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Abstract

Detecting landslides and monitoring their activity is of great relevance for disaster prevention, preparedness and
mitigation in hilly areas. To this end, change detection techniques are developed and applied to multi-temporal digital
aerial photographs, simulating the very high spatial resolution of new satellite sensor optical imagery, over the Tessina
complex landslide in north-eastern Italy. Several automatic thresholding algorithms are compared on the difference
orthorectified and radiometrically normalised images, including some standard methods based on clustering, statistics,
moments, and entropy, as well as some more novel techniques previously developed by the authors. In addition, a
variety of filters are employed to eliminate much of the undesirable residualclutter in the thresholded difference
image, mainly as a result of natural vegetation and man-made land coverchanges. These filters are based on shape
and size properties of the connected sets of pixels in the threshold maps. This has enabled us to discriminate most
ground surface changes related to the movement of a preexisting landslide.

1 Introduction

Landslides constitute a major hazard to population, property and infrastructure in many hilly and mountainous areas.
Detecting landslides and monitoring their activity is therefore of great relevance for disaster prevention, preparedness
and mitigation. Since the advent of regularly-acquired both SAR and high spatial resolution optical imagery from
space platforms, often providing also stereoscopic capability, remote sensing is increasingly used not only to assist
in landslide investigations by deriving area-wide land use, geological and geomorphological information in landslide-
prone areas, but also for direct delineation of landslide surface boundaries and monitoring their activity. In large scale
landslide monitoring, remote sensing can still be a powerful complement to point-based ground surveying techniques
(cf. (Keaton & DeGraff 1996) for a review of such techniques). Yet, traditional visual photo-interpretation methods
for landslide mapping and monitoring (Soeters & van Westen 1996) should not be underestimated with the availability
of latest-generation space-borne digital imagery.

Differential SAR interferometry (DInSAR) has proved capable of measuring landslide centimetric displacements
(e.g. (Fruneau, Achache & Delacourt 1996, Rott, Scheuchl, Siegel & Grasemann 1999, Vietmeier, Wagner & Dikau
1999, Refice, Bovenga, Wasowski & Guerriero 2000)). However, its application may be constrained by unfavourable
SAR imaging geometry with respect to slopes, inadequate spatial resolution for landslides with high internal deforma-
tion, atmospheric effects, and especially signal phase decorrelation due to both vegetation and soil moisture changes
between SAR data takes. Yet fast landslides may not be resolved by time-separated SAR data acquisitions. Digital
aerophotogrammetry and correlation techniques have also been successfully employed to derive surface velocity vec-
tors of metric order on rock glaciers and rock slides in high alpine areas (K̈aäb 1997, K̈aäb 2000). This technique
appears however restricted to landslides with extensive rock outcrops in the absence of major surface changes within
the landslide body. The recent availability of about 1m-resolution optical imagery from the IKONOS, Quickbird and
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EROS A1 satellites creates however new alternatives for landslide monitoring over extensive areas. To evaluate the
potential application of these new images to detect ground surface changes as a result of major slope movements,
we have developed change detection, thresholding, and shape based region filtering methods. These were applied to
digitised panchromatic aerial photographs taken over the Tessina landslide in Veneto, Italy (figure 1).

The Tessina landslide affects an area including small villages, scattered houses, grassland, woodland and or-
chards. It has developed on Eocene flysch deposits composed of marl, sandstone and calcareous units overlaying
Jurassic limestone (Pasuto, Silvano & Bozzo 1993). The movement consists of a series of rotational slides at its
head quickly transforming into a 2km-long mudflow. SurficialQuaternary deposits including colluvium and glacial
till have also been mobilised by the landslide. The Tessina landslide, which was first triggered in 1960, has since
undergone a number of movement episodes, some of which have disrupted communication and threatened the vil-
lages of Fuǹes and Lamosano, east of the city of Belluno. The latest majorreactivation of the landslide occurred
in 1992, when its surface increased from 454,000 to 500,000 m2 (Pasuto et al. 1993, Turrini, Abu-Zeid, Semenza,
Semenza & El-Naqa 1994). After this episode, the evolution of the landslide has been intensively monitored using
field instrumentation (Mantovani, Pasuto, Silvano & Zannoni 2000).

