”, “Dime”, “Nine’ Tongue to gum
“Leaf” Tip to gum

“All”, “Form” Spherical triangle
“See’, “Zebra’ Tightened narrow
“Mat” Large oval
“Ship”, “Measure”, “Chip”, | Protrusion

“Jam”, “Gentle”

“Let”, “Care’ Medium oval
“Keep”, “Go”, “Rank”, Undefined open
“Rang’

The audio was captured at 33KHz Mono and the video at
25 fps. The video was converted into images with a res-
olution 720 x 576 and images where words were spoken
were extracted. For hand-marking the images we trained
and used an ASM.

Images were annotated with 82 landmarks between the top
of the eye-brows and the jaw. Figure 2 shows one of the
training images labelled with landmarks. Once the whole
training set was labelled we extracted the 18 landmarks on
the mouth for building the mouth node of our hierarchical
model giving us two sets of shape vectors for the training
Set.

For each set of shape vectors we then do the following:
We first align the vector set with respect to scale, rota-
tion and translation. Each image in the training set is
then warped to the mean of the aligned vector set using
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Figure 2: Annotated training image.

a piece-wise triangular warping method. This process re-
moves shape variation from the textures, the resulting im-
ages are referred to as shape-free patches[17]. In ashape-
free patch we are only interested in the texture contained
within the convex hull of a set of landmarks. This allows
us to model the mouth separately from the face without
including any unwanted texture information. The texture
from each patch isthen normalized to have amean of zero
and avariance of 1. Finally, Mel-Cepstral analysisis ap-
plied to the corresponding audio data associated with each
video frame. Since we recorded our video data at 25 fps
this meant that we processed our audio with Mel-Cepstral
analysis every 40ms.

The process results in two normalized training sets for
building the mouth and full-face nodes of our hierarchy
where each set contains shape, texture and associated
speech vectors.

In the following two sections we describe how we con-
struct and use our synthesis models and how we have im-
proved the specificity and generalisation of our models by
hierarchicaly modelling the face and mouth. In Section 7
we then describe the post-processing stage where the out-
puts of both node-models are re-combined.

5. FACIAL MODELLING

The facial synthesis method used in our system is based
on Cootes et a’'s Appearance Model [17]. In the follow-
ing section we describe how we begin constructing anode
in our hierarchical model by first building an appearance
model of that nodes facial area. We then describe how
this appearance manifold is non-linearly approximated
and coupled with speech in a speech-appearance model.

5.1. Facial Appearance

Firstly, a PCA is applied separately to the shape and tex-
ture vector sets to define two linear models for shape and

Figure 3: Highest mode of face appearance variation at +
(left) and - (right) 2 s.d. from the mean.

texture respectively
X =X+ P;by 1)
g=0+ Pgbg (2)

where x and g are examples of shape and texture, X and
g are the mean normalized shape and texture vectors, P,
and P, are the eigenvectors of each training sample distri-
bution and b, and b, are shape and texture parameters.
Each training example is then dimensionally reduced
through its respective model and represented by the pa-
rameter b, for a shape vector and b, for atexture vector.
For our mouth and full face models we reduce the dimen-
sionality of the shape and texture vectors by retaining 99%
of their variation. We keep this high percentage of varia-
tion to maximize the quality of the final video. We esti-
mate a global scaling for the shape parameters based on
the ratio of variances for the shape and grey level eigen-
models and use this to scale the shape parameters with
respect to the texture parameters. Corresponding b, and
b, parameters are then concatenated to form vectors b and
aPCA is performed on this new vector set defining a new
model of joint shape and texture variation. This new PCA
model is called an appearance model where shape and tex-
ture are expressed linearly as functions of c. We use the
notation:

b =Qc 3

to describe our joint model, where Q are the eigenvec-
tors of our joint distribution and we represent exampl es of
shape and texture as

X =X+ P,W;1Q,c 4

g = g + PQQgC (5)

where W isour scale matrix and Q, and Q,, are the shape
and texture parts of the eigenvectors Q.

