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Abstract

We presenta systemcapableof producingvideo-realistic
videosof a speaker given audio only. The audio input
signalrequiresno phoneticlabellingandis speaker inde-
pendent.Thesystemrequiresonly a small trainingsetof
videoto achieveconvincingrealisticfacialsynthesis.The
systemlearnsthe naturalmouthandfacedynamicsof a
speaker to allow new facialposes,unseenin the training
video, to besynthesised.To achieve this we have devel-
opeda novel approachwhich utilisesa hierarchicaland
non-linearPCAmodelwhichcouplesspeechandappear-
ance. We show that the model is capableof synthesis-
ing videosof a speaker usingnew audiosegmentsfrom
bothpreviously heardandunheardspeakers. The model
is highly compactmakingit suitablefor a wide rangeof
real-timeapplicationsin multimediaandtelecommunica-
tionsusingstandardhardware.

1 INTRODUCTION

Sincethepioneeringwork of Parke [1] in the1970’s, the
developmentof realisticcomputerfacialanimationhasre-
ceivedavastamountof attention,crossingoverinto fields
suchasmovies,videogames,mobileandvideocommu-
nicationsandpsychology. Theproblemnot only encom-
passesthe designof a mechanismcapableof represent-
ing a facerealistically, but also its control. Most com-
putergeneratedfacial systemsarebasedon 3D Models
[2] or imagebasedmodels[3] [4], and are parametric.
Usingtheserepresentationswe mayanimatea faceusing
only a speechsignal. This is desirablefor many appli-
cationssuchaslow-bandwidthnetwork communications
and broadcasts,movie lip re-synchingand lip-synching
for animatedmovies.

Commonly, automaticspeechanimationtechniquesare
basedon either simplified mappingsfrom phonetically
alignedspeechsignalsto visemekey frames(which may
thenbe interpolated)[2] [5], or usinga non-linearbased
model (suchas a HMM or a neuralnetwork) to define
mappingsbetweenspeechfeaturessuchas Linear Pre-
dictive Coding (LPC) coefficientsand facial parameters
[6]. The former techniqueis perhapsthe mostpopular,
althoughit is basedon producingonly convincingmouth
animationand ignorescorrelationsbetweenspeechand
facial emotion. It alsorequirespre-processingof the in-
put speechsignalbeforefacialsynthesis.Thelatter tech-
niqueis bettersuitedto producingnotonly mouthanima-

Figure1: Hierarchical facial modeloverview.

tion,but alsofacialemotionsinherentin thecontentof the
speechsignal.

In thispaperwepresentanimagebasedsystemcapableof
producingvideo-realisticfacial animationfrom an audio
soundtrack. Thesystemlearnsthe facial dynamicsof a
speaker andusesthis asa foundationto synthesisenovel
facialanimations.During the trainingphasea smallcor-
pusof audioandvideo is collectedof a speaker uttering
a list of wordsthat targetvisually distinguishablespeech
postures.After training new speechcanbe supplied,by
the original speaker or a new speaker, andsynchronised
video realistic facial animationis produced. The final
videois of thepersonusedin thetrainingphase.

To achieve facial synthesisandanimationwe introduce
a hierarchicalnon-linearspeech-appearancemodelbuilt
from dataextractedfrom the trainingset. Figure1 gives
an exampleof a hierarchicalmodel. The faceis decom-
posedinto partsto form ahierarchywheretherootcorre-
spondsto a non-linearmodelof thewhole faceandsub-
nodesnon-linearlymodelsmaller, morespecificfacialar-
eas.This structureallows usto betterrepresentsmall fa-
cial variationsandlearnmorepreciselytheir relationship
with speech.

