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Abstract

Detecting landslides and monitoring their activity is of great relevancei$aister prevention, preparedness and
mitigation in hilly areas. To this end, change detection techniques are dededop applied to multi-temporal digital
aerial photographs, simulating the very high spatial resolution of neWliteasensor optical imagery, over the Tessina
complex landslide in north-eastern Italy. Several automatic thresholtiiopgtams are compared on the difference
orthorectified and radiometrically normalised images, including someatdntethods based on clustering, statistics,
moments, and entropy, as well as some more novel techniques igvitaveloped by the authors. In addition, a
variety of filters are employed to eliminate much of the undesirable resautér in the thresholded difference
image, mainly as a result of natural vegetation and man-made land duseges. These filters are based on shape
and size properties of the connected sets of pixels in the threshold mhisshak enabled us to discriminate most
ground surface changes related to the movement of a preexistindjdands

1 Introduction

Landslides constitute a major hazard to population, ptgerd infrastructure in many hilly and mountainous areas.
Detecting landslides and monitoring their activity is #fere of great relevance for disaster prevention, prepees
and mitigation. Since the advent of regularly-acquirech®AR and high spatial resolution optical imagery from
space platforms, often providing also stereoscopic céipalsemote sensing is increasingly used not only to assist
in landslide investigations by deriving area-wide land, g@®logical and geomorphological information in landsiid
prone areas, but also for direct delineation of landslidéase boundaries and monitoring their activity. In largelec
landslide monitoring, remote sensing can still be a powedmplement to point-based ground surveying techniques
(cf. (Keaton & DeGraff 1996) for a review of such technique®gt, traditional visual photo-interpretation methods
for landslide mapping and monitoring (Soeters & van Wes&36) should not be underestimated with the availability
of latest-generation space-borne digital imagery.

Differential SAR interferometry (DINSAR) has proved cafmabf measuring landslide centimetric displacements
(e.g. (Fruneau, Achache & Delacourt 1996, Rott, Scheudbfieb & Grasemann 1999, Vietmeier, Wagner & Dikau
1999, Refice, Bovenga, Wasowski & Guerriero 2000)). Howedteapplication may be constrained by unfavourable
SAR imaging geometry with respect to slopes, inadequatiespasolution for landslides with high internal deforma-
tion, atmospheric effects, and especially signal phaserdelation due to both vegetation and soil moisture changes
between SAR data takes. Yet fast landslides may not be esdly time-separated SAR data acquisitions. Digital
aerophotogrammetry and correlation techniques have akso successfully employed to derive surface velocity vec-
tors of metric order on rock glaciers and rock slides in hifgiine areas (Kab 1997, Kab 2000). This technique
appears however restricted to landslides with extensiek oatcrops in the absence of major surface changes within
the landslide body. The recent availability of about 1nwsheson optical imagery from the IKONOS, Quickbird and



EROS Al satellites creates however new alternatives fatslade monitoring over extensive areas. To evaluate the
potential application of these new images to detect groumfhse changes as a result of major slope movements,
we have developed change detection, thresholding, anc dieeged region filtering methods. These were applied to
digitised panchromatic aerial photographs taken over #ssiha landslide in Veneto, Italy (figure 1).

The Tessina landslide affects an area including smallgela scattered houses, grassland, woodland and or-
chards. It has developed on Eocene flysch deposits compdsedrh sandstone and calcareous units overlaying
Jurassic limestone (Pasuto, Silvano & Bozzo 1993). The mew¢ consists of a series of rotational slides at its
head quickly transforming into a 2km-long mudflow. Surfid@@alaternary deposits including colluvium and glacial
till have also been mobilised by the landslide. The Tessamaldlide, which was first triggered in 1960, has since
undergone a number of movement episodes, some of which lewgttd communication and threatened the vil-
lages of Fues and Lamosano, east of the city of Belluno. The latest mafxctivation of the landslide occurred
in 1992, when its surface increased from 454,000 to 500,00QRasuto et al. 1993, Turrini, Abu-Zeid, Semenza,
Semenza & El-Naga 1994). After this episode, the evolutibthe landslide has been intensively monitored using
field instrumentation (Mantovani, Pasuto, Silvano & Zanri{00).