Our work focused on mapping ground surface changes in the landslide body and adjacent areas as a consequence
of the 1992 reactivation. Since high spatial resolution optical satellite images spanning that period were not available,
we used available black and white aerial photographs of 28 September 1988, 31 August 1989 and 7 October 1994 at
1:75,000 scale. The existing high-quality photograph diapositives were precisely scanned at 14 micron to produce the
1m-resolution digital images used in this experiment.

[ Insert figure 1 about here ]

2 Image Pre-processing

In order to apply change detection and thresholding techniques on multi-temporal remotely sensed images, these must
first be geometrically registered and radiometrically normalised. Geometrical registration of aerial photographs of
hilly areas requires orthorectification of the single frames to remove relief distortions caused by central projection
imaging.

To orthorectify our images, a precise 20m-grid digital elevation model (DEM) of the area was first generated from
the 31 August 1989 photograph stereo pair using digital photogrammetric techniques. For this process, this epoch
was used because its lower shadowing effects enabled betterground feature correlation on the photo stereo pair. This
DEM resolution proved later to be adequate to produce fairlywell registered orthophotographs of the Tessina area.
Orthorectification was first accomplished for one of the photographs of 31 August 1989 with the help of the 20m DEM.
Orthophotos were then produced from the 1988 and 1994 photographs using the same DEM and the 1989 orthophoto
as reference for GCP collection. Sub-pixel accuracy was thus achieved in the orthorectification process.

The 1994 orthoimage was then radiometrically normalised tothe 1988 orthoimage by applying gain and bias
coefficients derived from regression analysis between the two images using pixel values taken from pseudo-invariant
targets (Hall, Strebel, Nickenson & Goetz 1991, Hill & Sturm1991). Radiometric normalisation was required to
remove pixel value differences due to varying illumination, shadowing and atmospheric conditions, as well as to
different camera and film response. These two images had beenselected for our change detection analysis since their
dates were more similar in relation to illumination effectsand vegetation phenology.

3 Change Detection

After pre-processing the images are differenced. This is the most widely used method for change detection, and is
both simple and relatively effective compared to more sophisticated approaches such as principal component analysis,
change vector analysis (Singh 1989), and multifractal analysis (Canus & V́ehel 1996). (See also (Yuan & Elvidge
1998) for extensive experimentation with change detectionmethods.) In addition we also consider some alternative
methods for change detection based on more global properties of the two images, which will be described later.
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4 Thresholding Techniques

Having created the difference image it is generally required to threshold it into two classes to provide a ‘change’ and
‘no-change’ classification. Over the years many methods have been developed for image thresholding (e.g. see (Sahoo,
Soltani, Wong & Chen 1988)), but few are directly applicablefor change detection in natural or semi-natural land-
scapes in remote sensing images, since they generally make assumptions that do not hold true in that context. For
instance, many require the distribution of difference image intensities to be bimodal, and furthermore, the size of the
modes should not differ too greatly. However, even in situations where two underlying classes exist, when one is
much larger than the other, its contribution to the histogram is so great that it tends to swamp and effectively obliterate
the presence of the other class, leaving a unimodal distribution. This has led to the recent development of several
thresholding algorithms designed to operate under such conditions (Rosin 2002). These are briefly described below.

4.1 Normal and LMedS Methods

In many instances it is reasonable to assume that the image noise can be modelled by a zero mean Normal distribution
N(0, σ2). In this case, analysing the difference in intensity imagesis straightforward. Differencing followed by taking
the absolute value will produce the Normal distribution2N(0, 2σ2) for positive values only. When thresholding atxσ
the probability of incorrectly classifying a pixel as change is

PF = erfc

(

x√
2σ

)

.

