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Abstract

Object classification often operates by making decisions
based on the values of several shape properties measured
from the image. This paper describes and tests several al-
gorithms for calculating ellipticity, rectangularity, and tri-
angularity shape descriptors.

1. Introduction

A prevalent task in image analysis is the discrimination
of objects based on their appearance. Various properties of
appearance can be measured, falling into such categories as
texture, colour, and shape. Shape is obviously a powerful
tool for describing and differentiating objects, and has been
extensively applied in many areas of computer vision.

Despite the introduction of powerful mathematical mod-
elling techniques shape analysis remains problematic. One
of the difficulties is that not all of the variations between
shapes are necessarily significant. Minor perturbations
caused by noise are an example and similarity transfor-
mations are also generally permissible. In addition, cer-
tain shapes are invariant to further transformations; for in-
stance the aspect ratio of a rectangle can be modified with-
out changing its intrinsic “rectangularity”.

Given these difficulties, a popular approach is to design
shape descriptors sensitive to specific aspects of shape such
as eccentricity, Euler number, compactness, and convex-
ity [10]. If a sufficiently varied set of descriptors are avail-
able then it should be possible to use some subset of them
for shape classification and discrimination in a variety of
tasks.

This paper investigates measuring three of the most basic
shapes: ellipses, rectangles, and triangles. In computer vi-
sion circularity is extensively used as a shape measure, but
there is little work on the measurement of the other shapes
(but see [4, 6, 9]).

2. Ellipticity

2.1. Moment invariants (EI )

The first approach is based on moment invariants. Since
any ellipse can be obtained by applying an affine transform
to a circle we use the simplest affine moment invariant [1]
of the circle to characterise ellipses
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While all perfect circles will produce identical values of I1

other shapes can also produce the same value. To help dis-
criminate shape more precisely it would be possible to also
incorporate higher order invariants. However, the disadvan-
tage is that higher order moments are less reliable. In con-
trast I1 only requires relatively low powers of second-order
moments, and is thus more practical. The moments for the
unit radius circle are
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allowing us to calculate the value of the invariant as I1 =
1

16π2 . The measure of ellipticity is then taken as
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which ranges over [0, 1], peaking at 1 for a perfect ellipse.

2.2. Elliptic variance (EV )

Peura and Iivarinen [4] described an “elliptic variance”
which they used to measure ellipticity. The distances be-
tween the boundary points and their centroid are weighted
by the covariance of the data points, and the variance Σ of
this quantity calculated. For uniformity with the other mea-
sures we modify this to EV = 1

1+Σ
.



2.3. Euclidean ellipticity (EE)

A more direct and potentially more reliable approach
is to robustly fit an ellipse to the region’s boundaries and
measure the Euclidean distances between the ellipse and re-
gion boundaries. The Least Median of Squares (LMedS)
approach to feature fitting is taken [8].

In order to convert the error measure E into a useful el-
lipse measure it needs to be normalised such that it is scale
invariant. It is therefore weighted by the square root of the
original region’s area A giving EE = 1

1+ 1
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2.4. DFT (EF )

Proffitt [6] describes an approach to measuring elliptic-
ity and circularity based on the Discrete Fourier Transform
(DFT). An ellipse is fitted to the shape by centering it on
the region’s centroid. The ellipse is then scaled such that its
mean square of the lengths of the lines from the centroid to
the boundary points matches the region’s. Ellipticity is cal-
culated (via the DFT) as the distance between correspond-
ing points on the ellipse and the region.

3. Rectangularity

3.1. MBR (RB)

The standard approach to measuring rectangularity is to
use the ratio of the area of the region to the area of its mini-
mum bounding rectangle (MBR).

3.2. Rectangular discrepancy (R′
D)

In an attempt to overcome the sensitivity of the MBR to
noise Rosin [9] described an alternative in which a rectan-
gle is fitted to the region based on its moments. Rectan-
gularity is then measured as the normalised discrepancies
between the areas of the rectangle and region. More pre-
cisely, given the following areas: R the difference between
the rectangle and the region, D the difference between the
region and the rectangle, and B the rectangle’s area, then
RD = 1 −

R+D
B

. To overcome unreliable orientation esti-
mates the method was considerably improved by consider-
ing both the original orientation estimate with and without
a 45◦ offset [9]. The maximum of the two is retained as the
final rectangularity measure R′

D.

3.3. Robust MBR (RR)

Another approach to overcome the sensitivity of the
MBR is to relax the requirement that the MBR must contain
all the points. If the MBR need only contain the majority of

the region then it should be more robust in the presence of
small area deviations in the boundary. The formulation of
the criterion for the MBR is similar to the previous measure,
but modified to R+D

I
where the denominator I is the area

of intersection of the region and the rectangle rather than
the area of the rectangle. This expression provides a trade-
off between forcing the rectangle to contain most of the data
while keeping the rectangle as small as possible. The robust
MBR is found by starting with the standard MBR rescaled
to half its area. Powell’s method [5] is then applied to iter-
atively minimise R+D

I
and the final fit provides the rectan-

gularity as RR = 1 −
R+D

I
.

4. Triangularity

4.1. Moment invariants (TI )

The same approach can be used to characterise triangles
by moment invariants as was done for ellipses. Any triangle
can be considered as a simple right angled triangle aligned
with the axes after an affine transformation is applied. The
moments are

mpq =

∫ x

0

∫ 1

0

xpyqdxdy

which results in I1 = 1

108
. The triangularity measure is thus

TI =

{
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1

108
1

108I1
otherwise .