Our work focused on mapping ground surface changes in thislide body and adjacent areas as a consequence
of the 1992 reactivation. Since high spatial resolutionicgpsatellite images spanning that period were not aviai)ab
we used available black and white aerial photographs of P8cBwher 1988, 31 August 1989 and 7 October 1994 at
1:75,000 scale. The existing high-quality photograph aétjves were precisely scanned at 14 micron to produce the
1m-resolution digital images used in this experiment.

[ Insert figure 1 about here ]

2 Image Pre-processing

In order to apply change detection and thresholding teclasign multi-temporal remotely sensed images, these must
first be geometrically registered and radiometrically nalised. Geometrical registration of aerial photographs of
hilly areas requires orthorectification of the single frante remove relief distortions caused by central projection
imaging.

To orthorectify our images, a precise 20m-grid digital ateyn model (DEM) of the area was first generated from
the 31 August 1989 photograph stereo pair using digital giraimmetric techniques. For this process, this epoch
was used because its lower shadowing effects enabled bettand feature correlation on the photo stereo pair. This
DEM resolution proved later to be adequate to produce faiyl registered orthophotographs of the Tessina area.
Orthorectification was first accomplished for one of the pgodphs of 31 August 1989 with the help of the 20m DEM.
Orthophotos were then produced from the 1988 and 1994 playibg using the same DEM and the 1989 orthophoto
as reference for GCP collection. Sub-pixel accuracy was #ichieved in the orthorectification process.

The 1994 orthoimage was then radiometrically normalisethéo1988 orthoimage by applying gain and bias
coefficients derived from regression analysis betweenvtiodrhages using pixel values taken from pseudo-invariant
targets (Hall, Strebel, Nickenson & Goetz 1991, Hill & Stuf@91). Radiometric normalisation was required to
remove pixel value differences due to varying illuminafi@hadowing and atmospheric conditions, as well as to
different camera and film response. These two images haddedected for our change detection analysis since their
dates were more similar in relation to illumination effeatsl vegetation phenology.

3 Change Detection

After pre-processing the images are differenced. Thisasntlest widely used method for change detection, and is
both simple and relatively effective compared to more sstig@ted approaches such as principal component analysis,
change vector analysis (Singh 1989), and multifractaly@igl(Canus & \éhel 1996). (See also (Yuan & Elvidge
1998) for extensive experimentation with change deteatiethods.) In addition we also consider some alternative
methods for change detection based on more global propeftibe two images, which will be described later.



4  Thresholding Techniques

Having created the difference image it is generally reqlicethreshold it into two classes to provide a ‘change’ and
‘no-change’ classification. Over the years many methods haen developed for image thresholding (e.g. see (Sahoo,
Soltani, Wong & Chen 1988)), but few are directly applicatdechange detection in natural or semi-natural land-
scapes in remote sensing images, since they generally nsakenptions that do not hold true in that context. For
instance, many require the distribution of difference imagensities to be bimodal, and furthermore, the size of the
modes should not differ too greatly. However, even in situst where two underlying classes exist, when one is
much larger than the other, its contribution to the histogimso great that it tends to swamp and effectively obliterat
the presence of the other class, leaving a unimodal disimibu This has led to the recent development of several
thresholding algorithms designed to operate under suctiitoms (Rosin 2002). These are briefly described below.