This enables us to choose a suitable thresholdτ for a given acceptable proportion of false change pixels.
In practice the variance of the noise is often unknown and so it needs to be estimated from the image. This can

be done from the data in the standard fashion. Alternatively, we have used the more robust Least Median of Squares
(LMedS) method which is insensitive to large amounts of outliers while remaining computationally efficient.

4.2 Poisson Method

If we assume that the noise is white then its spatial distribution over the image will be random. For the analysis of
spatial data there are many measures of randomness (Upton & Fingleton 1985), often based on the assumption that
the observations follow a Poisson distribution. Since a Poisson distribution has its mean equal to its variance then the
ratio of the sample variance to the sample mean is a natural test for that distribution, and is called therelative variance

Vr =
s2

x̄
.

It is calculated by first counting the number of observations(in our case the number of above threshold pixels in the
difference map) inn windows,xi=1...n, from which the mean,̄x, and variance,s2, of thexi can be found. Although
the test is sensitive to the window size and point density it works adequately as long as̄x is sufficiently large (e.g.
x̄ > 1).

For mapping scene changes due to landsliding we do not wish todetect the spatially random noise, but rather to
avoid it in our thresholded image. This is achieved when there is more clustering than a Poisson distribution, and is
signalled byVr > 1. We therefore select the threshold which maximises the relative variance, thereby maximising
‘clumpiness’ (regions of change) and minimising the Poisson distribution (noise).

4.3 Corner Method

A simple thresholding technique was introduced by Rosin (2001). It analyses the image histogram and selects as a
threshold value the ‘corner’ of the curve. This is detected as the point on the curve with maximum deviation from the
straight line drawn between the end points of the curve (figure 2). The assumption is that the histogram is primarily
unimodal, consisting (in the context of change detection) of a main peak formed by a large set of pixels corresponding
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to low levels of change, and a long tail formed by a mixture of processes such as noise, radiometric differences, and
pixels corresponding to significant change. The ‘corner’ ofthe curve is an appropriate threshold since it separates the
peak from the tail.

The method has been analysed and demonstrated extensively in (Rosin 2001) where it is shown to work well for
a variety of thresholding tasks, including also landslide monitoring (Herv́as, Barredo, Rosin, Pasuto, Mantovani &
Silvano 2003). The technique is robust – it can still operatereliably even when the corner is not distinct (e.g. sharp)
or the histogram is noisy – and does not depend on the histogram containing a specific (e.g. Normal, Rayleigh, etc.)
distribution.

[ Insert figure 2 about here ]

4.4 Connectivity Method

The location, size, and number of the regions of change are generally unknown. However, we might expect that these
properties will remain fairly stable over a wide range of threshold values. This is in contrast to regions occurring
in the thresholded difference map due to noise; down at the noise level small changes in the threshold value can
substantially alter the number of regions. Such an observation suggests that if a range of threshold values is found that
leads to a stable number of regions, then these regions are unlikely to come from noise, and so a value from this range
will provide a suitable threshold. This approach was suggested by O’Gorman (O’Gorman 1994) for intensity image
thresholding. Rather than counting the number of regions the image’s Euler number can be used, and was found to
give almost identical results at much lower computational cost.

The shape of the histogram of Euler number/threshold is modelled as a decaying exponential, and a suitable
partition point between the signal and noise is the ‘corner’of the curve detected using the corner method described
above.

5 Alternative Change Detection

When there is an appreciable time difference between the two remotely sensed images being compared it is often the
case that, in addition to land cover changes (including those due to landsliding in our area), there are some systematic
differences between the images. Although the radiometric normalisation should greatly reduce the effects, some
residual intensity variations may remain. Additive variations have also been observed because of slight misregistration
between the images in some sectors after orthocorrection. Therefore, as an alternative to simple image differencing
there are various approaches to change detection that can betaken in an attempt to overcome such problems, using
measures such as correlation, mutual information, etc. (Rosin 1994).

