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Abstract Humans have the ability to perceive 3D shapes

from 2D projections of rotating 3D objects, which is called

Kinetic Depth Effects. This process is based on a variety of

visual cues such as lighting and shading effects. However,

when such cues are weakened or missing, perception can

become faulty, as demonstrated by the famous silhouette

illusion example – the Spinning Dancer. Inspired by this,

we establish objective and subjective evaluation models of

rotated 3D objects by taking their projected 2D images

as input. We investigate five different cues: ambient

luminance, shading, rotation speed, perspective, and color

difference between the objects and background. In the

objective evaluation model, we first apply 3D reconstruction

algorithms to obtain an objective reconstruction quality

metric, and then use a quadratic stepwise regression analysis

method to determine the weights among depth cues to

represent the reconstruction quality. In the subjective

evaluation model, we design a comprehensive user study to

reveal correlations on the reaction time/accuracy, rotation

speed, and the perspective. The two evaluation models

are generally consistent, and can largely benefit the

inter-disciplinary research of visual perception and 3D

reconstruction.

Keywords Kinetic Depth Effects, 3D reconstruction,

perceptual factor analysis.

1 TKLNDST, CS, Nankai University, Tianjin, China. Email: im-

climmy@qq.com; slu@nankai.edu.cn (�).

2 State Key Laboratory of Virtual Reality Technology and

Systems, Beihang University, Beijing, China.

3 Department of Computer Science, University of Bath, UK.

4 School of Computer Science and Informatics, Cardiff

University, Wales, UK.

Manuscript received: 20xx-xx-xx; accepted: 20xx-xx-xx.

Fig. 1 The Spinning Dancer. Due to the lack of visual cues, it confuses humans

as to whether rotation is clockwise or counterclockwise. Here we show 3 of 34

frames from the original animation [? ]. Image courtesy of Nobuyuki Kayahara.

1 Introduction

The human perception mechanism of the 3D world has

long been studied. In the early 17th century, artists

developed a whole system of stimuli of monocular depth

perception especially on shading and transparency [? ]. The

loss of depth perception related stimuli leads to a variety

of visual illusions, such as the Pulfrich effect [? ]. In this

example, with a dark filter on the right eye, dots moving to

the right seem to be closer to participants than dots moving

to the left, even though all the dots are actually at the same

distance. This is caused by slower human perception of

darker objects.

When a 3D object is rotating around a fixed axis, humans

are capable of perceiving the shape of the object from its

2D projections. This is called the Kinetic Depth Effect [? ].

However, when the light over the object is disabled, humans

can only perceive partial 3D information from the varying

silhouette of the kinetic object over time, which easily leads

to ambiguous understanding of the 3D object. One typical

example of this phenomenon is the Spinning Dancer [? ?

] (see Fig. ?? for some sample frames). The dancer is

observed to be spinning in clockwise or counterclockwise

directions by different viewers. Such ambiguity implies that

more cues are needed for humans to make accurate depth
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judgements for 3D objects. Visual cues such as occlusion [?

], frame timing [? ], speed and axis of rotation [? ] are

widely studied by researchers. In addition, the perspective

effects also affect the accuracy of direction judgements [? ].

In this paper, we make in-depth investigations on how

visual cues influence the perception of Kinetic Depth

Effects from two aspects, including objective computational

modeling, and subjective perceptual analysis. We formulate

and quantify visual cues from both 3D objects and their

surrounding environment. On the one hand, we make

a comprehensive subjective evaluation to correlate the

subjective depth judgement of a 3D object and its visual

conditions. On the other hand, as depth perception largely

depends on the quality of shape reconstruction in mind, we

also propose an objective evaluation method based on 3D

computational modeling [? ]. This allows us to quantify

the impacts of the involved visual cues. The impact factors

are achieved by solving a multivariate quadratic regression

problem. Finally, we analyze the interrelations between the

proposed subjective and objective evaluation models, and

reveal the consistent impacts of visual cues on such models.