Figure 3 shows the highest mode of full-face appearance
variation at +2 s.d. from the mean. Figure 4 shows our
mouth training set represented by the two highest modes
of appearance variation ¢; and c,.
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5.2. Improved Generalization and Specificity

In [19] Brand noted that his results were improved when
the lower and the upper face were modelled seperately.
In [23] they built a tracking system based on a hierarchi-
cal model of the body where each limb was a node and
each node represented a separate eigenspace. The top-
level node therefore captured major variations in the en-
tire body while nodes at lower levels captured varitaions
in the limbs and the torso.

This hierarchical structure of eigenspaces was found to
be advantageous since dimensionality could be further re-
duced and important minor variationsin the limbs, which
may have been to small to accurately captured with asin-
gle eigenmodel, were better modelled. We have found that
the sameistruein modelling faces. Minor variationsin the
mouth, which are important communicators when speak-
ing, are better modelled using a hierarchical model.

For these reasons we build separate models for the face
and the mouth. We have also found this system to be better
at modelling correlations between speech and the mouth
since redundant data in the rest of the face, which often
remains motionless over a many number of frames, does
not bias our model. Our results in Section 8 give strong
evidence to suggest this.

5.3. Non-Linear Hierarchical Modelling

Linear PDM models are incapable of properly generalis-
ing data sets which are non-linear in distribution [24]. In
particular it is the specificity of the model that is most
affected, with the generation of illegal training examples
made possible. In these cases it has been shown that a
mixture of Gaussians [25] or anon-linear PCA model [26]
can better generalize and improve the specificity of the
model. In modelling our mouth texture distribution we re-
quire that as much variation as possible is captured if we
are to produce convincing animation. From Figure 4 itis
seen that our appearance model distribution is highly non-
linear. We therefore decided to model it using a mixture
of Gaussians.

We first used (3) to project our training set into appear-
ance parameters ¢, and then used a k-means clustering al-
gorithm to initialise a set of centres for an Expectation
Maximization (EM) agorithm. We found that our model
was quite sensitive to the initial choice of cluster centres
and the number of centres used. We therefore carried out a
set of experimentswith which to find the most stable num-
ber of centres and initial centre positions. We began with
a low number of centres and calculated the lowest error
rating from a series of 20 initial centre positions. We then
increased the number of centres and repeated the experi-
ment. We found that the error rating degraded gracefully
and began to smooth out between 60 and 70 centres. We
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Figure 4: Distribution of mouth appearance parameters
represented by the two highest modes of variation.

therefore chose to use 60 centres with their initial position
where the EM algorithm’s error output was lowest.

5.4. Coupling Speech to Appearance

Our aim isto be able to create an association between our
speech vectors and our appearance parameters such that
given a speech vector we may estimate its associated ap-
pearance parameter. We therefore define arelationship be-
tween speech and appearance in each cluster of our model
and use a simple classification scheme to identify which
cluster to utilize given new speech parameters.

We first perform a PCA on the training set of speech vec-
tors to define the linear model

a=3a+P,s (6)

where a is a speech vector, a is the mean speech vector
in our training set, P, are the eigenvectors of our speech
distribution and s is a speech parameter. We then reduce
the dimensionality of each speech vector using

s=P’(a—a) ™

and retain 99% of the variation over the initial training
set. To ensure that one set of parameters does not bias our
model we scale the appearance parameters based on the
ratio of the sums of the variances of the speech and ap-
pearance models. We then take each appearance parame-
ter and concatenate it with its associated speech parameter
giving

Mj = [Weel,sj]"  j=1,....k 8)
where M ; is the concatenation of appearance parameter
c; and speech parameter s;, W, is our scale matrix and
k is the number of images in our training set. This gives
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us n clusters of vectors M. We then perform a PCA on
each cluster of M ; parameters to give us n joint models of
appearance and speech

where M; is the mean of cluster i, R; are the eigenvec-
tors of cluster i and d is a speech-appearance parameter
constrained to be within +3 s.d. from the mean of clus-
ter i. Our non-linear model therefore gives us n sets of
basis vectors with which to represent facial configurations
in appearance space. Hence, an animation sequence is a
trajectory through this space defined at each video frame
by the basis vectors of a particular cluster.