5.1 Scatter Plot Method

Another approach to attempt to identify systematic variations is to examine the mapping of intensities between the
two images. A scatter plot is generated, where the point co-ordinates are the corresponding pixel intensities in the
two images. Ideally this plot should show a thin straight line at45◦, but in practise there is often some thickening
and distortion. The proposed method robustly finds the central axis of the scatter plot line by calculating the LMedS
estimate of the values within each row. Also at each row the median absolute deviation (MAD), which is a robust
estimate of the standard deviation, is calculated. The outer acceptable boundaries in the scatter plot are then taken
as the LMedS estimate±3 × MAD, since the majority of the no-change population should lie in that range. Change
detection is performed by labelling all pixels as change if they lie outside the scatter plot boundaries.

6 Experimental Results

Figure 3a&b shows pre-processed images of the Tessina landslide area covering the period before and after the most
recent major landslide reactivation. The landslide runs from near the top right corner to the centre bottom left of the
images; the thinner sector represents the mudflow. The imagesize is2700 × 2600. The difference image (figure 3c;
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black indicates high change, white no change) is calculatedby taking the absolute difference of the pixel intensity
values over the two dates. Examination of the histogram of the difference image shows it to be close to a folded
Normal (figure 3d). The irregularity close to zero may be an artifact of incomplete radiometric normalisation or
geometric registration. In figure 3e the scatter plot shows considerable spread, indicating that despite normalisation
there remain appreciable differences which will complicate the thresholding process.

[ Insert figure 3 about here ]
To enable quantitative assessment of the accuracy of the resulting thresholded difference images reference data

was extracted using on-site photographs and aerial photographs. Since we are trying to detect change we can describe
the results of classification as true and false instances of change and no change as shown in table 1. We define overall
accuracy (percentage correct classification) as(TP+TN)/N , where the number of pixelsN = TP+FP+FN+TN .
The definitions for producer’s and user’s accuracies for change and no change are shown in table 2.

[ Insert table 1 about here ]
[ Insert table 2 about here ]
Unfortunately, the process of quantitative evaluation is problematic (Congalton & Green 1999). In particular for

the case encountered here where there are only two classes ofunequal size an arbitrarily good classification of one
class can be achieved at the expense of the other class. Moreover, given the lower number of true change pixels a
good overall classification accuracy can still be gained at excessively high threshold values since the majority of pixels
(which are from the no change class) will still be correctly classified. These problems are demonstrated in the graph
in figure 4 which shows the various assessment criteria for all possible threshold values. We have found that a more
useful criterion is to use the minimum of the four producer and user accuracy values, thereby penalising thresholds
which perform poorly according to any of the four producer/user criteria. This gives a well defined peak (whereas
the other curves tend to be monotonic), and it can be seen fromfigure 5 that thresholding at that value gives a good
trade-off in detecting most areas of change while minimising spurious change labels.

[ Insert figure 4 about here ]
[ Insert figure 5 about here ]
Figure 6 shows the effects of applying the thresholding methods described in section 4 to the difference image.

In addition, four standard image thresholding methods which cover a wide range of the available techniques are
applied. These are based on clustering (Ridler & Calvard 1978), statistics (Otsu 1979), moments (Tsai 1985), and
entropy (Kapur, Sahoo & Wong 1985). Changes detected by the corner, moments, Normal, LMedS and Poisson
algorithms include on the one hand those within the landslide body surface as a result of the 1992 movement (for
instance new soil outcrops because of disruption of the vegetation cover) and those produced after the movement on
stable sectors of the landslide prior to the date of the second image. The latter represent vegetation growth together
with local soil moisture increase during the relative stability period following the 1992 reactivation. These findings
are confirmed by interpretation of both on-site photographsand oblique aerial photographs taken by researchers of
IRPI-CNR, Padua, Italy, during the 1992 movement period, and are in agreement with reports in (Pasuto et al. 1993)
and (Turrini et al. 1994). The changes detected by these five methods outside the landslide body correspond mainly to
man-made changes which include changes on grass parcels, orchards, new roads, tracks, and houses, as well as tree
canopy changes on woodland areas. Much of the noise is due to the residual effects after radiometric normalisation
which are more severe in woodland areas. The clustering, statistical and especially the connectivity methods have
overestimated the changes, while the entropy method has underestimated the changes.

