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ABSTRACT: A digital image is a rich medium of information. The development of user-

friendly image editing tools has given rise to the need for image forensics. The existing methods 

for the investigation of the authenticity of an image perform well on a limited set of images or 

certain datasets but do not generalize well across different datasets. The challenge of image 

forensics is to detect the traces of tampering which distorts the texture patterns. A method for 

image forensics is proposed, which employs Discriminative robust local binary patterns 

(DRLBP) for encoding tampering traces and a support vector machine (SVM) for decision 

making. In addition, to validate the generalization of the proposed method, a new dataset is 

developed that consists of historic images, which have been tampered with by professionals. 

Extensive experiments were conducted using the developed dataset as well as the public domain 

benchmark datasets; the results demonstrate the robustness and effectiveness of the proposed 

method for tamper detection and validate its cross-dataset generalization. Based on the 

experimental results, directions are suggested that can improve dataset collection as well as 

algorithm evaluation protocols. More broadly, discussion in the community is stimulated 

regarding the very important, but largely neglected, issue of the capability of image forgery 

detection algorithms to generalize to new test data.  

KEYWORDS: Image forensics; Image forgery detection; Copy-move; Splicing; Cross-dataset 

evaluation. 

1 Introduction 

Digital images are rich source of information in areas such as forensic science, medical 

imaging, surveillance, journalism, e-services, and social networking. On social media applications 

such as WhatsApp and Facebook 1.8 billion images are uploaded daily [6]. It has become much 

easier to manipulate the content of images due to the availability of powerful image editing tools 
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such as Adobe Photoshop [9], Corel-DRAW [9] etc. It is difficult for humans to visually detect  

such image modifications [9, 11].  

Figure 1 shows different ways of image tampering such as shadow removal, inserting fake 

objects, color filtering, image composition and illumination adjustment. An image may be 

tampered using the following operations: i) transferring an object or region from one image to 

another, or even to the same image; this is the most common type of forgery, and encompasses 

both splicing and copy-move operations, see Figure 2, ii) inserting fake objects into an image or 

manipulating an existing object to change its properties, iii) altering image parts related to lights 

and lighting. iv) removing an object or region from the image and hiding it.  

Due to increase in the number of tampered and retouched images, digital contents are 

nowadays not considered a reliable source of information. It is very difficult to have reliable and 

efficient image forensic methods, due to the advancement and sophistication in image 

Fig. 1. a) The hand shadow from the top image has been removed on the bottom image [1], b) The balls in 

the bottom picture are not real, which are inserted using circle objects along with light interactions [3], c) 

The bottom image was filtered to perform color editing on some of the stone statues [5], d-f) The cat in (e) 

is a composite of the cat in (d) and the leopard in (f) [8], g) The building was spliced on the field in the top 

image, and in the bottom, it had its lighting adjusted to match the composition [10]. 
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manipulation operations. Image authentication without using any prior information is called 

passive or blind approach [9, 12-14] and has received reasonable attention in the literature due to 

its ability to find forgeries in images by exploiting the traces/artifacts  via modeling the artifacts 

of forgery (discontinuities and inconsistencies in the form of edges, lines and corners) left by the 

tampering process. These traces act as features for image tampering detection [9, 15, 16]. 

To construct a simplified and computationally efficient image forgery detection model we 

employ Discriminative Robust Local Binary Patterns (DRLBP) [17], which encodes the structural 

changes that occur in images due to forgery. During model construction, a real forgery example 

dataset is required to validate the model. For this purpose, a new dataset consisting of historic 

images that have been tampered by professionals is developed, referred to in this paper as the 

Forged Real Images Throughout History (FRITH). It is used to validate the developed image 

authentication process together with other existing image forgery evaluation benchmark datasets. 

This work has the following four major contributions. 

• First, a new dataset FRITH (see Section 4 for details) is developed to evaluate the image 

forgery detection method on realistic scenarios. 

• Second, a robust image forgery detection method based on DRLBP and SVM is proposed 

to identify whether a given image is authentic or forged. Extraction of salient features are 

important for any image forgery detection system. Since the texture and contrast of forged 

images are different to those of authentic images due to structural changes after forgery, 

the DRLBP code is computed by assigning a weight factor ( 𝑤 ) carrying gradient 

information to capture edge and texture information together. The contrast is high near the 

boundary of forged areas in the forged images; therefore, the voted bin value is expected 

to be high as compared to authentic images which provides additional information of 

tampering cues (edges). 

• Third, the proposed approach is evaluated on cross datasets (i.e. training and testing on 

different datasets) to generalize to new data in real applications.  

• Fourth, a thorough evaluation and comparison on a variety of benchmark datasets is 

performed.  