In summary, our work makes the following major

contributions:

• A novel objective evaluation of Kinetic Depth Effects

based on multi-view stereo reconstruction.

• A novel subjective evaluation of Kinetic Depth Effects

from a carefully designed user study.

• A detailed analysis of how visual cues affect depth

perception based on our subjective and objective

evaluations.

2 Related work

Our work focuses on objective computational modeling

and subjective analysis of 3D perception of Kinetic Depth

Effects under different visual conditions. We first discuss

related work on visual perception through psychological

and computational approaches, and then briefly describe the

relevant reconstruction techniques employed in this work.

Psychology research on shape perception. For monocular

vision, shading effect contains rich information [? ].

Compared with diffuse shading, specular shading helps

to reduce underestimate of cylinder depth by subjects [?

]. However, the shading effect can be ambiguous in

some cases. For example, when the illumination direction

is unknown, it is hard to judge shape convexities and

concavities, and humans tend to assume that illumination

comes from above [? ]. Besides, when the level of overall

illumination is low, the effect of the shadows is tended to be

assumed coming from overall illumination [? ].

Motion information also benefits shape perception. The

inherent ambiguity of depth order in the projected images

of 3D objects can be resolved by dynamic occlusion [?

]. Perspective also gives rich information of 3D objects

during this process [? ]. The human visual system can

induce 3D shapes from 2D projections of rotated objects [?

], interpolating the intervening smooth motion from two

images of rotated objects [? ].

The color information is very important not only in

immersive scene representation [? ? ? ? ] but also in

depth perception of psychology. Isono and Yasuda [? ] find

that chromatic channels can contribute to depth perception

using a prototype flickerless field-sequential stereoscopic

television system. Guibal and Dresp [? ] realize that the

color effect is largely influenced by luminance contrast and

stimulus geometry. When shape stimuli are not strong, color

could make an illusion of closeness [? ].

Computational visual perception. This research area

has been extensively studied in the computer graphics

community. Here we briefly describe the most relevant

works on perception-based 2D image processing and 3D

modeling.

In terms of 2D images, Chu et al. [? ] present a

computational framework to synthesize camouflage images

that can hide one or more temporally unnoticed figures in

the primary image. Tong et al. [? ] propose a hidden

image framework that can embed secondary objects within

a primary image as a form of artistic expression. The edges

of the object to be hidden are firstly detected, and then an

image blending based optimization is applied to perform

image transform as well as object embedding. The study

of Kinetic Depth Effects often uses subjective response [? ],

and some researchers also use the judgement of the rotation

direction as the response [? ].

Similar to image-based content embedding and hiding,

3D objects can be embedded into 2D images [? ], where

the objects can be easily detected by humans, but not by

an automatic method. Researchers also generate various

mosaic effects on both images [? ] and 3D surfaces [? ].

A computational model for the psychological phenomenon

of change blindness is investigated in [? ]. As change

blindness is caused by failing to store visual information

in short-term memory, the authors model the influence of

long-range context complexity, and synthesize images with

a given degree of blindness. Illusory motion is also studied

as self-animating images in [? ]. In order to computationally

model the human motion perception of a static image,

repeated asymmetric patterns are optimally generated on

streamlines of a specified vector field. Tong et al. [? ]

create self-moving 3D objects using the hollow-face illusion

from input character animation, where the surface’s gradient

is manipulated to fit the motion illusion. There are also

some research works on rendering, designing and navigating

2
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Fig. 2 Overview of our work. We project the input 3D objects onto 2D image planes with some specified conditions (e.g., lighting, projection mode, rotation

speed, etc.), based on which we construct objective and subjective evaluation models, respectively. Finally we reveal some interesting correlations between the depth

perception of rotated 3D objects and the visual conditions.

impossible 3D models [? ? ? ]. In contrast to investigating

those seemingly impossible models, our work focuses on

evaluating the 3D perception of rotated objects.