6. MOUTH SYNTHESISFROM SPEECH

Using our non-linear speech-appearance model we would
like to calculate the associated appearance parameter of
an input speech parameter for every video frame. Thisis
done in two stages. First, we classify a speech parame-
ter into a speech-appearance cluster based on the smallest
M ahalanobis distance to the centre of each cluster

D= (Sinput - gL')’I‘Z(Sz'n‘put - gz) (10)

wheres; isthe mean speech parameter in clusteri and X is
the covariance matrix of the speech parameter training set.
We then use the chosen cluster to map from our speech
parameter s;,,,,: t0 an appearance parameter C.
The mapping process we used was first described by Bow-
denin[24]. Giventwo setsof strongly correlated variables
we can build a statistical model which encodes their rela-
tionship allowing us to estimate the value of one from a
previously unobserved value of another. Thisis based on
a linear relation between the variables in a data cluster.
Bowden extends the idea to a non-linear model where a
relationship between variables is formed linearly in each
cluster. We adopt the same approach here. We model
speech and appearance non-linearly, assume that their re-
lationship islocally linear and use the PDM model for the
chosen cluster to estimate an appearance parameter from
a speech parameter.
Given acluster i we splitits matrix of eigenvectorsR; into
two parts where the top part corresponds to appearance
and the bottom part to speech. We then dencte the lin-
ear relationship between speech and appearance in each
cluster as

W.c=¢C; + Rcyz‘d (11)

s=5+R,,d (12)

where C; and S; are the mean appearance and speech pa-
rametersof clusteri and R, ; and R, ; arethose parts of the

eigenvectors of R; associated with appearance and speech
respectively.

Given a parameter s;;,,,,+ We would therefore like to cal-
culate the associated parameter d and use thisto calculate
c. We calculated asfollows

d= RZ:Z (Si,n,p’u.t - §2) (13)

and then use d in (11) to calculate the appearance param-
eter c. Asafina step we then constrain c to be within +£3
s.d’'s from the mean of its respective cluster. Using our
C parameter trajectory we calculate shape x and texture g
using (4) and (5).

6.1. Trajectory Smoothing

The synthesis technique described is carried out every
40ms for a 25 fps video. We therefore rely on a steady
audio signal with which to calcul ate steady appearance pa-
rameter trajectories. Since appearance estimation is based
on cluster choice it is important the the correct cluster
choice is made for every video frame. However, since our
synthesis method is not based on learned cluster routes
this is not always guaranteed to happen. The outcome
of thisis that unwanted mouth configurations and noisy
shape vectors may appear. To compensate for this we per-
form alocal smoothing of the calculated shape and texture
vectors

Xi = (Xi—1 +X; + Xi41)/3 (14
0;=(9 1+9 +01)/3 (15)

Smoothing operations in facial animation systems are
commonly used [8]. We also tried the same smoothing
operations on the c parameter trgjectory but found that the
overal quality of the videos produced was significantly
reduced.

7. RECONSTRUCTING THE HIERARCHY

This stage is concerned with reconstruction of a face im-
age by combining the textures calculated at each node in
the hierarchy. This is done in a top-down fashion and
exploits the fact that the mean shape of the mouth node
model and the mean shape of the mouth in the face node
model isthe same. Wefirst construct the face texture from
the root node corresponding to the current speech parame-
ter which is shape free but contains the relevant texture in-
formation and extract from it the mouth texture. We then
construct the mouth texture from the mouth node model
and scale its values to lie within the range of the mouth
texture from the root node.