Fig. 2. Examples of copy-move (a-d) and splicing (e-h) forgeries: a) Original image [2], b) Tampering is 

performed by copy and pasting a girl object in the same image to another location [2], c) Transfer mask of 

(b), d) Object street lamp is copied to another location in the same image [4], e) Source image [7], f) Target 

image [7], g) Transference mask of source image, h) Spliced image. 
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The rest of the paper is organized as follows. Related works on image forgery detection are 

reviewed in Section 2. The detail of the proposed technique is described in Section 3. Section 4 is 

about datasets and evaluation criteria. System parameters are described in Section 5. Experimental 

results are presented, discussed, and compared with existing works in Section 6. The paper is 

concluded in Section 7. 

2  Related Work 

  Over the last two decades, numerous works had been performed to detect different types of 

forgeries in images. Image forgery detection approaches are divided into active and passive (or 

blind) categories. Active approaches use detection of embedded watermarks or signatures to ensure 

the authenticity of images [18-23]. Such approaches are limited, because it is difficult to maintain 

prior information of such pre-embedded watermarks, signatures and secret keys [20]. Therefore, 

to detect image forgery without having any prior knowledge is an active research field. 

Inspired by the research in [24] for perceiving tampered human speech, Ng et al. [25, 26] 

proposed to detect image forgery by means of phase and magnitude features of images. The 

Columbia Image Splicing Detection Evaluation (CISD) dataset was used for evaluation [27]. The 

detection accuracy was only 72%, due to differences in the frequency characteristics between 

audio signals and digital images. High order wavelet features were passed to an SVM classifier for 

image forgery detection in [26] and they achieved 80.15% accuracy.  Wang et al. [28] detected 

image forgery using the Gray Level Co-occurrence Matrix (GLCM) of the YCbCr image. The 

CASIA v1.0 dataset was used for evaluation. The achieved accuracy was 90.5% on the Cr channel. 

Subsequently, Wang et al. [29] extracted transition probability features from the Cb channel, 

achieving an accuracy of 95.6% on a subset of the CASIA v2.0 dataset.  

A technique based on the modified Run-Length Run-Number (RLRN) was proposed by Zhao 

et al. [30]. He used chrominance components for feature extraction and achieved 94% detection 

rate. Muhammad et al. [31] decomposed Cb and Cr components using the Steerable Pyramid 

Transform (SPT) into sub-bands and extracted features using Local Binary Patterns (LBP) from 

these sub-bands. Significant features were selected and then passed to an SVM for classification. 

The Columbia Color DVMM dataset, CASIA v1.0 and CASIA v2.0 datasets were used for 

experiments. The best accuracies reported were 94.8% on CASIA v1.0 dataset, 97.33% on CASIA 

v2.0 dataset, and 96.39% on Columbia Color DVMM dataset. Cozzolino et al. [32] used dense 

features and achieved 95.92% and 94.61% detection accuracy on FAU and GRIP datasets, 

respectively. The datasets contain 48 and 80 authentic and copy-move forged images, respectively. 

Rota et al. [33] proposed a blind deep learning approach based on Convolutional Neural 

Networks (CNN) for tampered image classification. They used the CAISA v2.0 dataset for 

experiments and achieved 97.44% detection rate.  

Hussain et al. [34] evaluated image forgery detection using Weber Local Descriptor (WLD) 

and LBP. The tampering traces were computed from chrominance components using WLD and 

encoded as features using binary patterns. SVM was employed for classification. The method was 

evaluated on DVMM, CASIA v1.0 and CASIA v2.0 datasets. The impact of WLD and LBP to 

model tampering traces was thoroughly explored. The performance of the method was reasonable. 

Cattaneo et al. [35] performed experimental analysis of image forgery detection and used the 

approach of  Lin et al. [36] for JPEG tampered image detection. For tampering detection the 

authors in [35] estimated the image luminance quality factor and relative frequency of tampered 

blocks both in authentic and forged images in the CASIA v2.0 dataset and found that the images 

of the CASIA v2.0 dataset contain some statistical artifacts which can help the detection process. 

To confirm this, they first used the CASIA v2.0 dataset to evaluate the performance of Lin et al.’s 
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algorithm. According to their experiments, the considered algorithm performs very well on the 

CASIA v2.0 dataset. Some variants of the original algorithm were then specifically tuned 

according to the characteristics of the CASIA v2.0 dataset. These variants performed better than 

their original counterpart. Then a new unbiased dataset UNISA [35] was assembled and a new set 

of experiments was carried out on these images. The results showed that the performance of the 

algorithm and its variants substantially decreased, proving that the algorithm tuned on CASIA v2.0 

is not robust. 