Multi-view stereo reconstruction. Multi-view 3D

reconstruction and 3D point cloud registration are

fundamental in computer graphics and computer vision.

Comprehensive surveys on these topics can be found

in [? ? ]. Among different techniques, the well-known

structure-from-motion [? ] can effectively recover the

camera poses and further generate a sparse 3D point cloud

by making use of multiple images of the scene or objects.

Moreover, multi-view stereo algorithms [? ] can reconstruct

the fully textured surface of the scene. We employ such

computational techniques to evaluate the 3D reconstruction

quality under various environmental conditions.

3 Overview

Our goal is to evaluate the influence of various visual

conditions on Kinetic Depth Effects, including the ambient

luminance, shading, perspective, rotation speed, and the

color difference between the object and background.

For both the human visual system and image-based 3D

reconstruction techniques, the input visual information is

usually in the form of projected 2D images. Therefore,

by using a set of projected 2D images of the 3D objects

under the aforementioned conditions, we investigate the

perceived shape from human participants and the multi-

view stereo reconstruction of 3D objects. Besides measuring

the perception of Kinetic Depth Effects using our objective

and subjective evaluation models, we further investigate

the co-relations between these two different methods. The

overview of our work is shown in Fig. ??.

Dataset. For each 3D object, when it rotates around a

fixed vertical axis passing through the geometric center

of the object, we sample the projected 2D images with

an interval of rotation angle θ . As the frame rate when

displaying projected images is fixed, changing the sampling

angle interval also means changing the rotation speed of

the object. Also, we can obtain the dataset of projected

2D images in different visual conditions as the images are

explicitly rendered. Specifically, we manipulate the ambient

luminance by adjusting ambient lights, and control shading

by changing diffuse lights. We control perspective by

selecting either orthogonal or perspective projection mode,

which affects the perception of perspective. We also control

the color difference between the object and the background.

In order to define expected color difference, predefined color

pairs are used to generate the colors of the background
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θ Angular interval of 2D projection

α Lightness in HSL color space (0, 0, α)

which is used as the intensity of the diffuse light

β Lightness in HSL color space (0, 0, β )

which is used as the intensity of the global ambient light

D Color difference between objects and background

Tab. 1 Definition of parameters in the controlled generation of 2D projected

images.

and the 3D object (Sec. ??). A summary of parameters

is presented in Tab. ??. Based on the generated dataset

under the controlled conditions, we can then measure the

3D perception of rotated objects using the following two

evaluation models.

Objective evaluation model. This model utilizes the

reconstruction quality of the input 3D objects as the basis

for evaluation. First, according to the projected 2D

images of the 3D object under specified visual conditions,

we reconstruct the point cloud using multi-view stereo

reconstruction algorithms. Then, we develop a method to

measure the reconstruction quality between the point cloud

and the original 3D object (Sec. ??). Finally, we analyze the

effects of different visual conditions in detail (Sec. ??).

Subjective evaluation model. Directly measuring 3D

reconstruction in the brain of human subjects is difficult.

Based on the observation that if humans successfully

reconstruct a rotated object in their mind, it is easy for

them to tell the direction of rotation, the time and the

accuracy of direction judgments can be used as proxies to

measure the quality of depth perception, as done in our

study. We first display rotating objects with the same

set of projected images as used for 3D reconstruction

in the objective evaluation, and ask participants to judge

the rotation direction of the object. Then we consider

extreme situations in which image sequences could not be

reconstructed well, including overexposure, low lighting

levels, and overly fast rotation. We analyze the results with

the accuracy and the reaction time of direction judgements

(Sec. ??).

4 Objective Evaluation

Our objective evaluation includes four steps: generating

2D images of 3D objects under various conditions;

reconstructing 3D shapes of objects based on the generated

images; quantifying the reconstruction quality of the 3D

objects; obtaining the fitted weighting factors of depth cues

by solving a multivariate quadratic regression optimization.