41 Normal and LMedS Methods

In many instances it is reasonable to assume that the image ¢em be modelled by a zero mean Normal distribution
N(0,0?). Inthis case, analysing the difference in intensity imagasraightforward. Differencing followed by taking
the absolute value will produce the Normal distributiifi (0, 202) for positive values only. When thresholding:at

the probability of incorrectly classifying a pixel as charig

i
Pr =erfc | — ).
" (\/50)
This enables us to choose a suitable threshdlat a given acceptable proportion of false change pixels.
In practice the variance of the noise is often unknown and seéds to be estimated from the image. This can
be done from the data in the standard fashion. Alternativeéyhave used the more robust Least Median of Squares
(LMedS) method which is insensitive to large amounts ofietglwhile remaining computationally efficient.

4.2 Poisson Method

If we assume that the noise is white then its spatial disfidbuover the image will be random. For the analysis of
spatial data there are many measures of randomness (Uptamgeten 1985), often based on the assumption that
the observations follow a Poisson distribution. Since a&wi distribution has its mean equal to its variance then the
ratio of the sample variance to the sample mean is a natstdbtethat distribution, and is called tiheative variance

It is calculated by first counting the number of observatibnour case the number of above threshold pixels in the
difference map) im windows,z,—1 .., from which the meang, and variances?, of thex; can be found. Although
the test is sensitive to the window size and point densityoitkes adequately as long asis sufficiently large (e.g.
z>1).

For mapping scene changes due to landsliding we do not widbtext the spatially random noise, but rather to
avoid it in our thresholded image. This is achieved whenefi®more clustering than a Poisson distribution, and is
signalled byV, > 1. We therefore select the threshold which maximises thdivelsariance, thereby maximising
‘clumpiness’ (regions of change) and minimising the Paisdistribution (noise).

4.3 Corner Method

A simple thresholding technique was introduced by Rosif®{20 It analyses the image histogram and selects as a
threshold value the ‘corner’ of the curve. This is detectetha point on the curve with maximum deviation from the
straight line drawn between the end points of the curve @@)r The assumption is that the histogram is primarily
unimodal, consisting (in the context of change detectid@main peak formed by a large set of pixels corresponding



to low levels of change, and a long tail formed by a mixture rafgesses such as noise, radiometric differences, and
pixels corresponding to significant change. The ‘cornethefcurve is an appropriate threshold since it separates the
peak from the tail.

The method has been analysed and demonstrated extensi@gsin 2001) where it is shown to work well for
a variety of thresholding tasks, including also landslidenitoring (Henas, Barredo, Rosin, Pasuto, Mantovani &
Silvano 2003). The technique is robust — it can still operali@bly even when the corner is not distinct (e.g. sharp)
or the histogram is noisy — and does not depend on the histogoataining a specific (e.g. Normal, Rayleigh, etc.)
distribution.

[ Insert figure 2 about here ]

4.4 Connectivity Method

The location, size, and number of the regions of change arerglty unknown. However, we might expect that these
properties will remain fairly stable over a wide range ofettrold values. This is in contrast to regions occurring
in the thresholded difference map due to noise; down at tligerevel small changes in the threshold value can
substantially alter the number of regions. Such an observatiggests that if a range of threshold values is found that
leads to a stable number of regions, then these regions kkelyrio come from noise, and so a value from this range
will provide a suitable threshold. This approach was suggely O’Gorman (O’'Gorman 1994) for intensity image
thresholding. Rather than counting the number of regioadrtage’s Euler number can be used, and was found to
give almost identical results at much lower computationat.c

The shape of the histogram of Euler number/threshold is ftemtlas a decaying exponential, and a suitable
partition point between the signal and noise is the ‘cornéthe curve detected using the corner method described
above.

5 Alternative Change Detection

When there is an appreciable time difference between thedmotely sensed images being compared it is often the
case that, in addition to land cover changes (includingalthe to landsliding in our area), there are some systematic
differences between the images. Although the radiomewitnalisation should greatly reduce the effects, some
residual intensity variations may remain. Additive vadas have also been observed because of slight misregstrat
between the images in some sectors after orthocorrectibarefore, as an alternative to simple image differencing
there are various approaches to change detection that cakdrein an attempt to overcome such problems, using
measures such as correlation, mutual information, etcsi(R994).

