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Remote Sensing Image Thresholding for Landslide
Motion Detection

Paul L. Rosin, Javier Hervás, Jośe I. Barredo

Abstract— Techniques for performing change detection are
developed and applied to digital aerial photographs of the Tessina
landslide in Italy. Several automatic thresholding algorithms are
compared, and a variety of filters are employed to eliminate much
of the undesirable residual clutter in the thresholded difference
image, mainly as a result of natural vegetation and man-made
land cover changes. This has enabled us to discriminate most
ground surface changes related to landslide movement.

I. I NTRODUCTION

OPTICAL (visible-infrared) remote sensing has hardly
been used so far for direct landslide monitoring. A major

reason for this has been the insufficient spatial resolutionpro-
vided until very recently by most spaceborne earth observation
systems. Efforts have thus mainly concentrated on mapping
possible indirect indicators of landsliding such as land cover
pattern disruption and hummocky slope surfaces (e.g. [1], [2]).
In contrast, differential SAR interferometry (DINSAR) has
proved capable of measuring landslide centimetric displace-
ments [3]. However, its application is constrained by SAR
imaging geometry with respect to slopes, spatial resolution
and signal phase decorrelation due to both vegetation and soil
moisture changes between SAR data takes. The recent avail-
ability of 1m-resolution optical imagery from the Ikonos-2
satellite opens however new prospects for landslide monitoring
over extensive areas. To evaluate the potential application of
these new images to detect ground surface changes as a result
of major slope movements, we have developed and applied
change detection and thresholding methods on existing aerial
photographs over the Tessina landslide in Veneto, Italy.

The Tessina landslide has developed on Eocene flysch
deposits composed of marl, sandstone and calcareous units
overlaying Jurassic limestone [4]. It affects an area covered
mainly by grassland and woodland with some orchards, small
villages and scattered houses. The movement consists of a
series of rotational slides at its head quickly transforming into
a 2km-long mudflow. Surficial Quaternary deposits including
colluvium and glacial till have also been mobilised by the
landslide. The Tessina landslide, which was first triggeredin
1960, has since undergone a number of movement episodes,
some of which have disrupted communication and threatened
various villages. The latest major reactivation of the landslide
occurred in 1992, when its surface increased from 454,000 to
500,000 m2 [4], [5]. The landslide has since been intensively
monitored by ground-based techniques [4].
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Photographic prints of Tessina exist from a number of flights
from 1954 to 1994, therefore spanning several reactivation
periods. Many of them, however, could not be suitably used
for image processing since either diapositives (for precise
scanning) or camera calibration data were not available. It
was thus decided to focus this experiment on mapping ground
surface changes in the landslide body and adjacent areas as
a consequence of the 1992 reactivation, for which black and
white aerial photographs acquired on 28/09/88, 31/08/89 and
7/10/94 at 1:75,000 scale were available. The photograph
diapositives were scanned at 14 micron to produce the 1m-
resolution digital images used in this experiment.

II. I MAGE PRE-PROCESSING

In order to apply change detection and thresholding tech-
niques on multitemporal remotely sensed images, these must
first be geometrically registered and radiometrically nor-
malised. Geometrical registration of aerial photographs of hilly
areas require orthorectification of the single frames to remove
effects caused both by central projection imaging and relief
displacements.

To orthorectify our images, a 20m-resolution digital el-
evation model (DEM) of the area was generated from an
aerial photograph stereopair using digital photogrammetric
techniques. For this process, the 31/08/89 photographs were
used because their lower shadowing effects enable better
ground feature matching on the photo stereopair. Orthorecti-
fication was first accomplished for one of the photographs of
31/08/89 with the help of the 20m DEM. Orthophotos were
then produced from the 1988 and 1994 photographs using the
same DEM and the 1989 orthophoto as reference for GCP
collection.

The 1994 orthoimage was then radiometrically normalised
to the 1988 orthoimage by applying gain and bias coefficients
derived from regression analysis between the two images [6],
[7]. Radiometric normalisation was required to remove pixel
value differences due to varying illumination, shadowing and
atmospheric conditions, as well as to different camera and
film response. These two images had been selected for our
change detection analysis since their dates were more similar
in relation to illumination effects and vegetation phenology.