α 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.3

β 0.0, 0.5, 1.0, 1.5, 2.0, 2.5

Tab. 2 Values of α and β that control diffuse and ambient lighting used to

generate image sets.

object color background color color difference

(0.8, 0.8, 0.8) (0.8, 0.8, 0.8) 0.000

(0.8, 0.8, 0.8) (1.0, 1.0, 1.0) 0.600

(1.0, 0.9, 0.5) (0.7, 0.4, 1.0) 1.200

(0.8, 1.0, 0.6) (0.3, 0.0, 0.1) 2.291

(1.0, 0.4, 1.0) (0.0, 1.0, 0.0) 2.538

Tab. 3 Object and background color and corresponding color difference used

to generate image sets.

4.1 Parameter selection and image set generation

In order to generate images of the 3D objects with various

expected conditions, we need to select some parameter

options for the depth-aware cues. Firstly, we normalize the

size of all 3D objects with a unit bounding box centered

at the origin. Then, we import objects in a virtual scene,

display them under orthogonal projection, and set the fixed-

point light. The line between the light and the geometric

center of the object is perpendicular to the rotation axis,

and the distance between the light and the geometric center

of the object is ten times of the bounding box. Since

in openMVG the focal length is one given parameter,

considering perspective projection mode in our objective

evaluation is not that meaningful. So we turn to displaying

3D objects under orthogonal projection.

We control the brightness of diffuse and ambient lights.

We set the HSL value of the diffuse light as (0, 0, α),

and choose seven options for α , corresponding to different

luminance levels. We set the HSL value of ambient light as

(0, 0, β ) with six options for β (see Tab. ??).

As mentioned before, we sample the projected 2D images

when rotating the 3D objects. Here we set the four possible

sampling intervals θ as 0.209, 0.157, 0.126, and 0.105. To

simplify the test, we also choose five optional pairs of RGB

values for the 3D object and the background (see Tab. ??).

We calculate the difference of the chosen color pairs using

the following equation:

D(CB,CO) =
√

wr(rB − rO)2 +wg(gB −gO)2 +wb(bB −bO)2. (1)

In this equation, CO is the color of the object, with RGB

values of (rO,gO,bO), CB is the color of the background,

with RGB values of (rB,gB,bB), wr,wg,wb are weighting

factors, which are empirically set as (3,4,2). In order to

choose 3D objects, we generate image sets for 15 objects

4



3D Computational Modeling and Perceptual Analysis of Kinetic Depth Effects 5

Fig. 3 Some examples of projected 2D images. The first row shows the changing of diffuse light. The second row shows the changing of ambient light. The third

row shows five continuous images taken at the angular interval of θ = π/3, where γ shows the angle between the initial orientation and current orientation. The last

row shows the changing of color difference.

with different conditions. Then we choose three of them

which have high reconstruction success rate (30%). Finally,

for each object to be tested, we generate image sets for 7

(Shading) × 6 (Ambient Luminance) × 4 (Rotation Speed)

× 5 (Color Difference) conditions, each of which has a

separate image set. The size of every image is set to

800×600 pixels. Some examples are shown in Fig. ??.

4.2 3D reconstruction and quality assessment

We employ openMVG [? ] and openMVS [? ] to

process image sequences, and take the reconstructed point

clouds as input. We normalize the size of all point clouds

with the same bounding box as used in normalizing 3D

objects. Then we match the reconstructed point clouds

and the original objects. More specifically, we use the

Sample Consensus Initial Alignment (SAC-IA) method [?

] for initial alignment, and Iterative Closest Point (ICP) for

refined alignment [? ]. Finally, we compute the Euclidean

fitness score µ between the reconstructed point cloud and

the original object.