We then substitute the mouth texture and shape from our
root node with the mouth texture and shape from the
mouth node. This composite shape-free patch is then
warped according to the new composite shape coordi-
nates.
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Figure 5: Synthesized facial reconstructions for the word
"Dime’ compared with ground-truth images.

Figure 6: Synthesized facial reconstructions for the word
"Youth’ compared with ground-truth images.

8. EVALUATION

We recorded 28 seconds of video of a speaker uttering
the words listed in Table 1. We then extracted those
frames associated with spoken words and labelled them
using our land-marking tool giving us 968 video frames.
We used 706 of these frames, along with each frames
corresponding speech vector, to build a linear speech-
appearance model for the whole face, anon-linear speech-
appearance model for the whole face and a hierarchi-
cal speech-appearance model with nodes for the whole
face and the mouth. We then synthesized three video-
reconstructions using the audio associated with the 262
frames we left out of training. This gave us a set of
ground truth images with which to compare the synthe-
sized frames from our models.

Figures 5 and 6 show synthesized facial reconstruc-
tions produced from our models compared with their
ground truth images. The top rows show the train-
ing images while the second, third and forth rows
show reconstructions from the hierarchical, non-linear
and linear models respectively (the linear model re-

sults are ommitted from Figure 6. Downl oad-
able movies showing our results may be found at
http: /imvw.cs.cf.ac.uk/user/D.P.Cosker/research.html.
From our tests we found that the worst reconstructions
came from the linear model. Videos reconstructed with
this model show little or no variation from their mean
image. This is most likely caused by the linear models
inability to properly represent the non-linear appearance
manifold. Also, the small variations that do occur are al-
most invisible due to the smoothing operation performed.
The non-linear model shows improved lip-synch with the
ground truth video but often displays wrong textures, dis-
trupting the flow of the animation. The hierarchical model
gives the best results with near-perfect lip-synch, faithful
texture reconstructions and strong coarticulation.

We aso recorded a number of speakers uttering sets of
words not contained in the training set and synthesized
video-reconstructions.  We found that the hierarchical
model produced high-quality lip-synched animations to
the new speech segments. As in our other tests we also
found that animation quality reduced with the non-linear
and linear models. We discovered that accent played an
important part in the quality of the synthesized videos. In
the future we plan further analysis utilizing greater speech
descriptors which will lead to greater discrimination of
speakers and emotive aspects of speech.

9. DISCUSSION

The strong performance of the hierarchical model is
mostly attributed to the non-linear clustering that is per-
formed for each node in the hierarchy. When clustering
a non-linear model for the whole face the centre choices
do not model well the variation in the mouth, since data
in the rest of the face biases decisions. In the hierarchical
model the mouth is better represented sinceit is modelled
without extraneous facial information. The hierarchical
model therefore better models the associations between
the speech training set and mouth variation.
Reconstructions using speakers that the system is not fa-
miliar with were significantly better when the speaker had
the same accent as the person the system had been trained
on.

10. FUTURE WORK

It is our intention in future work to model the face in
greater detail. This may include a more detailed model
of the mouth, eye and eyebrow models and models for the
forehead and the chin and jaw. A more detailed model
should also better capture emotion present in the face dur-
ing speaking. Inlater work weintend to train anew model
using avariety of speakers uttering phrases with emotional

26



Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

emphasis in a hope that we may learn a mapping between
the nodes of our model and emotion inherent in speech.
To achieve this we will have to introduce other forms of
speech analysisto allow usto model speech intensity and
pitch, for example.

11. CONCLUSIONS

We have introduced a non-linear hierarchical speech-
appearance model of the face capable of producing high-
quality video-realistic animation given a speech input.
The model is purely data driven and the audio requires
no phonetic-alignment before video-production. We have
shown that the hierarchical model better captures varia
tionsin sub-facial areas such as the mouth than non-linear
and linear models of the entire face. We have also shown
that the model is capable of synthesizing video from pre-
viously unheard speakers.
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