[ Insert figure 6 about here ]
Figure 7a shows the scatter plot with the detected central axis and the threshold boundaries superimposed, resulting

in the thresholded image in figure 7b. For the Tessina area, this method enhances soil freshness due to vegetation cover
disruption and soil remobilisation as a result of landsliding, while still showing some noise as in the other thresholding
methods.

[ Insert figure 7 about here ]
The numerical scores in table 3 corroborate the above conclusions. Ranking the thresholding methods by the

minimum of the producer/user accuracies the corner, Poisson and LMedS perform best, closely followed by the Normal
and moments methods. The remainder achieve significantly lower scores.

[ Insert table 3 about here ]
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6.1 Blob Filtering

It is evident that simple thresholding is not sufficient to identify the true changes from the difference image. We
therefore considered improving the raw thresholded outputby filtering out the undesirable change blobs. This can be
done based on the local properties of the blobs; we consider the following: size (area) and shape (width, perimeter and
rectangularity).

In addition, more global properties also play a role, and we take into account the spatial relationships between
blobs (density). The following sections describe the implementation of these filters and show their application to the
thresholded image obtained from the corner method (see figure 6e).

[ Insert figure 8 about here ]

6.1.1 Width and Density

To eliminate blobs according to their width the well-known erosion and dilation operators are used. Applyingn
iterations of erosion followed byn dilations will eliminate blobs whose width is less than2n. To encourage grouping
of fragmented blobs, i.e. the merging of pixels in dense areas, the same process can be run in reverse. Thus the results
shown in figure 8a&b are generated by the sequence ofn dilations,2n erosions,n dilations. From the figures it can
be seen that small amounts of filtering are sufficient to remove small noise blobs as well as thin structures such as
paths/roads. Higher levels of filtering successfully connect the fragmented blobs within the landslide body to form a
few unified regions of change. The drawback is that the man-made and vegetation changes away from the landslide
are amplified.

6.1.2 Perimeter

Unlike the previous filter step, calculating the perimeter of the blobs requires the blobs to be isolated, which is carried
out using connected component labelling. (Unfortunately the boundaries of objects and holes that we obtain are not
distinguished, and so this causes some minor artifacts in the processing.) The perimeter filter was applied to figure 6e
with two perimeter thresholds set to produce similar numbers of blobs as the width filtering. Figure 8c&d shows
that narrow man-made features like new roads and tracks are better retained compared to width filtering, although for
this application that is actually a disadvantage. At higherlevels of filtering most of the landslide-related changes are
retained while removing much of the extraneous changes.

6.1.3 Area

Having isolated the blobs their area can be easily calculated, and again appropriate thresholds are set to keep similar
numbers of blobs as before. It can be seen from figure 8e&f thatboth the area and perimeter methods produce very
similar results. Most of the changes outside the landslide have been removed and the major regions of change have
been discriminated although their boundaries are coarselydelineated. Nevertheless, overall width filtering was more
successful. Of course, combinations of filters can be applied in order to capitalise on their individual merits. Although
the high level of width filtering in figure 8b created undesirable large noise blobs these can be removed by an area filter
as shown in figure 8g, in which the true regions of change within the landslide have been fairly well discriminated,
although the overall boundaries have been very coarsely delineated.

6.1.4 Rectangularity

A standard method for estimating the rectangularity of a region is applied, namely the ratio of the region’s area against
the area of its minimum bounding rectangle (MBR). The MBR canbe efficiently calculated using Toussaint’s optimal,
linear algorithm (Toussaint 1983). Although the MBR is potentially sensitive to noise a comparison against some
alternative algorithms for measuring rectangularity showed it to work relatively well (Rosin 1999).