2 SYSTEM OVERVIEW

The systemcan be broken into four stages: Training,
Model Learning,FacialSynthesisandVideoProduction.
In thetrainingphasea videois capturedof speaker utter-
ing a list of wordstargetingdifferentvisemes.A human
operatorthenannotatesthetrainingsetplacinglandmarks
at theboundariesof facial features.Thesystemthenex-
tractsthelandmarksfrom thetrainingsetandbuildsa hi-
erarchicalmodelof theface.For thepurposeof thispaper
we only extendthe hierarchyto includethe face(as the
rootnode)andthemouth.



Figure2: Annotatedtraining image.

Given our training setwe next extract the datarequired
for eachnode in the hierarchy. For the representation
of a nodewe introducea non-linearspeech-appearance
model. This is an extensionof an appearancemodel in-
troducedby Cooteset al [7] encodingrelationsbetween
appearanceparametersand speechvectorsallowing the
synthesisof facial configurationsgiven new audio. For
theroot nodethemodelis built usingthefull facial land-
mark and imagedata. For nodessuchas the mouthwe
simply extractcorrespondinglandmarksandtexture. For
representationof speechsignalswe processour training
audiousingMel-Cepstralanalysis.

To achieve facial synthesisgiven a new speaker we pro-
cessthe incomingaudioevery 40ms(yielding 25fps)us-
ingMel-Cepstralanalysis.Wethenprojectthissignalinto
a low-dimensionalspaceandusethe non-linearspeech-
appearancemodel at eachhierarchynodeto synthesise
a facial area. In the final stagesynthesisedfacial infor-
mationfrom sub-nodesis thencombinedto constructan
entireface.

3 DATA AQUISITION

The training processrequiresthe captureof at least30
secondsof audioandvideoof a speaker utteringa setof
visemerich phraseswith which to build our hierarchical
model.Wecaptureaudioat33KHzMonoandvideoat25
fps. Eachimagein our training set is thenlabelledwith
82 landmarksbetweenthe top of the eye-brows andthe
jaw. Figure2 shows oneof our labelledtraining images
annotatedwith the82 landmarks.

4 HIERARCHICAL FACIAL MODELLING

Facial areasynthesisfor eachnode in our hierarchical
model is basedon an appearancemodel [7]. Given an
audioinput eachnodeis used,in turn, to synthesisea fa-
cial area. Given our training set we begin building our
modelby extractinglandmarkshapedata,andshape-free
texturedata,for eachfacialarea.Usingthis data,andthe
capturedaudiodata,we thenbuild a non-linearspeech-
appearancemodelfor thatnode.

Therestof this sectiondescribeshow a nodein thehier-
archyis constructedandusedfor synthesisgivenspeech.
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Figure3: Distribution of mouthappearanceparameters
representedby thetwohighestmodesof variation.

In Section5 wethendescribehow nodesarere-combined
to constructanentireface.

4.1 FACIAL AREA MODELLING AND NODE
INITIALIZATION

Givenasubsetof facialinformationfrom theglobaltrain-
ing setwe first build an appearancemodelof the corre-
spondingfacial areaasdescribedin [7]. StatisticalPCA
modelsof shapeand texture arebuilt using the training
setandcombinedin a joint PCA model. We definethis
modelasfollows

x ���x � P � W ���� Q � c (1)

g � �g � P 	 Q 	 c (2)

wherex andg areexamplesof shapeandtexture, �x and
�g arethemeannormalizedshapeandtexturevectors,P �
andP 	 arethe eigenvectorsof eachtraining sampledis-
tribution,c is theappearanceparameter, W � is adiagonal
scalematrix whereeachelementis a ratio of the eigen-
variancesof the shapeand texture modelsand Q � and
Q 	 aretheshapeandtexturepartsof theeigenvectorsQ.
Usingthis modelwe thenprojecteachshapeandtexture
vectorassociatedwith a nodeinto appearanceparameter
spaceusing

c � Q 
 b (3)

giving usn appearanceparametersc for agivennode.An
exampleof the distribution of the two highestmodesof
appearancevariation for our mouth nodetraining set is
shown in Figure3.

