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Abstract. A method for partitioning shapes is described based on a
global convexity measure. Its advantages are that its global nature makes
it robust to noise, and apart from the number of partitioning cuts no
parameters are required. In order to ensure that the method operates
correctly on bent or undulating shapes a process is developed that iden-
tifies the underlying bending and removes it, straightening out the shape.
Results are shown on a large range of shapes.

1 Introduction

Shape obviously plays an important role in biological vision. However, the task
of shape perception is inherently complex, as demonstrated by the slow devel-
opmental process of learning undertaken by children to recognise and use shape.
At first, they can only make topological discriminations. This is then followed
by rectilinear versus curvilinear distinctions, then later by angle and dimension
discrimination, and then continuing to more complex forms, etc. [11].

The application of shape in computer vision has been limited to date by the
difficulties in its computation. For instance, in the field of content based image
retrieval, simple methods based on global colour distributions have been reason-
ably effective [19]. However, although attempts have been made to incorporate
shape, they are still relatively crude [6,14].

One approach is to simplify the problem of analysing a shape by breaking it
into several simpler shapes. Of course, there is a difficulty in that the process of
partitioning will require some shape analysis. However, to avoid a chicken and
egg problem, low level rules based on limited aspects of shape understanding can
be used for the segmentation.

There are numerous partitioning algorithms in the computer vision literature.
Many are based on locating significant concavities in the boundary [16,18]. It has
been shown that humans also partition forms based on, or at least incorporating,
such information [4,8,10]. While this lends credence to such an approach, the
computational algorithms employed to detect the concavities generally depend
on measuring the curvature of the shape’s boundary. Unfortunately curvature
estimates are sensitive to noise. Although the noise can be reduced or eliminated
by smoothing for instance, it is not straightforward to determine the appropriate
degree of filtering. In addition, purely local boundary-based measures do not
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capture the important, more global aspects, of shape. An alternative approach
that can incorporate more global information operates by analysing the skeleton
of the shape [1,3]. Nevertheless, it remains sensitive to local detail and tends
to be error prone since even small amounts of noise can introduce substantial
variations into the skeleton. Thus substantial post-processing generally needs to
be applied in an attempt to correct the fragmentation of the skeleton.

2 Convexity-Based Partitioning

To overcome the unreliability of the curvature and skeleton based methods an
approach to partitioning was developed based on global aspects of the shape [12].
The criterion for segmentation was convexity. Although convexity had been used
in the past, previous algorithms still required various parameters to tune their
performance, generally to perform the appropriate amount of noise suppres-
sion [7,15]. In contrast, the only parameter in Rosin’s formulation was the num-
ber of required subparts. Moreover, an approach for automatically determining
this number was also suggested.

The convexity of a shape was measured as the ratio of its area to the the
area of its convex hull. The total convexity of a partitioned shape was defined
as the sum of the individual convexity values of the subparts, each weighted by
their area relative to the overall shape’s area. Thus the convexity and combined
subpart convexity values range from zero to one. Partitioning was performed
by selecting the decomposition maximising convexity. As with most partitioning
schemes, straight lines were used to cut the shape into subparts, and the cuts
were constrained to lie within the shape.

The convexity measure is robust since small perturbations of the shape
boundary only result in small variations in the convex hull. Thus noise has a
minor effect on the areas of the shape and its convex hull, and therefore on the
convexity measure itself. Although the measure is based on global properties
of the shape it produces good partitions, often locating the cuts at significant
curvature extrema even though no curvature computation is necessary.

3 Shape Straightening

Despite its general success, there are also instances in which the convexity based
scheme fails [12]. In figure 1 the effect of the ideal cut (shown dotted) would
be to split the crab shape into the inner convex part and the outer non-convex
part. The latter would score very poorly according to convexity, and so the crab
would actually receive a better score without performing any partitioning. This
is counterintuitive since we would expect that partitioning should always lead to
simplification. In general, we make the observation that many bent objects will
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be given a low convexity rating even though human perception might suggest
that they are suitable representations of simple, single parts.

Fig. 1. Convexity is not always appropriate for partioning as demonstrated in the crab
figure. Instead of the ideal cut (shown dotted) the gray cut is selected.

In this section we describe a solution to overcome the deficiency of convexity
in this context. Since it is the bending of the shape that creates the problem, the
bending is removed. Conceptually, if the outer portion of the crab were straight-
ened it would receive a high convexity score since there would be no concavities.
Of course, the straightening process should not eliminate all concavities per se
since these are required to enable the convexity measure to discriminate good
and bad parts. Instead, the most basic underlying bending should be removed
while leaving any further boundary details unchanged.