4.3 Objective evaluation results

We perform 2520 3D reconstruction cases using different

image sets, and 929 of them generate 929 point clouds,

while 1591 of them fail. We use the following equation

to measure the reconstruction quality s between a pair of

reconstructed point cloud and original point cloud, based on

the point cloud distance µ:

s =− lg(µ). (2)

We use the logarithmic processing to make the residuals of

our model normally distributed. The reconstruction quality

values are linearly normalized to range [0,1]. Given a

set of reconstruction quality samples S = {s1,s2, . . . ,sn},

we formulate the factor analysis model with the following

quadratic stepwise regression:

λ ∗ = argmin
λ

(S− (λ1α +λ2θ +λ3α2 +λ4αβ +b)), (3)

where λ = {λ1,λ2,λ3,λ4} are weighting coefficients to

balance the corresponding impacts, and b is a constant value.

We fit the coefficients in the model using the standard least

squares method. Results are shown in Tab. ??.

It can be seen that the model accounts for 10.3% of the

variation in reconstruction quality. Since the reconstruction

algorithm used here is not always stable, the explanatory

power of the model is limited. The impact of individual

visual cues is analyzed as follows:

Shading. Shading and reconstruction quality follow the
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Fig. 4 Given a 3D object (top-left) and specified visual conditions, we generate the corresponding projected 2D images, and reconstruct the 3D shapes (others) using

existing multi-view stereo algorithms. With the reconstructed and original objects, we then quantitatively measure the reconstruction quality for shape perception

analysis. For each reconstruction, we report the reconstruction quality measure and the corresponding rendering setting.

Coefficients Values Std. Err

b 0.3678* 0.041

λ1 0.3593* 0.056

λ2 -0.6361* 0.147

λ3 -0.1234* 0.019

λ4 -0.0278* 0.004

Observations 929

R-squared 0.103

* p<0.01

Tab. 4 Objective evaluating model results. p represents the confidence

probability of the parameter based on the standard student’s t-test

.

Fig. 5 Correlation between the 3D reconstruction quality and the shading.

quadratic function relationship (Fig. ??), with λ1 = 0.3593

(p<0.01), λ3 =−0.1234 (p<0.01).

Ambient luminance. The Ambient Luminance × Shading

interaction is significant with λ4 =−0.0278 (p<0.01). High

Ambient Luminance × Shading levels contribute to low

reconstruction qualities. As shown in Fig. ??, the fitted lines

in different ambient light levels are not parallel.

Rotation speed. High rotation speeds significantly

contribute to low reconstruction qualities (λ2 = −0.6361,

p<0.01). When θ = 0.105, the mean value of S is 0.489;

when θ = 0.209, the mean value of S is 0.400.

6
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Fig. 6 Significant interaction of Ambient Luminance × Shading.

Color difference. The color difference does not

significantly affect the reconstruction quality.

5 Subjective Evaluation

As mentioned before, humans can recover 3D rotated

objects from their 2D projections. The rotation direction

of 3D objects can be an important clue to judge the quality

of the shape reconstruction in their mind. Based on this, the

following multi-factor experiment is designed.

5.1 Participants

We recruited 35 participants and achieved results from

34 participants (19 males and 15 females) who successfully

finished the test.

5.2 Procedure and materials

In the experiment, a set of images were continuously

displayed in full screen mode. The experiment was

conducted on a laptop with an Intel i5 8250U CPU and 8GB

memory. We design two types of study as follows.

Study A. Here we explore the depth cue effect in general

situations. The range of cues are the same as the objective

evaluation model, but we choose fewer values for each

cue (see Tab. ??) to ensure participants can concentrate

during the study. The projection can either be orthogonal

or perspective. Overall we considered 144 conditions

consisting of 3 (Shading) × 3 (Ambient Luminance) × 2

(Rotation speed) × 4 (Color Difference) × 2 (Projection

Mode). For each condition, we display three different

objects.

Study B. Here we consider more extreme situations,

including low lighting levels, overexposure and high speed

rotation, where we vary each condition while keeping other

cues fixed (see Tab. ??). The variables used to represent

each situation are shown in Tab. ??. After that we generate

α 0.5, 1.4, 2.3

β 0.0, 1.0, 2.0

θ 0.105, 0.209

D 0.000, 0.600, 1.200, 2.291

Tab. 5 Values of each cue used in Study A of the subjective evaluation model.