Many of the man-made changes have simple polygonal shapes such as rectangular buildings, agricultural fields,
and even some road segments. In some cases it would be useful to apply filtering to identify these objects. In this
case however, we just wish to eliminate them since they do nottypically correspond to effects of the landslide. The
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effects of rejecting and retaining blobs according to theirmeasured rectangularity in combination with perimeter and
area filtering are shown in figure 9. First the perimeter or area filtering was applied. Then a suitable rectangularity
threshold was selected by analysing the graph of the cumulative number of blobs retained after filtering against the
threshold value, see figure 10. The rectangularity of most blobs is near the middle of the range. Since only a relatively
small number of highly rectangular blobs are expected the upper bend at high rectangularity values is a suitable
threshold as this occurs at the point just above the rectangularity values of the majority of the change blobs. The
corner finding approach previously described for thresholdselection was applied, and produced the value 0.6 which is
used for all these examples. In all cases rectangularity hassuccessfully identified most man-made changes.

When low levels of perimeter and area filtering were applied itappears that many small regions are classified as
being highly rectangular. This can be explained by the fact that image discretisation imposes a restriction on the range
of possible shapes at that scale, and the rectilinear grid often results in small blobs appearing rectangle like.

[ Insert figure 9 about here ]
[ Insert figure 10 about here ]
Referring to the lower section of table 3 the scores indicatethat in terms of post-processing, applying large amounts

of width and area filtering was most effective. According to the table rectangularity filtering was ineffectual. However,
this is because the assessment values do not reflect its ability to highlight specific regions of man-made change.

7 Conclusions and Future Work

The application of thresholding methods to difference images derived from multi-temporal digital aerial photographs
simulating the high spatial resolution of new satellite sensor imagery has proved useful to map ground surface changes
related to landslide activity.

Of course, there are many other techniques available for change detection (Singh 1989) which we were unable to
evaluate in this paper and there is still considerable active research in this field (Bruzzone & Prieto 2000). Likewise,
there is much interesting work in thresholding that combines some aspects of filtering. For instance there is the soft
morphology approach (Stringa 2000) and hysteresis based thresholding (Rosin & Ellis 1995).

Some constraints to this method were however found in our imagery that are mainly due to the single-band wide
spectral range of aerial photographs, lack of image calibration, and especially to possible man-made and natural
changes occurring during the long time elapsed between the available photos. The latter, in particular, may mask
actual movement in some landslide sectors. This can howeverbe partly overcome by making assumptions based on
image analysis and field checking.

Because of the repetitive observations starting to be provided by high spatial resolution satellite sensors with multi-
spectral imaging capabilities, the methods reported in this paper could become complementary to ground surveying
and visual photointerpretation techniques for landslide monitoring on extensive areas at scales up to 1:5000, especially
in densely vegetated areas where DInSAR techniques are often of limited application. Yet these methods can be applied
to archived digital aerial photographs to determine the recent history of landslide activity at even larger scales.

Figure 11 illustrates that splitting up positive and negative change to further discriminate changes associated with
landslide reactivation is part of our current research (Hervás & Rosin 2001, Herv́as et al. 2003). For instance, white
within the landslide body (positive change) indicates ground change patterns mostly associated with the reactivation
occurred in 1992, whereas pixels in black (negative change)appear mostly associated with either simple land cover
changes or soil moisture increase. The land cover changes within the landslide body are mainly related to vegetation
growth, thus meaning ground stability. Widespread soil moisture increase within the landslide may be a forerunner of
possible future movement. A major research effort, however, will still be needed to derive landslide movement rates
from optical satellite imagery.

[ Insert figure 11 about here ]
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false negative (FN) true negative (TN)

true positive (TP) false positive (FP)

C
LA

S
S

A
S

S
IG

N
E

D

no change

change

change no change

REFERENCE CLASS

Table 1: Labelling of all possible correct and incorrect pixel classifications.

no change

change

user’s accuracy

TP/(TP+FP)

TN/(FN+TN)

TP/(TP+FN)

TN/(FP+TN)

producer’s accuracy

Table 2: Calculation of producer and user accuracies.
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Overall Minimum of Producer’s Accuracy User’s Accuracy
Accuracy Producer &

