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Abstract. In this paper we define a new linearity measure for closed
curves. We start with simple closed curves which represent the bound-
aries of bounded planar regions. It turns out that the method can be
extended to closed curves which self-intersect and also to certain con-
figurations consisting of several curves, including open curve segments.
In all cases, the measured linearities range over the interval (0, 1], and
do not change under translation, rotation and scaling transformations of
the considered curve. In addition, the highest possible linearity (which
is 1) is reached if and only if the measured curve consists of two overlap-
ping (i.e. coincident) straight line segments. The new linearity measure is
theoretically well founded and all related statements are supported with
rigorous mathematical proofs.

1 Introduction

There are many ways to quantitatively characterise the shape of objects. Be-
cause of that, shape based object characteristics are in frequent use for object
discrimination in different domains (medicine, biology, robotics, astrophysics,
etc). By a shape descriptor we mean a shape-based object characteristic (e.g.
compactness, elongation, etc) which allows a numerical characterisation. A cer-
tain method used for the computation of a given shape descriptor/characteristic
is called here a shape measure. Several different shape measures can be assigned
to a certain shape descriptor. This is because none of the shape measures is
expected to outperform all the others in all applications. Measures performing
well in some application could perform worse in another.

In this paper we deal with the linearity of closed curves. Initially, we were
looking for a quantity, computed from the shape’s boundary, which should indi-
cate the degree to which the shape observed is linear (i.e. similar to a straight
line segment). Once we developed a method for the computation of such a quan-
tity, it has turned out that the method can be applied successfully to a wider
class of curves — not just to the simple closed curves, which represent the bound-
aries/frontiers of planar regions.

Several linearity measures are already considered in the literature [1H3]. But
they are mainly related to open curve segments. I.e. they measure how much
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an open curve segment differs from a perfect straight line segment. Generally
speaking, each of these measures can be applied to closed curves, treating every
closed curve as an open curve whose end points coincide. The problem is that
such computed linearities might not reflect whether the structure of the observed
shape is linear or not. We give two examples.

— The straightness indez [4], denoted by Zopen (C), is perhaps the simplest and

the most natural linearity measure for open curve segments. It is defined as
the ratio of the distance between the curve end points and the length of the
curve. Obviously, this measure is very simple and fast to compute. Also it
gets the highest possible value 1 if and only if the curve is a straight line
segment. But the straightness index gives the value zero for all closed curves,
independently on the choice of the start/end break point on the curve.

A recent measure S(C), from [3], defines the linearity of open curve segments
considering the distance among all the pairs of curve points (not only between
the start and end point as the straight index does). Formally, for a given curve
C, given in an arc-length parametrisation = z(s), y = y(s), s € [0,1], and
positioned such that the centroid of C coincides with the origin, the linearity
measure S(C) is defined by

S() = 12'/C(:E(8)2+y($)2) ds. (1)

As it has been proven in [3], the linearity S(C) equals 1 if and only if C is
a straight line segment, and is invariant with respect to similarity transfor-
mations. If applied to a closed curve C, the measure S(C) has the desirable
property that it does not depend (see (l)) on the choice of the breaking
(start/end) point. But the problem is that S(C) does not behave as desired
if applied to closed curves. Here is an illustration. Let us define a family of
rectangles R(¢) as follows

Let t € (0,0.25]. R(t) is a rectangle whose edges have length t and 0.5 —t.

(2)
The equality S(R(t)) = 1/4 easily follows from (), for all ¢ € (0,0.25].
Notice that R(t = 0.25) is a square, and as ¢ decreases R(t) becomes a more
and more elongated rectangle. Thus, we wish to obtain increasing linearities
as t — 0, but this does not happen. So, if S(C) is applied to closed curves,
it would not distinguish among rectangles whose edge ratio differs, which is
not a desirable property for a linearity measure.

It is worth mentioning that there is a simple and easy way to measure the
linearity measure for closed curves and avoid the disadvantages mentioned above.
Indeed, we can define the linearity measure Z.;oseq(C) based on the ratio of the
curve diameter (the longest distance among curve points |5]) and the curve
perimeter:

diameter_of C

Iclosed(c) =2 (3)

. perimeter of C’
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Telosed(C) extends the idea of the straightness index measure to closed curves.
The following desirable properties are satisfied by Z.joseq(C) measure.

(P1) Zii0sed(C) ranges over the interval (0, 1].