Some work in computer vision and computer graphics has looked at multi-
scale analysis and editing of shapes. For instance, Rosin and Venkatesh [13]
smoothed the Fourier descriptors derived from a curve in order to find “natu-
ral” scales. The underlying shape was then completely removed by modifying
the lower descriptors such that on reconstruction just the fine detail occurring
at higher natural scales was retained and superimposed onto a circle. Another
approach was taken by Finkelstein and Salesin [17] who performed wavelet de-
compositions of curves and then replaced the lower scale wavelets extracted from
one curve with those of another. Although both methods enabled the high resolu-
tion detail to be kept while the underlying shape was modified there were several
limitations. The Fourier based approach operates globally, and therefore assumes
uniform detail spatially distributed over the curve, which is not necessarily cor-
rect. Wavelets have the advantage that they cope with spatial localisation, but
Finkelstein and Salesin did not provide any means for automatically selecting
which wavelets to retain such that they correspond to significant curve features.

The approach taken in this paper is to determine the appropriate straight-
ening of a shape by first finding its medial axis. Its sensitivity to noise can be
overcome since the axis is only required to describe of the shape at a very coarse
level, and so heavy smoothing can be applied to eliminate all branches as shown
in figure 2. More precisely, the boundary is repeatedly smoothed, and at each
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step the branches in the resulting medial axis are identified by checking for ver-
tex pixels. If no vertex pixels are found the smoothing terminates and the final
boundary and axis is returned. Our current implementation uses: Gaussian blur-
ring of the boundary, Zhang and Suen’s thinning algorithm to extract the medial
axis [20], and vertices are identified by checking at each axis pixel for three of
more black/white or white/black transitions while scanning in rotation around
its eight neighbours.

(a) (b) (c) (d)

Fig. 2. Repeated boundary smoothing applied until all medial axis branches are elim-
inated.

Once the axis is found it is used to straighten the shape. First each boundary
point needs to be assigned to a point on the axis. Conceptually this can be per-
formed by regenerating the shape by growing the axis. In practise we just run
a distance transform [2] taking the axis as the feature set. In addition to prop-
agating the distances the originating co-ordinates of the closest feature are also
propagated. These then provide the corresponding axis points for each boundary
point. At this stage the smoothed boundary points are still used (after integer
quantisation) rather than the original boundary set.

Second, a local co-ordinate frame is determined for each boundary point. The
frame is centred at the corresponding axis point and orientated to align with the
local section of axis. The orientation is calculated by fitting a straight line to
the ten axis pixels on either side of the centre. The position of each point in the
original shape boundary is now represented in polar co-ordinates with respect
to the local co-ordinate frame determined for its corresponding smoothed point.

The third step performs the straightening of the boundary by first straight-
ening the medial axis. The axis points (xi, yi)i=1...n are mapped to (i, 0), giving
the straight line (0, 0) → (n, 0). Transforming the local co-ordinate frames to be
appropriately centred and oriented the transformed boundary points have now
been straightened.

An example of the full process is given in figure 3. The irregular map of
Africa is smoothed until its medial axis represents just the underlying bent
shape. The distance transform of the medial axis is shown in figure 3c where
low intensities represent small distances. The final, straightened map of africa in
figure 3d clearly demonstrates that the original major bend has been removed
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(a) (b) (c) (d)

Fig. 3. The straightening process. (a) The irregular outline of the input shape produces
a skeleton with several branches. (b) The shape is iteratively smoothed until its skeleton
consists of a single spine. (c) The distance transform of the skeleton is generated, and
the X and Y co-ordinates of the closest axis point are recorded. This enables the
appropriate transformation to be applied to the original shape, resulting in (d).

while the local boundary features have been retained, although slightly distorted
in some instances.

(d) (e)

(f)

Fig. 4. Examples of shape straightening. The first column contains the original shape;
the second column contains the smoothed shape with the medial axis; and the third
column contains the straightened shape.

The validity of the approach is demonstrated on the synthetic examples in
figure 4. Due to the nature of the data the medial axis is easily found, and reliably
represents the basic form of the underlying shape. The final results show that
the straightening is performed correctly.

Further examples of shape straightening are provided in figure 5. For sim-
ple elongated shapes the technique is generally successful as the medial axis is
representative of the bending underlying the shape. Cases in which there are
several competing axes are more problematic. For instance, in the donkey there
is a dominant elongated horizontal portion as well as three vertical elongated
portions (the donkey’s fore feet and rear feet, and the rider). No single unbranch-
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Fig. 5. Examples of performing shape straightening of natural data
.

ing axis can capture all this. Nevertheless, the result successfully straightens the
donkey’s rear feet and tail even though the rider and fore feet remain protrud-
ing. A similar partial straightening is seen on the elephant. In some cases local
distortions are evident. Such errors creep in from a combination of sources such
as the distance transform approximation, fitting of the local co-ordinate frame,
and the mapping itself.

4 Partitioning

The partitioning algorithm is now complete. Its operation is much as before:
candidate cuts are assessed and the one maximising the weighted sum of con-
vexities is selected. However, before calculating convexity the subpart is first
straightened out. Since this transformation can distort the size as well as shape
of the subpart the total convexity of the set of subparts is combined using the
individual subpart convexities weighted according to the relative area of the
unstraightened subparts.