User Values Change No Change Change No Change
corner 91.5 34.54 36.4 95.3 34.5 95.6
Poisson 91.2 33.49 38.0 94.8 33.5 95.7
LMedS 91.2 33.49 38.0 94.8 33.5 95.7
Normal 90.0 30.16 43.1 93.2 30.2 96.0
moments 88.9 27.94 46.7 91.8 27.9 96.2
statistical 84.6 22.12 55.9 86.6 22.1 96.6
scatter plot 91.0 19.85 19.8 95.9 24.7 94.6
clustering 80.5 18.77 61.7 81.8 18.8 96.9
entropy 93.6 11.42 11.4 99.3 51.4 94.3
connectivity 50.2 9.75 82.2 48.0 9.7 97.5

figure 8g 93.3 48.48 81.5 94.1 48.5 98.7
figure 8a 92.7 42.93 43.5 96.1 42.9 96.1
figure 8c 92.8 33.83 33.8 96.9 42.5 95.5
figure 8e 92.9 33.80 33.8 96.9 42.8 95.5
figure 9a 93.5 32.40 32.4 97.7 48.6 95.5
figure 8d 94.0 31.08 31.1 98.3 55.1 95.4
figure 8f 94.0 30.88 30.9 98.3 55.0 95.4
figure 9c 94.2 30.70 30.7 98.5 58.5 95.4
figure 8b 85.9 28.98 83.0 86.1 29.0 98.7
figure 9e 94.1 27.44 27.4 98.6 57.8 95.2
figure 9g 94.4 26.34 26.3 99.0 64.2 95.2

Table 3: Assessment of the threshold techniques demonstrated in figures 6 and 7 are given in the upper section. The
lower section contains results of applying post-processing in the form of filtering the results from the corner algorithm;
see figures 8 and 9. Entries are ordered by the minimum of the four producer/user accuracy values.
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Figure 1: Location of the Tessina area

threshold Intensity
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Figure 2: Determining the threshold from the histogram by locating the corner at the point of maximum deviation
from the straight line
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Figure 3: Images of the Tessina landslide area before and after the 1992 reactivation. (a) 28-9-1988, (b) 7-10-1994, (c)
inverted difference image (absolute values are taken and black indicates large differences), (d) histogram of difference
image, (e) scatter plot of image intensities in corresponding pixels between the 1988 and 1994 images (black indicates
high frequency)
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Figure 4: Accuracies of thresholding for all possible thresholds as calculated from the reference data. The peak of the
minimum of the four producer/user accuracy values is at the threshold value of 32 as indicated by the dashed line.

Figure 5: The optimal global thresholding of the differenceimage according to the minimum of the producer/user
accuracy criterion (i.e. the location of the peak in figure 4).
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(a) clustering (b) statistical (c) moments

(d) entropy (e) corner (f) connectivity

(g) Poisson (h) LMedS (i) Normal

Figure 6: Binary change map produced by thresholding the difference image using difference methods
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(a) scatter boundaries (b) scatter result

Figure 7: Binary change map produced analysing the intensity scatter plot
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(a) erosion/dilation: 2 iterations (b) erosion/dilation: 9 iterations

(c) perimeter> 30 (d) perimeter> 100

(e) area> 52 (f) area> 266

(g) erosion/dilation/area:
9 iterations & area> 10000

Figure 8: Blob filtering of the corner thresholded image using width, perimeter and area properties
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(a) perim.> 30 & rectangularity< 0.6 (b) perim.> 30 & rectangularity≥ 0.6

(c) perim.> 100 & rectangularity< 0.6 (d) perim.> 100 & rectangularity≥ 0.6

(e) area> 52 & rectangularity< 0.6 (f) area> 52 & rectangularity≥ 0.6

(g) area> 266 & rectangularity< 0.6 (h) area> 266 & rectangularity≥ 0.6

Figure 9: Additionally filtering blobs using rectangularity property
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Figure 10: Cumulative number of blobs vs rectangularity threshold

Figure 11: Differentiating between positive and negative intensity changes
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