(P2) Zeiosed(C) takes value 1 if and only if the measured curve consists of two
overlapping (i.e. coincident) straight line segments.

(P3) Zeiosed(C) is invariant with respect to translations, rotations and scaling.

(P4) Zeiosed(C) is easy to compute.

An obvious drawback of Z;j4seq(C) is that it depends only on the longest distance
between a pair of the curve points. For example, all the closed curves in Fig[ll
have the same Z jps¢4(C) linearity.

Hih

0.698 0.712 0.738 0.740 0.798

Fig. 1. The value of Z¢ioseqa(C) is 0.699 for all the shapes, but the proposed measure
Lc1(C) produces different linearities (shown below)

In this paper we define a new measure for closed curves. The new measure
satisfies the above properties (p1), (p2), (p3) and (p4) but also takes into
account the distribution of all the shape points (not only these on the longest
mutual distance) since the shape centroid is used for the measure computation.
An extension to a very general class of curve configurations is possible as well.
Such a generalised measure can be applied to open curve segments, keeping the
basic requirements satisfied, and also to the configurations which are unions of
certain sets of open curve segments. This is particularly suitable when estimating
the linearity of an object based on the linearity of its skeleton (which usually
can be represented by such configurations).

2 Definitions and Denotations

In this section we introduce the basic definitions and notation used in this paper.

— As usual, d2(4, B) = d2((z,9), (u,v)) = \/(z —u)2 + (y — v)? denotes the
Euclidean distance between the points A = (x,y) and B = (u,v).

— Per(C) denotes the Euclidean perimeter of a given curve C.

— diam(C) denotes the diameter of a given curve and equals the longest distance
between two curve points. Le.,

diam(C) = Xl?ﬁgc{dQ(X’ Y)}.
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Without loss of generality, throughout the paper it will be assumed (even if not
mentioned) that every curve C is given in an arc-length parametrisation.

z=ua(s), y=y(s), where se[0,Per(C)]. (4)

The parameter s measures the distance between the points (z(0),y(0)) and
(z(s),y(s)) along the curve C.

Initially, we will focus on closed curves. They will also be given in an arc-
length parametrisation @) but will satisfy the following additional condition:

(2(0),y(0)) = (z(Per(C)),y(Per(C))). (5)

We will say that (z(0),y(0)) is the curve start point and that (x(Per(C)),
y(Per(C))) is the curve end-point, even if they coincide (in the case of closed
curves).

Notice that even being simple, the definition (@) covers a wide spectrum of
curves. The most typical situation is when C represents the boundary of a planar
shape (see Figlla)). Such curves, as usual, will be called simple closed curves.
Curves which intersect themselves (e.g. the curve in Figl(b)) or even curves
whose sub-sections overlap (e.g. the curve in Fig2(c)) can also be given in the
form (@]). The latter also includes the curve whose two halves overlap.

Here we define such a curve D(p), for p > 0, consisting of two identical straight
line segments, both of the length p/2, but still representable in the form of ().
So, one possibility for the arc-length parametrisation of D(p) is:

Because D(p) allows a parametrisation as above, it will be treated as a closed
curve (but not as a simple closed curve). Of course, if displayed, see Fig2(d),
it looks like a single line straight line segment of length p/2, but it will not
cause any confusion. If a similar reasoning is applied, we see that any open
curve segment Fig[(e) (not necessarily a straight line) can be treated as a closed
curve whose halves overlap, and this will be done in this paper. Fig2(f) displays a
configuration consisting of three “connected” line segments, but the new linearity
measure can also be applied to such configurations. They will be called connected
compound curves and also can be treated as closed curves. Detailed explanation
and formal definitions are in Section (4l

We note here that the straight line segment, treated as a closed curve, will
have the highest linearity, measured by the new linearity measure introduced
by this paper. As mentioned this might be understood as a natural preference.
Also, there are simple closed curves whose measured linearities are arbitrarily
close to 1, which is also a reasonable requirement.

The centroid of a given closed curve C, with unit perimeter, will be denoted
by (x¢,yc) and is the average values of the coordinates of all the curve points.
In several situations, we will assume that a given curve C, is scaled to be of the
unit length.
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3 Linearity Measure for Closed Curves

In this section we define a new linearity measure for closed curves. We start with
the following theorem whose results motivate the definition of the new linearity
measure.