4.2. Polygonal triangle approximation (TA)

A second approach fits a geometric triangle model to the
data, and measures the error between the model and data.
Fitting is performed by finding a polygonal approximation
of the boundary. Dynamic programming is used to find
the optimal three line polygon approximation minimising
E =

∑

i di, the summed L1 error, where di is the shortest
Euclidean distance from pi to the triangle [7]. Since this is
computationally expensive the data is first subsampled by a
factor of five. The final triangularity measure is TA = 1

1+ E

A

where A is the area of the region.

4.3. Projections (TP )

A computationally more efficient approach to fitting the
triangle model is to work with the region’s projections.
Successive applications of projections enables the region’s
shape to be continually simplied. As shown in fig. 1 first the
horizontal and vertical projections are found, and then each
of these are further projected. For any region which is a



Figure 1. Horizontal and vertical projections.

triangle of arbitrary shape and position the resulting two fi-
nal projections will both be right angled, isothetic triangles.
These are much simpler to analyse than the initial arbitrary
triangle. Their parameters can be estimated from their cen-
troids using the relation (xc, yc) = 1

3
(b, a) where a and b

are the lengths of the sides. For non-triangular regions the
triangles fitted to their projections will be in error. If E1 and
E2 are the summed errors between the fits and the projec-
tions, then the triangularity measure is TP = 1 −

E1+E2

2A
.

4.4. Minimum bounding triangle (TB)

Another alternative approach to fitting a triangle is to use
the region’s minimum bounding triangle (MBT). O’Rourke
et al. [3] describe an optimal O(n) algorithm to determine
the MBT. Analogous to the standard approach to measuring
rectangularity, triangularity is calculated as the ratio of the
area of the region to the area of its MBT.

5. Evaluation
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Figure 2. Application to ellipses, rectangles,
and triangles at different aspect ratios.

As a first test the shape descriptors are applied to per-
fect synthetic images containing ellipses, rectangles and tri-
angles with different aspect ratios (fig. 2). They all suc-
cessfully discriminate between the three shapes with the
exception of TA. While triangles receive the top score as
expected, the ranking of the measured triangularity for el-

lipses and rectangles varies. A more significant defect is
apparent in TP which is not invariant over aspect ratio.

Figure 3. An ellipse, rectangle, and triangle at
the highest noise level.

The second experiment tests the robustness of the mea-
sures to noise. For a fixed aspect ratio of 1.6 increasing
amounts of uniform noise were added to the shapes’ bound-
aries (see fig. 3).. In terms of discriminating the target shape
from the other two shapes most methods still perform well
(see fig. 4). Only EF breaks down, although EV also seems
potentially sensitive.
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Figure 4. Application to ellipses, rectangles,
and triangles at different noise levels.

Figure 5. Examples of data; each row contains
one type of seed or bean.

The third evaluation applies the measures to real data. Fig. 5
shows a variety of seeds and beans to be distinguished.
While they are all roughly circular or oval the similar-
ity in shape over the classes is evident and, in combina-
tion with the noise and the variability in shape aspect ra-
tio within classes, makes the discrimination task based on



shape alone difficult. The data set of 260 samples was split
into equal training and testing parts, and classification was
performed using Murthy et al.’s oblique decision trees [2]
applied to two measures at a time. In addition to the el-
lipticity, rectangularity, and triangularity measures two sets
of moment invariants were considered (those invariant to
similarity transforms as well as affine invariants), and the
standard shape descriptors of eccentricity, circularity, com-
pactness, and convexity [10]. The classification accuracies
are given in tables 1-4. The best result is achieved by the
combination of EF and TI , and the second best result by
EI and RR. The similarity transform moment invariants
also perform well, while the affine moment invariants and
the standard shape descriptors do significantly worse.

RB R′
D

RR TI TP TB TA

EI 37.69 33.85 42.31 30.77 34.62 26.92 33.08
EV 17.69 41.54 20.77 40.00 18.46 15.38 25.38
EU 19.23 38.46 25.38 36.15 27.69 18.46 22.31
EF 20.77 33.85 19.23 43.08 30.00 20.00 26.92
RB – – – 40.00 19.23 13.08 26.92
R′

D
– – – 29.23 36.92 30.00 26.15

RR – – – 38.46 16.92 17.69 23.08

Table 1. Classification accuracy using ellip-
ticity, rectangularity, and triangularity.

φ2 φ3 φ4

φ1 26.92 35.38 36.15
φ2 – 40.00 40.77
φ3 – – 31.54

Table 2. Classification accuracy using simi-
larity transform moment invariants.

I2 I3

I1 21.54 25.38
I2 – 19.23

Table 3. Classification accuracy using affine
moment invariants.

6. Conclusions

In this paper an extensive list of algorithms for imple-
menting ellipticity, rectangularity, and triangularity shape

circularity compactness convexity
eccentricity 30.00 16.92 35.38
circularity – 29.23 23.08
compactness – – 29.23

Table 4. Classification accuracy using stan-
dard shape descriptors.

descriptors is provided. Ideally they should all be invari-
ant to scalings, rotations, and rotations, and additionally
stretching along the axes in the case of rectangles and more
generally affine deformations in the cases of ellipses and tri-
angles. Moreover, they should be robust in the presence of
noise. Tests showed that, with the exception of TP , the first
requirement was reasonably satisfied by all the descriptors
(with respect to the target shape). Again, according to the
second requirement, most of the descriptors were satisfac-
tory apart from EF and possibly EV .

Further testing was provided by a classification task in-
volving images of nine types of seeds and beans. Compared
to the common, standard shape descriptors also tested the
combination of EF and TI , and also EI and RR achieved
better classification accuracies. However, it should be re-
membered that the performance of individual shape descrip-
tors is necessarily application dependent. Thus it is too
early to give any general recommendations regarding the
comparative merits of the descriptors except for the above
caveats concerning EV , EF , and TP .
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