5.1 Scatter Plot M ethod

Another approach to attempt to identify systematic vesiadiis to examine the mapping of intensities between the
two images. A scatter plot is generated, where the pointrdorates are the corresponding pixel intensities in the
two images. Ideally this plot should show a thin straighelat45°, but in practise there is often some thickening
and distortion. The proposed method robustly finds the akaxis of the scatter plot line by calculating the LMedS
estimate of the values within each row. Also at each row thdiameabsolute deviation (MAD), which is a robust
estimate of the standard deviation, is calculated. Ther@deeptable boundaries in the scatter plot are then taken
as the LMedS estimat&3 x MAD, since the majority of the no-change population shoigdr that range. Change
detection is performed by labelling all pixels as changaéfytlie outside the scatter plot boundaries.

6 Experimental Results

Figure 3a&b shows pre-processed images of the Tessindildadsea covering the period before and after the most
recent major landslide reactivation. The landslide runosfnear the top right corner to the centre bottom left of the
images; the thinner sector represents the mudflow. The imiagds2700 x 2600. The difference image (figure 3c;



black indicates high change, white no change) is calculbietiking the absolute difference of the pixel intensity
values over the two dates. Examination of the histogram efdifference image shows it to be close to a folded
Normal (figure 3d). The irregularity close to zero may be difaat of incomplete radiometric normalisation or

geometric registration. In figure 3e the scatter plot showssitlerable spread, indicating that despite normalisatio
there remain appreciable differences which will compéddie thresholding process.

[ Insert figure 3 about here ]

To enable quantitative assessment of the accuracy of théingsthresholded difference images reference data
was extracted using on-site photographs and aerial pregibgr Since we are trying to detect change we can describe
the results of classification as true and false instancelarige and no change as shown in table 1. We define overall
accuracy (percentage correct classificatior(faB+17'N) /N, where the number of pixel§ = TP+ FP+FN+TN.

The definitions for producer’s and user’s accuracies fongband no change are shown in table 2.

[ Insert table 1 about here ]

[ Insert table 2 about here ]

Unfortunately, the process of quantitative evaluationribfematic (Congalton & Green 1999). In particular for
the case encountered here where there are only two classes@ifial size an arbitrarily good classification of one
class can be achieved at the expense of the other class. Waorgoven the lower number of true change pixels a
good overall classification accuracy can still be gainedeg¢ssively high threshold values since the majority of gixe
(which are from the no change class) will still be correctlyssified. These problems are demonstrated in the graph
in figure 4 which shows the various assessment criteria fqgraaisible threshold values. We have found that a more
useful criterion is to use the minimum of the four produced aser accuracy values, thereby penalising thresholds
which perform poorly according to any of the four producsetucriteria. This gives a well defined peak (whereas
the other curves tend to be monotonic), and it can be seenffgure 5 that thresholding at that value gives a good
trade-off in detecting most areas of change while miningisipurious change labels.

[ Insert figure 4 about here ]

[ Insert figure 5 about here ]

Figure 6 shows the effects of applying the thresholding wadidescribed in section 4 to the difference image.
In addition, four standard image thresholding methods lttiover a wide range of the available techniques are
applied. These are based on clustering (Ridler & Calvard),9tatistics (Otsu 1979), moments (Tsai 1985), and
entropy (Kapur, Sahoo & Wong 1985). Changes detected by dheeg moments, Normal, LMedS and Poisson
algorithms include on the one hand those within the landdtiddy surface as a result of the 1992 movement (for
instance new soil outcrops because of disruption of thetagiga cover) and those produced after the movement on
stable sectors of the landslide prior to the date of the sbonage. The latter represent vegetation growth together
with local soil moisture increase during the relative dtgbperiod following the 1992 reactivation. These findings
are confirmed by interpretation of both on-site photograguing oblique aerial photographs taken by researchers of
IRPI-CNR, Padua, Italy, during the 1992 movement period, @@ in agreement with reports in (Pasuto et al. 1993)
and (Turrini et al. 1994). The changes detected by these #thads outside the landslide body correspond mainly to
man-made changes which include changes on grass paragisrads, new roads, tracks, and houses, as well as tree
canopy changes on woodland areas. Much of the noise is dhe t@sidual effects after radiometric normalisation
which are more severe in woodland areas. The clusterintistital and especially the connectivity methods have
overestimated the changes, while the entropy method hasestinated the changes.