Theorem 1. Let a closed curve C be given in an arc-length parametrisation
x = z(s), y = y(s), s € [0,Per(C)], and let A = (xo,yo) be the point of C
furthest from the centroid (z¢,yc) of C. Then

(a)

Vw7 + (o~ wP < g+ Per(C) 7)

(b) The upper bound in (7) is the best possible (i.e. it cannot be improved).

V(@o —z¢)? + (yo — ye)?
Per(C)

to scaling transformations, without loss of generality, we can assume Per(C) = 1.

I.e. C is given by

Proof. Since the quantity is invariant with respect

r=a(s), y=yls), s€[0,1). (®)

(a) Let C and A = (20, y0) € C satisfy the conditions in the presumptions of the
theorem. Let us choose the coordinate system such that the origin coincides with
the point A = (x0,y0) and the z-axis passes through the centroid C' = (z¢, yc)
of C (notation is illustrated in FigB)). In such a way

ye - /C y(s) = 0 (9)

is provided. Since A is furthest from the centroid C' it implies that the curve
C lies inside circular disc radii d2(A,C') centred at C. Also, let us choose an
arc-length parametrisation of C such that

x=x(s), y =y(s), and A= (x(0),y(0)) = (x(1),y(1)). (10)

Further, consider the function F'(a) = / x(s) ds, a € [0,1] where x = z(s) is
s=0

as in (I0Q).

(a) (b) © (d)

Fig. 2. Several curve examples which will be treated here as closed curves

(e) ®
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Fig. 3. A is a point from the curve C which is furthest from the curve centroid C

F(a) is non-decreasing function because x = z(s) is non-negative function
(due to the choice of the coordinate system). So, there is ag € [0, 1] such that

1
F(ag) = 3 - F(a = 1); e.g. there is ag € [0, 1] such that

1
/ z(s) ds. (11)
s=0
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/ x(s) ds = 2 / x(s)ds < 2 / s ds = a}, (12)
s=0 s=0 s=0

and similarly, since z(s) <1 —s,
1 1 1
/ x(s) ds = 2/ x(s)ds < 2 / (1—s)ds=(1—ap)’ (13)
s=0 s=ag s=ag
Finally, the just derived (I2)) and (3] give

(14)

NNy

1
/:0 z(s) ds < min{a?, (1 —ap)?} <

(the last inequality follows because of ag € [0, 1])).
Taking into account that the choice of the coordinate system enables (@) and
the above estimate (I[4]), we have proven (a).

(b) The statement follows because any closed curve D(p), (p > 0), defined
as in (@), reaches the upper bound in (). Le., the centroid of D(p) is (p/4,0)
and the point (0,0) (also (p/2,0)) is furthest from the centroid of D(p). (Notice
Per(D(p)) = p since D(p) consists of two overlapping straight line segments both
having length p/2). O
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Note 1. The inequality in () is strict for simple closed curves. This can be
1

1
deduced from (I4). Indeed, / z(s) ds = min{ad, (1 —ap)?} = 1 would
s=0
imply ap = 1/2 and (see (I2)) and (I3])

[ e = b= [ ateas = 0w =]
z(s)ds = =-a :/ z(s)ds = =-(1—ag)* = —.
0 2 0 ao:1/2 2 8

a0:1/2 1 1
Since z(s) < s, in order to have / x(s) ds = / x(s) ds = 3’
0 ap=1/2
must be x(s) =s for s € [0,1/2] and similarly x(s) =1 — s for s € [1/2,1]. Le.
both sub-arcs of C must be straight line segments, which implies that C cannot
be a simple closed curve.

it

Note 2. The upper bound in (7)) cannot be improved for simple closed curves,
even though none of simple closed curves satisfies \/(zo — 2¢)? + (yo — yc)? =
1+ Per(C), as it has been shown in the previous note. This follows from the fact
that for any § > 0 there is a simple closed curve C(§) satisfying

|/ (@0 — 2¢5))? + (Yo — yes))? — &+ Per(C(6))] < 6. Indeed, the required C(6)
can be selected from a family of rectangles R(t) (defined as in (), since

- V(o —2rw)? + (Wo — yr))? _ 1
t—o0 Per(R(t)) 4

Now, by arguments of the previous theorem we give the following definition
for a new linearity measure of closed curves.