After this stage the images are differenced. This is the
most widely used method for change detection, and is both
simple and relatively effective compared to more sophisticated
approaches [8].
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III. T HRESHOLDINGTECHNIQUES

Having created the difference image it is generally required
to threshold it into (say) two classes to provide a “change”
and “no-change” classification. Over the years many methods
have been developed for image thresholding (e.g. see [9]), but
few are directly applicable for change detection since they
generally make assumptions that do not hold true in that con-
text. For instance, many require the distribution of difference
image intensities to be bimodal, and furthermore, the size of
the modes should not differ too greatly. However, even in
situations where two underlying classes exist, when one is
much larger than the other, its contribution to the histogram is
so great that it tends to swamp and effectively obliterate the
presence of the other class, leaving a unimodal distribution.
This has lead to the recent development of several thresholding
algorithms designed to operate under such conditions [10].
These are briefly described below.

A. Normal and LMedS Methods

In many instances it is reasonable to assume that the
image noise can be modelled by a zero mean Normal dis-
tribution N(0, σ2). In this case, analysing the difference in
intensity images is straightforward. Differencing followed by
taking the absolute value will produce the Normal distribution
2N(0, 2σ2) for positive values only. When thresholding atxσ

the probability of incorrectly classifying a pixel as change is

PF = erfc

(

x
√

2σ

)

.

This enables us to choose a suitable thresholdτ for a given
acceptable proportion of false change pixels.

In practice the variance of the noise is often unknown and
so it needs to be estimated from the image. This can be
done from the data in the standard fashion. Alternatively, we
have used the more robust Least Median of Squares (LMedS)
method which is insensitive to large amounts of outliers while
remaining computationally efficient.

B. Poisson Method

If we assume that the noise is white then its spatial dis-
tribution over the image will be random. For the analysis of
spatial data there are many measures of randomness [11], often
based on the assumption that the observations follow a Poisson
distribution. Since a Poisson distribution has its mean equal to
its variance then the ratio of the sample variance to the sample
mean is a natural test for that distribution, and is called the
relative variance

Vr =
s2

x̄
.

It is calculated by first counting the number of observations
(in our case the number of above threshold pixels in the
difference map) inn windows,xi=1...n, from which the mean,
x̄, and variance,s2, of thexi can be found. Although the test
is sensitive to the window size and point density it works
adequately as long as̄x is sufficiently large (e.g.̄x > 1).

For our purposes we do not wish to detect the spatially
random noise, but rather to avoid it in out thresholded image.
This is achieved when there is more clustering than a Poisson
distribution, and is signalled byVr > 1. We therefore select
the threshold which maximises the relative variance, thereby
maximising “clumpiness” (regions of change) and minimising
the Poisson distribution (noise).

C. Connectivity Method

The location, size, and number of the regions of change
are generally unknown. However, we might expect that these
properties will remain fairly stable over a wide range of
threshold values. This is in contrast to regions occurring in the
thresholded difference map due to noise; down at the noise
level small changes in the threshold value can substantially
alter the number of regions. Such an observation suggests
that if a range of threshold values is found that leads to
a stable number of regions, then these regions are unlikely
to come from noise, and so a value from this range will
provide a suitable threshold. This approach was suggested by
O’Gorman [12] for intensity image thresholding. Rather than
counting the number of regions the image’s Euler number can
be used, and was found to give almost identical results at much
lower computational cost.

The shape of the histogram of Euler number/threshold is
modelled as a decaying exponential, and a suitable partition
point between the signal and noise is the “corner” of the curve
which is detected as the point on the curve with maximum
deviation from the straight line drawn between the end points
of the curve.

D. Corner Method

It was found that applying the Corner Method directly to
the difference image histogram, also gave good results. This
has been analysed and demonstrated extensively in [13].

IV. SHAPE DESCRIPTION

There are a host of techniques available for describing
the shape of regions [14]. The majority attempt to extract
a descriptive property from the region such as compactness,
elongatedness, and convexity. The effectiveness of these prop-
erties will depend on the reliability of their computation in the
presence of noise, as well as their specificity with regard to
their specific application.