The results of the two algorithms are compared in the following figures in
which the different levels of performance have been grouped. It can be seen that
in many cases both methods produce the same or very similar results (figures 6
and 7). Sometimes the original algorithm is still successful despite the shape
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containing significant bending. For instance, although the fish’s tail wiggles back
and forth it is thin. Thus its low area causes its low convexity to only contribute
weakly to the overall high convexity generated mainly by the highly convex fish
body. The results in figure 7 verify that the incorporation of straightening does
not prevent the new algorithm from performing satisfactorily.

Fig. 6. Similar partitioning using convexity alone

Fig. 7. Similar partitioning using convexity in combination with straightening

Figures 8 and 9 contain results that differ significantly between the algo-
rithms, although it is not clear that either one is superior. For instance, the
original algorithm has cut off one of the curved arms in the second shape. By
incorporating straightening the new algorithm has managed to successfully com-
bine both arms into a single part.

In some cases we find that the addition of straightening worsens the effective-
ness of the method (see figures 10 and 11). The head is better partitioned by the
old algorithm, although the new algorithm’s result is still reasonable. By mak-
ing a cut from the nose to the back of the head it has created a region that was
straightened into a fairly convex shape. On the last shape the new algorithm’s
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Fig. 8. Different partitioning using convexity alone

Fig. 9. Different partitioning using convexity in combination with straightening

result is poor, although a contributing factor is that it needs to be partitioned
into more than two subparts.

Fig. 10. Better partitioning using convexity alone

Fig. 11. Worse partitioning using convexity in combination with straightening

Finally, examples in which straightening has provided a clear benefit are
given in figures 12 and 13. In most cases the failings of using convexity alone
are self-evident – sections are chopped off with no regard for their fitness as
subparts.
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Fig. 12. Worse partitioning using convexity alone

Fig. 13. Better partitioning using convexity in combination with straightening

5 Discussion

In this paper we have shown how shapes can be straightened, and how this can
be applied to aid partitioning. Several issues remain, relating to the efficiency
and effectiveness of the technique.

Currently, the straightening process is time consuming, and can take several
seconds. Since it is applied repeatedly as part of the evaluation of many candidate
cuts this slows down the overall analysis of a shape containing a thousand points
to several hours. The actual time depends on the shape since if it contains many
concavities such as the spiral then many of the trial cuts will lie outside the
shape and can therefore be rejected without requiring the more time consuming
straightening and convexity calculations.

Two approaches to speeding up the process are possible. The first is to im-
prove the efficiency of the straightening process. The current implementation
involves some image based operations (for the medial axis calculation and axis
branch checking). A significant improvement could be made by determining the
medial axis directly from the shape boundary. Efficient algorithms exist, in par-
ticular, Chin et al. [5] recently described an algorithm that runs in linear time
(with respect to the number of polygon vertices).

Another complementary approach is to apply the convexity calculation only
at selected cuts. Rather than exhaustively considering all possible pairwise com-
binations of boundary points as potential cuts, a two stage process can be em-
ployed. For example, the cuts can be restricted to include only a subset of bound-
ary points such as dominant (i.e. corner) points. Although corner detectors are
typically unreliable, if a low threshold is used then the significant points will
probably be detected, at the cost of also including additional spurious points.
Alternatively, a simpler but less reliable partioning algorithm can be used to
produce a set of candidate cuts by running it over a set of parameter values.
These can then be evaluated and ranked by convexity.
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At the moment the only speed-up implemented is to process the data at
multiple scales. First the curve is subsampled, typically at every fourth point.
The best cut is determined and this initialises a second run at full resolution in
which only cuts around the best low resolution cut are considered. Currently the
window centred at the first cut is six times the sampling rate

Regarding the effectiveness of the straightened convexity measure some im-
provements could be made. As discussed previously, the measure does not ex-
plicitly take curvature extrema into account. Nevertheless these are important
local features even though their reliable detection is problematic.

On the issue of the saliency of alternative partitionings, Hoffman and
Singh [9] ran psychophysical experiments to determine three factors affecting
part salience: relative area, amount of protrusion, and normalised curvature
across the part boundary. Previously the convexity measure was demonstrated
to match fairly well on a simple parameterised shape with these human saliency
judgements [12]. However, there remain examples in which the basic convexity
and the straighted convexity measures cannot discriminate between alternative
partitions of different quality. For instance, most humans would judge the first
segmentation in figure 14 as more intuitive than the second, but after straight-
ening both receive perfect convexity scores.

Fig. 14. Alternative partitions with identical straightened convexity ratings

Finally, the straightening process works well for elongated, bent shapes, but
can run into problems with shapes containing several competing dominant axes.
Simplifying the axes in order to remove all the vertices requires a large amount
of smoothing leading to distortion of the shape.
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