Definition 1. Let C be a closed curve z = x(s), y=y(s), se€[0,Per(C)],
and let A = (x9,y0) be the point of C furthest from the centroid Ce = (z¢,yc)
of C. Then the linearity L.(C) of C is defined as

V(@0 —ae)® +(yo —ye)* _ , da(4,Ce)
Per(C) N Per(C) -

Properties of the linearity measure L. (C) are listed in the statement of the
next theorem.

Theorem 2. The linearity measure L. (C) has the following properties:

(i) La(C) € (0,1],  for all closed curves C;
(ii) La(C) = 1 <« C = D(p), for some p > 0 (i.e., C consists of two
overlapping straight line segments);
(iii) Lo (C) s invariant with respect to similarity transformations.

Proof. Item (i) is a direct consequences of Theorem 1.
The proof of (ii) is actually given in Note[Il
Translations and rotations do not change either the curve length and the dis-
d2(Q, Ce)
Per(C)

tance between the centroid and the curve points. Also, is an obvious

scaling invariant. This proves (iii).



Measuring Linearity of Closed Curves and Connected Compound Curves 317

4 Connected Compound Curves

We now demonstrate how the idea applied in the previous section can be further
developed and used to define a method for measuring the linearity of connected
compound curves. We give formal definitions of a connected compound curve,
its centroid, and a measure for linearity of connected compound curves, followed
by a theorem which summarises the basic properties of such a linearity measure
for compound curves. The basic theoretical observations (analogous to those in
Theorem [II) together with the proof of Theorem Bl are omitted, due to lack of
space, and will be given in the authors’ forthcoming papers.

Definition 2. Let Cy, Ca, ... Cn be curve segments given in an arc-length
parametrisation form

Ci: z=um(s), y=wi(s), se€l[0,l;], for 1=1,2,...,n. (16)
Also, for any two points P and Q from C3 U Co U ... U C, let there exist
a connected path consisting of sub-arcs of curves Cy, Co, ..., Cn. Then the
union

C=0C UC U...UZC,

is said to be a connected compound curve.

The total-length T(C) of the connected compound curve C = C; U Cy U
...U C, is defined as the total sum of lengths of the curves Ci, Ca, ..., Cp.
Le., in accordance with (I16])

TEC) = lh+l+...+1,

The centroid (xc,yc) of the connected compound curve C = C; U Cy U
...U C, is defined as the point whose coordinates are the average values of the
coordinates of all the points which belong to C. ILe., in accordance with (I4),
the centroid of C s

Now, we give the following definition for a linearity measure for connected com-
pound curves.

Definition 3. Let C =C1U...UC, be a compound connected curve and let
the point P = (x0,y0) € C be furthest from the centroid (xc,yc) of C. The
linearity measure Leomp(C) of C is defined as

V(o — 2¢)? + (Yo — yc)?
T(C) '

Leomp(C) =2- (18)
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Note 3. Definition [3] can be directly applied to a single open curve. The linearity
of such an open single curve C is computed as double the value of the longest
distance of a point from C to the centroid of C.

If Definition Bl is applied to a simple closed curve C, then Leomp(Cer) is
computed as double the value of the longest distance of a point from C,; to the
centroid of C;. Indeed, however we split C.; onto, let say, two arcs C; and Co and
treat C.; = C1 U Cy as a connected compound curve (in the sense of Definition
), the centroid, the total-length of such a connected compound curve, and the
point of C,; = C1 UCy furthest from the centroid of C,; = C; U Cy would not vary.
So, Definition Bl can be applied directly to the computation of Leomp(Cer)-

Since both Definition B]and Definition[I] can be applied to simple closed curves
C.i, it is worth mentioning that the following equality

1

ﬁcomp(ccl) = 5 . Ecl (Ccl) (19)

is true for all simple closed curves Co. Thus, Leomp(Cer) is upper bounded as
follows: 1 1

Ecomp(ccl) - 5 . Ecl(ccl) >~ 57 (20)

with the upper bound of 1/2 reached by D(p) (see (6l)). The estimate in (20)

makes sense taking into account that L., is designed for a much wider class

of curve configurations (including straight line segments) than the measure L

(designed only for simple closed curves).

Note 4. Definition Bl can be applied to connected compound curves of arbitrary
topology.

Now we give the following theorem related to the properties of Leomp(C).
The proof details are omitted because of an obvious analogy with the proof of
Theorem

Theorem 3. Let C be a connected compound curve. The linearity measure
Leomp(C) satisfies the following properties:

(1) Leomp(C) € (0,1],  for all connected compound curves C;
(i) Leomp(C) = 1 & C is a straight line segment;
(iii) Leomp(C) s invariant with respect to the similarity transformations.