4.2 NON-LINEAR APPEARANCE MODELLING

By examiningFigure3 weseethatourappearanceparam-
eterdistribution is highly non-linear. Modelling this data



setusinga single linear modelwould degradeits speci-
ficity andgeneralisation[8]. We thereforemodelthedis-
tribution usinga mixture of Gaussians[9] initialised us-
ing a k-meansalgorithm. After initial experimentation
we foundthatthenaturalnumberof clusterswasapprox-
imately 60. We discoveredthat our model tendedto be
unstablegivena datasetof lessthanapproximately400
samplesand reacheda satisfactory level of stability at
around700samples.

4.3 ASSOCIATING APPEARANCE WITH SPEECH

Our aim is to encoderelationshipsbetweenour appear-
ancemodel and our speechtraining set so that given
speechwe may estimatean appearanceparameterc for
anodesfacialarea.Eachclusterin ournon-linearappear-
ancemodelallows thesynthesisof a specificsetof facial
areaconfigurations.Therefore,givena speechsignalthe
first thing we would like to do is to find theclusterwhich
canbestsynthesisean accuratefacial configuration. To
achieve this mappingwe first reducethe dimensionality
of ourspeechtrainingsetusingprinciplecomponentanal-
ysis(PCA)yielding themodel

a � �a � P � s (4)

wherea is a speechvector, �a is the meanspeechvector
in our trainingset,P � aretheeigenvectorsof our speech
distribution ands is a speechparameter. We thenreduce
thedimensionalityof eachspeechvectorusing

s � P 
 �
� a � �a � (5)

Speechparameterss are then concatenatedwith scaled
appearanceparametersc giving n vectorsM� definedas

M� ���W � c 
��� s 
��� 
 j ��� ��������� n (6)

whereW � is a diagonalmatrix whereeachelementis a
ratio of theeigenvariancesof the speechandappearance
models. This givesus k clustersof vectorsM. We then
performa PCA on eachclusterto give usk joint models
of appearanceandspeech

M � �M ��� R � d i ��� ��������� k (7)

where �M � is themeanof clusteri, R � aretheeigenvectors
of clusteri andd is a speech-appearanceparameter.

4.4 APPEARANCE SYNTHESIS FROM SPEECH

Using the joint modelof speechandappearancedefined
for eachnodewecannow calculatea facialareasappear-
anceparameterc given s �! #"�$�% . First we choosewhich
clusterin our speech-appearancemodelcanbestsynthe-
size the facial areaby finding the smallestMahalanobis
distancecenterof eachclusterusing

& � � s �! #"�$�% � �s � �(' �)� � s �! #"�$�% � �s � � (8)

where�s � is themeanspeechparameterin clusteri and ' is
thecovariancematrixof thespeechparametertrainingset.

Givenanappropriateclusterwemaynow estimatec using
s �! #"�$#% . Themappingprocesswe usedwasfirst described
by Bowdenin [8]. It shouldhowever be notedthat our
processdiffers in that we clusterour databasedonly on
appearanceparametersand not on combinedcorrelated
datafrom differentdistributions.Thisdifferenceis dueto
thenatureof our data,we alsofoundthat it improvesthe
stabilityandsynthesisqualityof our model.

Givenaclusteri wesplit its matrixof eigenvectorsR � into
two partswherethe top part correspondsto appearance
and the bottompart to speech.We thendenotethe lin-
earrelationshipbetweenspeechandappearancein each
clusteras

W � c � �c ��� R �(* � d (9)

s � �s � � R �+* � d (10)

where �c � and �s � arethemeanappearanceandspeechpa-
rametersof cluster i and R �(* � and R �+* � are thoseparts
of theeigenvectorsof R � associatedwith appearanceand
speechrespectively. Givens �, #"�$#% we thencalculated us-
ing

d � R 
 �+* � � s �! #"�$#% � �s � � (11)

andused in (9) to calculatec. Finally, we constrainc to
bewithin - 3 s.d’s from themeanof its respectivecluster
andthencalculateshapex andtextureg using(1) and(2).