α β θ colors for

object & background

varying 0.0 0.157 (0.8, 0.8, 0.8) ,

(1.0, 1.0, 1.0)

2.3 varying 0.157 (0.8, 0.8, 0.8) ,

(1.0, 1.0, 1.0)

1.7 1.5 varying (0.8, 0.8, 0.8) ,

(1.0, 1.0, 1.0)

Tab. 6 Values of each cue used in Study B of the subjective evaluation model for

extreme situations. From top to bottom: conditions of low lighting levels (with

minimum value of β ); overexposure conditions (with a relatively high value of

α); high speed rotation conditions (with normal values for α and β ).

new test image sets (see Fig. ?? and Fig. ??). To simplify

the problem, we only consider the orthogonal projection

situations.

Every participant was asked to judge rotation direction of

all image sets generated in Studies A and B, and each image

set was judged only once. The display order of each image

set was random, so was the rotation direction of 3D objects.

To exclude “viewing-from-above” bias [? ], we define

rotation direction as Left and Right. From the perspective

of the participants, the rotation direction is right if the close

part of 3D objects is moving to the right, otherwise the

direction is left. The images were displayed at 24 FPS. The

maximum display time for one image set did not exceed 5

seconds. Participants were required to judge whether it is

rotating on the left or right direction. The participants were

given time to practise before the formal experiment. The

entire experiment took about 15−20 minutes.

5.3 Subjective evaluation results

We record the judgments and reaction time of all

participants. We rank all cases of the reaction time in

ascending order and calculate the standard scores (here

α 0.00, 0.05, 0.10, 0.15, 0.20, 0.30, 0.35, 0.40, 0.45

β 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3, 4.5

θ 1.047, 0.785, 0.628, 0.524, 0.449, 0.393, 0.349, 0.314, 0.286, 0.262

Tab. 7 Values of varying cues used in Study B of the subjective evaluation

model for extreme situations. From top to bottom: conditions of low lighting

levels, overexposure, and high speed rotation.
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we use τ to denote it), which correspond to the estimated

cumulative proportion of the reaction time. We use

the repeated measures Analysis of Variance (ANOVA)

method to determine the effect of cues on τ under

different conditions. We calculate each participant’s

judgement accuracy under each condition. Since three

objects are tested in each condition, the participant’s

judgement accuracy take four values, and do not follow

a normal distribution. Therefore, we use the ordinal

logistic regression models to test the effect of cues on the

participant’s judgement accuracy. In particular, we choose

the complementary log-log link function, since most of the

participant’s judgement accuracy lie in 0.67−1.00 [? ]:

Φ(x) = log(−log(1− x)). (4)

We establish the ordinal logistic regression models for all

situations, while we only show those models with significant

results and pass other tests of parallel lines.

5.3.1 Analysis of study A

A five-way ANOVA method reveals the main effect

of Rotation Speed (F(1,5028) = 38.11, p<0.01) on τ .

Participants react faster at the high rotation speed condition

(M = −0.08, SD = 0.97) than at the low rotation speed

condition (M = 0.05, SD = 1.00). We also find a significant

Perspective × Rotation Speed interaction (F(1,5028) =

6.19, p<0.05) on τ . At the high rotation speed condition,

τ is significantly lower under perspective projection mode

(M =−0.109, SD = 0.95) than under orthogonal projection

mode (M = −0.06, SD = 1.00). Because Rotation

Speed and Perspective only have two levels, there is

no need for Mauchly’s test of sphericity. Apart from

the above phenomena, for the investigated five cues in

our experiments, we find no significant effect on the

participant’s judgement accuracy.

5.3.2 Analysis of study B

Low lighting levels. A one-way ANOVA reveals the main

effect of Shading on τ (F(9,340) = 2.668, p<0.01), and

Mauchly’s test of sphericity is not significant (p = 0.579).