Because of their omnipresence in human environments,
there is also a substantial body of descriptors for standardge-
ometric shapes such as ellipses, triangles, and rectangles[15].
We use in this work the standard method for estimating the
rectangularity of a region, which is the ratio of the region’s
area against the area of its minimum bounding rectangle
(MBR). The MBR can be efficiently calculated using Tou-
ssaint’s optimal, linear algorithm [16]. Although the MBR
is potentially sensitive to noise a comparison against some
alternative algorithms for measuring rectangularity showed it
to work relatively well [17].
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Fig. 1. Images of Tessina before and after the landslide reactivation with the difference image

V. EXPERIMENTS

Figure 1a&b shows images of the Tessina area covering
the period before and after the most recent major landslide
movement. The landslide runs from near the top right corner
to the centre bottom left of the images; the thinner sector
represents the mudflow. After some cropping their size is
2703× 2590. The difference image (figure 1c; black indicates
high change, white low change) is calculated by taking the
absolute difference of the pixel intensity values over the two
dates. Examination of the histogram of the difference image
shows it to be close to a folded Normal (figure 1d). The
irregularity close to zero may be an artifact of incomplete
radiometric or geometric registration.

Figure 2 shows the effects of applying the thresholding
methods described in section III to the difference image. Inad-
dition, three standard image thresholding methods which cover
a wide range of the available techniques are applied. These are
based on statistics [18], moments [19], and entropy [20]. Itcan
be seen that there are significant similarities between someof
the results, e.g. the righthand column, while the few remaining
algorithms appear as outliers.

Changes detected by the corner, moments, Normal, LMedS
and Poisson algorithms include on the one hand those within
the landslide body surface as a result of the 1992 movement
(for instance new soil outcrops because of disruption of the
vegetation cover) and those produced after the movement
on stable sectors of the landslide prior to the second image
acquisition. These generally represent vegetation growthto-
gether with local soil moisture increase during the relative
stability period following the 1992 reactivation. These findings
are confirmed by interpretation of both ground photographs
and low altitude aerial photographs taken during the 1992
movement period, and are in agreement with reports in [4]
and [5]. The other changes detected by these five meth-
ods correspond mainly to man-made changes which include
changes on grass parcels, orchards, new roads, tracks, and
houses, as well as some tree canopy changes on woodland
areas. Much of the noise is due to the residual effects after
radiometric normalisation which are more severe in woodland
areas. The statistical and especially the connectivity methods
have overestimated the changes, while the entropy method has
underestimated the changes.
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(a) statistical (b) moments (c) entropy

(d) corner (e) connectivity (f) Poisson

(g) LMedS (h) Normal

Fig. 2. Binary change map produced by thresholding the difference image

A. Blob Filtering

It is evident that simple thresholding is not sufficient to
identify the true changes from the difference image. We
therefore considered improving the raw thresholded output
by filtering out the undesirable change blobs. This can be
done based on the local properties of the blobs; we consider
the following: size (area) and shape (width, perimeter and
rectangularity).

In addition, more global properties also play a rôle, and
we take into account the spatial relationships between blobs

(density). The following sections describe the implementation
of these filters and show their application to the thresholded
image obtained from the corner method (see figure 2d).

B. Width and Density

To eliminate blobs according to their width the well-known
erosion and dilation operators are used. Applyingn iterations
of erosion followed byn dilations will eliminate blobs whose
width is less than2n. To encourage grouping of fragmented
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(a) erosion/dilation: 2 iterations (b) erosion/dilation: 9 iterations (c) perimeter> 30

(d) perimeter> 100 (e) area> 52 (f) area> 266

(g) erosion/dilation/area:
9 iterations & area> 1000

Fig. 3. Filtering using width, perimeter, and area

blobs, i.e. the merging of pixels in dense areas, the same
process can be run in reverse. Thus the results shown in
figure 3a&b are generated by the sequence ofn dilations,2n

erosions,n dilations. From the figures it can be seen that small
amounts of filtering are sufficient to remove small noise blobs
as well as thin structures such as paths/roads. Higher levels of
filtering successfully connect the fragmented blobs withinthe
landslide body to form a few unified regions of change. The
drawback is that the man-made and vegetation changes away

from the landslide are amplified.