4.5 POST PROCESSING

Given a speechsignala nodein the hierarchyis usedto
synthesisea facialareaevery40ms.Giventhatwearese-
lectingclusterswith missinginformation(theappearance
parameters),with no considerationfor theprior probabil-
ities of the speechbelongingto a cluster, it is often the
casethat thereare a numberof possibleclusterscandi-
datesfor selection- andthebestchoiceis not necessarily
chosen. The symptomof this is the synthesisof incor-
rectappearanceparameters.However, sincethis is anin-
frequentoccurancewe eliminatetheproblemvisually by
performinglocal averagingof estimatedx andg vectors.
In Section6 we discussthis problemin the context of
speech-coarticulationandsuggestalternativesolutions.

5 RECONSTRUCTING THE HIERARCHY

Reconstructionof thefacefrom its synthesisedsub-parts
is donein a top-down fashionbeginningwith reconstruc-
tion of therootnode.Shapeandtexturedatafrom theroot
nodeis thensubstitutedwith datasynthesisedfrom sub-
nodesby first warpingtheroot to its meanoverall shape,
warpingthesub-facialdatawith respectto this mean,di-
rectly substitutingcorrespondingtextureinformationand
then finally warping the concatenateddatawith respect
to the synthesisedsub-facial areasnew shape. In order
to accountfor possibleintensity discrepenciesbetween
concatenatedareasthepixelsin eachsub-facialareasare
scaledto have a meanandvarianceequalto that of the
root texture.



Figure4: Reconstructionof theuntrainedword “Go” us-
ing the training speaker (view from left to right, top to
bottom).

6 EVALUATION

We recorded28 secondsof video of a speaker uttering
a list of words chosento target specificmouth config-
urationsand labelled706 of the frameswith the aid of
an Active ShapeModel (ASM) [10]. Using this data
we constructeda hierarchicalmodelwith a root nodefor
the whole faceanda subnodefor the mouth. We then
recordedthe samespeaker uttering a set of new words
unheardin traininganda new speakerutteringa different
setof words. Using this new audiowe thensynthesised
video-realistic reconstructionsusing our hierarchical
model.Figures4 and 5 show a selectionof framesfrom
thereconstructionsof bothspeakerswhich maybefound
at http://www.cs.cf.ac.uk/user/D.P.Cosker/research.html
Theanimationsgeneratedusingthemodelarebothcon-
vincing andrealistic,showing stronglip-synchto theau-
dio. However, sincethemodeldoesnot look aheadto the
next speechsegmentin orderto modify thecurrentmouth
configurationin anticipationof it, we believe thata time
basedmodelof coarticulationwould improve animation
quality. As well asimprovedcoarticulationsucha model
mayalsobeusedfor animationof a mouthin theantici-
pationof a speechsoundduringsilence,i.e. whenthere
is no speechto drive our animationmodelandwould re-
ducetheprobabilityof selectinginappropriateappearance
clusters(seeSection4.5).

7 CONCLUSIONS

We have introduceda non-linear hierarchicalspeech-
appearancemodelof thefacecapableof producinghigh-
quality video-realisticanimationgiven a speechinput.
The modelis capableof synthesisingconvincing anima-
tion givennew audiofrom eitherthe training speaker or
a new speaker. Thesystemis alsopurelydatadrivenre-
quiring no phonetic-alignmentbeforevideo-synthesis.In
future work we hopeto extend the model by encoding
relationsbetweensub-facialareasandemotionalcontent
derivedfrom speech.We alsoplanto improveanimation
co-articulationwith the inclusionof a time-seriesbased
model.

Figure5: Reconstructionof the untrainedword “Cow”
usinga new speaker (view from left to right, top to bot-
tom).
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