[ Insert figure 6 about here ]

Figure 7a shows the scatter plot with the detected centimbaxi the threshold boundaries superimposed, resulting
in the thresholded image in figure 7b. For the Tessina arsayttthod enhances soil freshness due to vegetation cover
disruption and soil remobilisation as a result of landsligiwhile still showing some noise as in the other thresingidi
methods.

[ Insert figure 7 about here ]

The numerical scores in table 3 corroborate the above csiods. Ranking the thresholding methods by the
minimum of the producer/user accuracies the corner, Po&sd LMedS perform best, closely followed by the Normal
and moments methods. The remainder achieve significantigriecores.

[ Insert table 3 about here ]



6.1 Blob Filtering

It is evident that simple thresholding is not sufficient tendify the true changes from the difference image. We
therefore considered improving the raw thresholded olgdiltering out the undesirable change blobs. This can be
done based on the local properties of the blobs; we condiddotiowing: size (area) and shape (width, perimeter and
rectangularity).

In addition, more global properties also play a role, and ak& tinto account the spatial relationships between
blobs (density). The following sections describe the impatation of these filters and show their application to the
thresholded image obtained from the corner method (seesfiggix

[ Insert figure 8 about here ]

6.1.1 Width and Density

To eliminate blobs according to their width the well-knowrogon and dilation operators are used. Applying
iterations of erosion followed by dilations will eliminate blobs whose width is less thzm To encourage grouping

of fragmented blobs, i.e. the merging of pixels in densesrd@ same process can be run in reverse. Thus the results
shown in figure 8a&b are generated by the sequencedifations,2n erosionsy dilations. From the figures it can

be seen that small amounts of filtering are sufficient to resyemall noise blobs as well as thin structures such as
paths/roads. Higher levels of filtering successfully caniitiee fragmented blobs within the landslide body to form a
few unified regions of change. The drawback is that the madenaad vegetation changes away from the landslide
are amplified.

6.1.2 Perimeter

Unlike the previous filter step, calculating the perimetethe blobs requires the blobs to be isolated, which is cdrrie
out using connected component labelling. (Unfortunatieé/tioundaries of objects and holes that we obtain are not
distinguished, and so this causes some minor artifacteipthcessing.) The perimeter filter was applied to figure 6e
with two perimeter thresholds set to produce similar nulwdrblobs as the width filtering. Figure 8c&d shows
that narrow man-made features like new roads and tracksetier Ibetained compared to width filtering, although for
this application that is actually a disadvantage. At higbeels of filtering most of the landslide-related changes ar
retained while removing much of the extraneous changes.

6.1.3 Area

Having isolated the blobs their area can be easily calalil@ed again appropriate thresholds are set to keep similar
numbers of blobs as before. It can be seen from figure 8e&fltbtht the area and perimeter methods produce very
similar results. Most of the changes outside the landslalebeen removed and the major regions of change have
been discriminated although their boundaries are coadsdigeated. Nevertheless, overall width filtering was more
successful. Of course, combinations of filters can be aghplierder to capitalise on their individual merits. Althdug

the high level of width filtering in figure 8b created undekledarge noise blobs these can be removed by an area filter
as shown in figure 8g, in which the true regions of change withé landslide have been fairly well discriminated,
although the overall boundaries have been very coarselysdged.