Here higher α leads to lower reaction time. We establish an

ordinal logistic regression model as follows:






















Φ(p1) = ε1 −η ∗α,

Φ(p1 + p2) = ε2 −η ∗α,

Φ(p1 + p2 + p3) = ε3 −η ∗α,

p1 + p2 + p3 + p4 = 1,

(5)

where p = {p1, p2, p3, p4} are the probabilities of each

value of the participant’s judgement accuracy (from low to

high), η is the weighting coefficient, and ε = {ε1,ε2,ε3}

are constant values. For each case, the value with

highest probability is the predicted value of the participant’s

judgement accuracy.

Coefficients Values Std. Err

ε1 -3.682* 0.515

ε2 -2.039* 0.257

ε3 -0.578* 0.177

η 4.229* 0.872

Observations 348

Nagelkerke’s R-squared 0.093

* p<0.01

Tab. 8 Results of ordinal logistic regression under the low lighting levels

situation. p represents the confidence probability of the parameter based on

the Wald Test

.

We fit the coefficients in the model and the results are

shown in Tab. ??. High α significantly contributes to high

judgement accuracy (η = 4.229, p<0.01). Hence using

strong shading in low lighting levels conditions strengthens

the accuracy and accelerates the reaction (see Fig. ??).

Overexposure. A one-way ANOVA reveals the main effect

of Ambient Luminance (F(9,340) = 2.661, p<0.01) on τ ,

and Mauchly’s test of sphericity is not significant (p =

0.350). This means that the covariance matrix assumption

is met, and the result of repeated measures ANOVA is

robust. Participants react faster when β = 2.7 (M =

−0.17, SD = 1.07) than when β = 4.5 (M = 0.24, SD =

0.94), which implies that the higher Ambient Luminance

in overexposure conditions delays reaction (see Fig. ??).

We find no significant effect of Ambient Luminance on

judgement accuracy.

High speed rotation. Rotation Speed has a significant effect

on τ (F(9,340) = 7.627, p<0.01), and Mauchly’s test of

sphericity is not significant (p = 0.162). In high speed

rotation conditions, lower rotation speed leads to faster

reaction. We establish an ordinal logistic regression model

again as follows:






















Φ(p1) = ε1 −κ ∗θ ,

Φ(p1 + p2) = ε2 −κ ∗θ ,

Φ(p1 + p2 + p3) = ε3 −κ ∗θ ,

p1 + p2 + p3 + p4 = 1,

(6)

where p = {p1, p2, p3, p4} are the probabilities of each

value of the participant’s judgement accuracy (from low to

high), κ is the weighting coefficient, and ε = {ε1,ε2,ε3}

are constant values. For each case, the value with highest

probability is the predicted value of judgement accuracy.

We fit the coefficients in the model and the results are

shown in Tab. ??. High θ significantly contributes to low

judgement accuracy (κ = −1.353, p<0.01). In high speed

rotation conditions, increasing the rotation speed reduces the

judgement accuracy and delays the reaction (see Fig. ??).

8
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Fig. 7 Examples of 2D images under each individual low lighting levels condition.

Fig. 8 Examples of 2D images under each individual low lighting levels condition.

Coefficients Values Std. Err

ε1 -5.191* 0.581

ε2 -4.266* 0.432

ε3 -2.480* 0.320

κ -1.353* 0.499

Observations 346

Nagelkerke’s R-squared 0.030

* p<0.01

Tab. 9 Results of ordinal logistic regression under the high speed situation. p

represents the confidence probability of the parameter based on the Wald Test

.

6 Joint Objective and Subjective Analysis

Based on the objective computational modeling and

subjective perceptual evaluations, we perform a joint

analysis on the 3D perception of rotated objects.