C. Perimeter

Calculating the perimeter of the blobs requires the blobs to
be isolated (unlike the previous filter step) which is carried
out using connected component labelling. (Unfortunately the
boundaries of objects and holes that we obtain are not distin-
guished, and so this causes some minor artifacts in the pro-
cessing.) The perimeter filter was applied to figure 2d with two
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perimeter thresholds set to produce similar numbers of blobs
as the width filtering. Figure 3c&d shows that narrow man-
made features like new roads and tracks are better retained
compared to width filtering, although for this application that
is actually a disadvantage. At higher levels of filtering most
of the landslide-related changes are retained while removing
much of the extraneous changes.

D. Area

Having isolated the blobs their area can be easily calcu-
lated, and again appropriate thresholds are set to keep similar
numbers of blobs as before. It can be seen from figure 3e&f
that both the area and perimeter methods produce very similar
results. Most of the changes outside the landslide have been
removed and the major regions of change have been dis-
criminated although their boundaries are coarsely delineated.
Nevertheless, overall width filtering was more successful.Of
course, combinations of filters can be applied in order to
capitalise on their individual merits. Although the high level
of width filtering in figure 3a created undesirable large noise
blobs these can be removed by an area filter as shown in
figure 3g, in which the true regions of change within the
landslide have been fairly well discriminated, although the
overall boundaries have been very coarsely delineated.

E. Rectangularity

Many of the man-made changes have simple polygonal
shapes such as rectangular buildings, agricultural fields,and
even some road segments. In some cases it would be useful to
apply filtering to identify these objects. In this case however,
we just wish to eliminate them since they do not typically
correspond to effects of the landslide. The effects of rejecting
and retaining blobs according to their measured rectangularity
in combination with perimeter and area filtering are shown
in figure 4. A suitable rectangularity threshold was selected
by analysing the graph of the number of blobs retained
after filtering against the threshold value, see figure 5. The
rectangularity of most blobs is near the middle of the range.
Since only a relatively small number of highly rectangular
blobs are expected the upper bend at high rectangularity values
is a suitable threshold as this occurs at the point just above
the rectangularity values of the majority of the change blobs.
The corner finding approach previously described for threshold
selection was applied, and produced the value 0.6 which is
used for all these examples. In all cases rectangularity has
successfully identified most man-made changes.

When low levels of perimeter and area filtering were applied
it appears that many small regions are classified as being
highly rectangular. This can be explained by the fact that image
discretisation imposes a restriction on the range of possible
shapes at that scale, and the rectilinear grid often resultsin
small blobs appearing rectangle like.

VI. CONCLUSIONS ANDFUTURE WORK

The application of thresholding methods to difference im-
ages derived from digital aerial photographs has proved useful

to map ground surface changes related to landslide motion.
The processing sequence finally adopted consisted of (1)
orthorectifying and radiometrically normalising the raw im-
ages to generate images which are both geometrically and
radiometrically comparable; (2) differencing the preprocessed
images; (3) preliminary thresholding the difference image
using the histogram corner method; (4) rectangularity-filtering
the thresholded image in combination with area filtering to
remove most man-made change blobs. Alternatively, perimeter
filtering could be used instead of area filtering with similar
effects.

Some constraints to this method were however found that
are mainly due to the single-band wide spectral range of
aerial photographs, lack of image calibration, and especially to
possible man-made and natural changes occurring during the
long time elapsed between the available photos. The latter,
in particular, may mask actual movement in some landslide
sectors. This can however be partly overcome by making
assumptions based on image analysis and field checking.

Because of the repetitive observations starting to be pro-
vided by high spatial resolution satellites with multispectral
imaging capabilities, the methods reported in this paper could
become complementary to ground-based techniques for land-
slide monitoring on extensive areas at scales up to 1:10,000.

Figure 6 illustrates that splitting up positive and negative
change to further discriminate changes associated with land-
slide reactivation is part of our current research. For instance,
white within the landslide body indicates ground change
patterns mostly associated with the reactivation occurredin
1992 whereas pixels in black appear mostly associated with
either simple land cover changes or soil moisture increase.A
major research effort, however, will still be needed to derive
landslide movement rates from optical satellite imagery. To
this end we are investigating several promising alternative
approaches like the application of Anandan’s [21] optical flow
techniques (figure 7).
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