6.1.4 Rectangularity

A standard method for estimating the rectangularity of éoregs applied, namely the ratio of the region’s area against
the area of its minimum bounding rectangle (MBR). The MBR barfficiently calculated using Toussaint’s optimal,
linear algorithm (Toussaint 1983). Although the MBR is puielly sensitive to noise a comparison against some
alternative algorithms for measuring rectangularity sbadwt to work relatively well (Rosin 1999).

Many of the man-made changes have simple polygonal shaphsasuectangular buildings, agricultural fields,
and even some road segments. In some cases it would be usefuply filtering to identify these objects. In this
case however, we just wish to eliminate them since they daypatally correspond to effects of the landslide. The



effects of rejecting and retaining blobs according to the#asured rectangularity in combination with perimeter and
area filtering are shown in figure 9. First the perimeter oadileering was applied. Then a suitable rectangularity
threshold was selected by analysing the graph of the cuiveilatimber of blobs retained after filtering against the
threshold value, see figure 10. The rectangularity of magishis near the middle of the range. Since only a relatively
small number of highly rectangular blobs are expected thgeupend at high rectangularity values is a suitable
threshold as this occurs at the point just above the rectariyuvalues of the majority of the change blobs. The
corner finding approach previously described for threskeldction was applied, and produced the value 0.6 which is
used for all these examples. In all cases rectangularitghesessfully identified most man-made changes.

When low levels of perimeter and area filtering were appliepjtears that many small regions are classified as
being highly rectangular. This can be explained by the faatimage discretisation imposes a restriction on the range
of possible shapes at that scale, and the rectilinear gieth oésults in small blobs appearing rectangle like.

[ Insert figure 9 about here ]

[ Insert figure 10 about here ]

Referring to the lower section of table 3 the scores indittedin terms of post-processing, applying large amounts
of width and area filtering was most effective. Accordinghe table rectangularity filtering was ineffectual. However
this is because the assessment values do not reflect ity aditiighlight specific regions of man-made change.

7 Conclusions and Future Work

The application of thresholding methods to difference iesaderived from multi-temporal digital aerial photographs
simulating the high spatial resolution of new satellites®rimagery has proved useful to map ground surface changes
related to landslide activity.

Of course, there are many other techniques available forgehdetection (Singh 1989) which we were unable to
evaluate in this paper and there is still considerable actgearch in this field (Bruzzone & Prieto 2000). Likewise,
there is much interesting work in thresholding that combiseme aspects of filtering. For instance there is the soft
morphology approach (Stringa 2000) and hysteresis baseshtblding (Rosin & Ellis 1995).

Some constraints to this method were however found in ougémathat are mainly due to the single-band wide
spectral range of aerial photographs, lack of image cdliiraand especially to possible man-made and natural
changes occurring during the long time elapsed betweenwvitable photos. The latter, in particular, may mask
actual movement in some landslide sectors. This can hovieveartly overcome by making assumptions based on
image analysis and field checking.

Because of the repetitive observations starting to be gealby high spatial resolution satellite sensors with multi
spectral imaging capabilities, the methods reported i phaiper could become complementary to ground surveying
and visual photointerpretation techniques for landslidaioring on extensive areas at scales up to 1:5000, edlyecia
in densely vegetated areas where DINSAR techniques aredffienited application. Yet these methods can be applied
to archived digital aerial photographs to determine themehbistory of landslide activity at even larger scales.

Figure 11 illustrates that splitting up positive and negatihange to further discriminate changes associated with
landslide reactivation is part of our current research y@le& Rosin 2001, Heas et al. 2003). For instance, white
within the landslide body (positive change) indicates gabuhange patterns mostly associated with the reactivation
occurred in 1992, whereas pixels in black (negative chaagpgar mostly associated with either simple land cover
changes or soil moisture increase. The land cover chandbmhe landslide body are mainly related to vegetation
growth, thus meaning ground stability. Widespread soilstuwe increase within the landslide may be a forerunner of
possible future movement. A major research effort, howew#r still be needed to derive landslide movement rates
from optical satellite imagery.