5 Experiments

Figure @ demonstrates the application of Leomp(C) to connected compound
curves. The computed value can be seen to be sensitive to the arrangement
of the components, e.g. when the central horizontal line segment moves in the
first two letter “E”s their linearity values change. On the other hand, Leomp(C)
can be seen to be insensitive to other factors, and so the two “Xs” with different
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L[ OXXXY

0.488 0.515 0.583 0.795 0.810  0.369 0.500 0.500 0.720

Fig. 4. Values of Lcomp(C) for synthetic curves containing multiple components

EAVANIEPR LN

Fig. 5. Two examples of each category of chicken piece

opening angles have the same linearity value. Of course, the different “Xs” could
be easily differentiated if required by using a combination of shape descriptors;
in this case aspect ratio and linearity.

Now, L.(C) is demonstrated on the dataset from Andreu et al. [6] which
contains 446 thresholded images of chicken pieces, each of which comes from
one of five categories: wing, back, drumstick, thigh and back, breast — see fig-
ure[B For classification an existing set of global shape descriptors@ was applied to
the boundaries and fed into a nearest neighbour classifier using Mahalanobis dis-
tances. Without incorporating linearity leave-one-out classification accuracy was
91.70%, while including L.;(C) boosted accuracy to 93.27%. The high classifica-
tion rate is a substantial improvement on previous results based on approximate
cyclic string matching [11] (77.4%), edit-dist kernel |12] (81.1%) and contour
fragments [13] (84.5%).

Finally, to show the versatility of the linearity measure we apply it to open
curves (in accordance with Note Bl treated as compound curves) for the appli-
cation to a signature verification task [14]. The data consists of pen trajectories
for 2911 genuine signatures taken from 112 subjects, plus five forgers provided
a total of 1061 forgeries across all the subjects. Examples of corresponding gen-
uine and forged signatures are shown in figure [6l To provide a richer shape
descriptor than a single linearity value, measurement linearity plots are created
by computing

P(C, S) = Ecomp(c(ov S))

! Compactness, eccentricity, fractal dimension, roundness, Hu’s moment invariants,
affine moment invariants [7], circularity [§] and ellipticity [9,|10]. Several other global
shape descriptors were considered, such as elongatedness, rectangularity, and con-
vexity, but were not found to improve classification accuracy.
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) Y
PP o

bt s bt g sl it

Fig. 6. Examples of genuine (leftmost three) and forged (rightmost three) signatures

where C(0, s) is the portion of the curve bounded by (2(0),y(0)) and by the point
(z(s),y(s)) € C. Matches between two signatures are computed as

min {area (P(C1),P(C2)),area (P,ey,(C1), Prey(C2)) }

where P,..,,(C, s) is equivalent to applying P to the reversed curve, i.e. P, (C, s) =
L(C(Per(C), Per(C) — s)).

Nearest neighbour matching is then performed on all the data using the leave-
one-out strategy. Signature verification is a two class (genuine or fake) prob-
lem. Since the identity of the signature is already known, the nearest neighbour
matching is only applied to the set of genuine and forged examples of the sub-
ject’s signature. Previous results for this task using linearity [3] managed 93.1%
accuracy. Application of the new linearity measure £(C) provides an improve-
ment to achieve 95.5% accuracy.

A final example considers the set of 54 mammographic which are classified
according to circumscribed/spiculated, benign/malignant, and CB/CM/SB/SM,
in two group and four group classification experiments, and restricts attention
to using a single descriptor per classifier. Rangayyan et al. [15] first achieved
classification accuracies of 88.9%, 75.9% and 64.8% respectively using standard
descriptors, while their later work [16] introduced the spiculation index, which
improved the benign/malignant classification accuracy from 75.9% to 79%. Using
a nearest neighbour classifier with Mahalanobis distances as before, we find
that L(C) is able to improve the first two (two group) classification accuracies
to 94.4% and 77.8% (although only 59.3% was achieved for the third group
experiment).

6 Conclusion

This paper has described a new approach to computing the linearity of shapes.
It has general applicability, since it can be used for open curves, closed curves,
and also connected compound curves. The new linearity measure is theoretically
well founded, and experiments demonstrate its effectiveness.
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