Shading. For both objective and subjective evaluations,

shading has a significant effect on the depth perception. In

the objective evaluation, shading and reconstruction quality

are correlated by a quadratic function. As shading increases,

the reconstruction quality first improves then declines. This

coincides with subjective evaluation as in low lighting

levels conditions, higher shading improves the judgement

accuracy and accelerates the observer’s reaction.

Ambient luminance. The depth cue from ambient

luminance is also effective in both objective and subjective

evaluations. In objective evaluation, the interaction of

shading and ambient luminance is significant. High

Shading × Ambient Luminance levels contribute to low

reconstruction qualities. In the subjective evaluation, high

ambient luminances in overexposure cases can increase

observers’ reaction time.

Rotation speed. The rotation speed plays an important
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Fig. 9 Mean values of τ under nth level of shading, ambient luminance

and speed. The marked points present significant differences under pairwise

comparison.

role in both objective and subjective evaluations. In the

objective evaluation, increasing the rotation speed decreases

the reconstruction quality, which coincides with the result

of subjective evaluation as in high speed conditions, higher

rotation speed decreases the judgement accuracy.

However, in the subjective evaluation, increasing the

rotation speed accelerates users’ reaction time. A possible

reason is that participants receive more information with

higher rotation speeds within the same time interval, which

stimulates the participants to make decision faster. For our

experiments under general situations, this acceleration is

stronger than the delay caused by uncertainty.

Perspective. In the subjective evaluation, Perspective

× Rotation Speed interaction is significant. Compared

with orthogonal projection, participants react faster under

perspective projection conditions.

Color difference. We have not found significant effects

caused by color difference between objects and background

in either objective evaluation or subjective evaluation model.

As future work, we will test more color combinations to

further explore possible effects by color differences.

7 Discussion

We analyze the effect of different depth cues on 3D

perception of rotated 3D objects, which broadens the scope

of previous studies. We also design an objective evaluation

and a subjective evaluation to make a thorough analysis.

However, there are also some flaws in our design. In our

objective evaluation, when the depth cues in images were

extremely weaken, 3D reconstruction based on structure-

from-motion would be unstable caused by unexpected

feature matching. This common challenge limits the space

of our analysis model (R-squared = 10.3%). Moreover,

the subjective evaluation only uses the judgement of the

direction of rotated objects as the response. In the future,

we could use more 3D information as response. In our

experiments, the reconstruction quality is closely related to

the kind of 3D objects. This specific type of influence on

shape perception could also be further analysed.

The analysis of the effect of depth cues guides us to get

good reconstruction results for both humans and computers,

such as rendering under certain lighting. The objective

evaluation also reveals the limitations of existing algorithms.

On the other hand, when combining with recent deep

learning-based techniques, such as CNN-SLAM [? ] and

deep stereo matching [? ], our solution could further

benefit once there are more accurate depth prediction and

3D reconstruction in various challenging environments.

8 Conclusion and Future Work

We have proposed two approaches to measure the

quality of depth perception of Kinetic Depth Effects, where

we made a detailed analysis of how visual cues affect

depth perception. Firstly, we generated a dataset of

images from rotating objects considering five depth cues:

ambient luminance, shading, rotation speed, and the color

difference between objects and background. In the objective

evaluation, we applied 3D reconstruction and measured

reconstruction quality between reconstructed and original

objects. In the subjective evaluation, we invited participants

to judge the rotating direction of 3D objects by showing the

projected 2D images. We inferred the perception quality by

their reaction time and accuracy. In our study, we found

both strong and dim shadings significantly undermine the

perception of depth in our experiments. High ambient

illumination × shading level, rotation speed, and orthogonal

projection can also reduce the depth perception quality.

It is also interesting that the color difference does not

have significant effect on the depth perception in our

experiments. In the future, we will take more depth cues into

consideration and develop a more precise quantitative model

for more complex situations. Taking our new observations

to guide other 3D computational modeling would also be

an interesting avenue of future work. We hope our study

will inspire more inter-discipline research on robust 3D

reconstruction and human visual perception.
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