[ Insert figure 11 about here ]
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REFERENCE CLASS

change

no change

change | true positive (TP)

false positive (FP

ASSIGNED
CLASS

no change | false negative (FN

true negative (TN

Table 1: Labelling of all possible correct and incorrectgbislassifications.

producer’s accuracy

user’saccuracy

change

TP/(TP+FN)

TP/(TP+FP)

no change

TN/(FP+TN)

TN/(FN+TN)

Table 2: Calculation of producer and user accuracies.
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Overall | Minimum of | Producer’sAccuracy | User’sAccuracy
Accuracy | Producer &
User Values | Change | No Change | Change | No Change
corner 91.5 34.54 36.4 95.3 34.5 95.6
Poisson 91.2 33.49 38.0 94.8 33.5 95.7
LMedS 91.2 33.49 38.0 94.8 335 95.7
Normal 90.0 30.16 43.1 93.2 30.2 96.0
moments 88.9 27.94 46.7 91.8 27.9 96.2
statistical 84.6 22.12 55.9 86.6 22.1 96.6
scatter plot 91.0 19.85 19.8 95.9 24.7 94.6
clustering 80.5 18.77 61.7 81.8 18.8 96.9
entropy 93.6 11.42 11.4 99.3 51.4 94.3
connectivity 50.2 9.75 82.2 48.0 9.7 97.5
figure 8g 93.3 48.48 81.5 94.1 48.5 98.7
figure 8a 92.7 42.93 43.5 96.1 42.9 96.1
figure 8c 92.8 33.83 33.8 96.9 425 95.5
figure 8e 92.9 33.80 33.8 96.9 42.8 95.5
figure 9a 93.5 32.40 32.4 97.7 48.6 95.5
figure 8d 94.0 31.08 31.1 98.3 55.1 95.4
figure 8f 94.0 30.88 30.9 98.3 55.0 95.4
figure 9c 94.2 30.70 30.7 98.5 58.5 95.4
figure 8b 85.9 28.98 83.0 86.1 29.0 98.7
figure 9e 94.1 27.44 27.4 98.6 57.8 95.2
figure 99 94.4 26.34 26.3 99.0 64.2 95.2

Table 3: Assessment of the threshold techniques demaedirafigures 6 and 7 are given in the upper section. The
lower section contains results of applying post-procegiirthe form of filtering the results from the corner algomith
see figures 8 and 9. Entries are ordered by the minimum of threpf@ducer/user accuracy values.
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Figure 1: Location of the Tessina area
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Figure 2: Determining the threshold from the histogram kgatmg the corner at the point of maximum deviation
from the straight line
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Figure 3: Images of the Tessina landslide area before aadthé 1992 reactivation. (a) 28-9-1988, (b) 7-10-1994, (c)
inverted difference image (absolute values are taken auk lhdicates large differences), (d) histogram of diffexe
image, (e) scatter plot of image intensities in correspomgixels between the 1988 and 1994 images (black indicates
high frequency)
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Figure 4: Accuracies of thresholding for all possible thi@ds as calculated from the reference data. The peak of the
minimum of the four producer/user accuracy values is athheshold value of 32 as indicated by the dashed line.

Figure 5: The optimal global thresholding of the differememge according to the minimum of the producer/user
accuracy criterion (i.e. the location of the peak in figure 4)
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Figure 6: Binary change map produced by thresholding tHerdifice image using difference methods
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Figure 7: Binary change map produced analysing the intessitter plot
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Figure 8: Blob filtering of the corner thresholded image gsindth, perimeter and area properties
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Figure 9: Additionally filtering blobs using rectangularfiroperty
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Figure 10: Cumulative number of blobs vs rectangularitgshiold

Figure 11: Differentiating between positive and negatitensity changes
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