Pham et al., used Markov features in DCT domain to identify whether a given image is 

authentic or forged. SVM was used for classification [37]. Experiments were performed using 

CASIA v1.0 and CASIA v2.0 datasets and achieved 96.90 % detection accuracy. The method is 

evaluated on limited datasets and focused only splicing forgery. 

Wang et al., in [38], proposed mass filter banks using fast Fourier transformation. The features 

were then fed to ResNet [39], to classify whether an image is tampered or authentic. Yan et al., in 

[40], proposed a method based on deep learning using CNN architecture. The model is trained on 

recolored and natural images. The method achieved 83.98% detection accuracy and evaluated on 

variety of recolored and natural images. However, evaluation is not performed on forgeries like 

copy-move and splicing. 

Review of existing image forgery detection techniques shows that encoding structural changes 

occurred in images due to forgery is still a challenge. The success of an image forgery detection 

method relies upon how it copes with the structural changes in forged images. In our experiments 

we explored LBP, WLD, and DRLBP texture descriptors and found that DRLBP models these 

structural changes well. A variety of benchmark datasets are used for evaluation in our 

experimental analysis. To ensure the robustness (i.e., the ability to authenticate images in general) 

of the proposed algorithm, a cross-dataset protocol is adopted, i.e., training and testing are 

performed on different data sets that have been collected independently. 

3 Proposed Image Forgery Detection System 

The architectural diagram of the proposed approach is shown in Figure 3. The system is 

composed of four major components i.e., i) preprocessing, ii) feature extraction, iii) classification 

model building, and, iv) testing using the trained model with cross data validation. The model is 

trained using an SVM classifier on a set of images (see model training component of Figure 3), 

then the trained model is used to test/recognize (see testing component of Figure 3) unseen 

authentic and forged images.  
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3.1 Pre-Processing 

Tampering traces are embedded in the form of edge irregularities [41]. Before feature 

extraction it is important to select an appropriate color space. A tampered image is shown in 

respective components of RGB, HSV and YCbCr color spaces in Figure 4. It is observed that all 

components describe the image content in detail except chroma components (CbCr), which 

emphasize the weak signal content (little image detail) of the image. In general, the content of an 

image  is too strong to hide the tampering traces. Edge irregularities caused by tampering can be 

noticed in chroma components [41], therefore, this study uses the YCbCr color space.  

    
Forged Image R G B 

    
Forged Image H S V 

    

Forged Image Y Cb Cr 

 

 

 

After careful visual inspection of the bird’s contour in the Y, Cb and Cr components (see Figure 

4), it is found that plenty of image detail cover up the forgery introduced by edges in the Y 

component, while in Cb (or Cr) component the bird’s contour presenting the forged region is 

sharper than other parts of the image because Cb (or Cr) has little image content as compared to Y 

(see Figure 4). Therefore, CbCr components are considered instead of Y component for features 

extraction. 

3.2 Feature Extraction 

During forgery, edges irregularities are embedded, which disturb the texture of images. Since 

significant difference is present in the texture of authentic and forged images in the form of small 

variations, the key question is how to model these small variations. LBP encodes the micro 

Fig. 4. Visualization of R, G, B, Y, Cb, Cr, H, S, V channels of a forged image, using RGB, YCbCr and 

HSV color spaces from left to right Row1 and Row2 and Row 3 respectively. 
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structure patterns [31], but does not capture well the orientation and edge information due to 

ignorance of small pixel fluctuation and sensitivity to noise. To classify whether an image is 

authentic or forged, microstructure patterns are required to be encoded with the strength of 

orientation and edge information. The new DRLBP texture descriptor better represents the 

microstructure patterns by assigning a weight factor ( 𝑤 ) carrying the gradient and texture 

information together. In this way, DRLBP captures edge irregularities and local changes by 

encoding the edge and texture information together. Due to this reason, DRLBP is used in this 

study. 

To explain how these changes are modeled an example of image forgery is explained (see 

Figure 5). In Figure 5a the white box region is copied and pasted into the black box region. The 

zoomed in view of the black box region after forgery in Figure 5c shows that the texture of the 

black box region after forgery is disturbed and artifacts of tampering (edges, lines, and corners 

etc.) are introduced. To hide these artifacts the forged image is post-processed using blurring (see 

Figure 5d). The zoomed-in versions of the black box region before forgery and after forgery are 

almost similar (see Figure 5e and Figure 5f) because tampering artifacts are invisible to human 

eyes after post-processing but are still present in the forged image. DRLBP texture descriptor is 

employed on the chrominance components of a given image to encode these structural changes 

due to its ability of combining edge and texture information in a single representation. The DRLBP 

histograms of the authentic and tampered regions are plotted in Figure 5g and Figure 5h 

respectively and show that the features are discriminative. 

 

 

 

 

    
a b c d 

    
e f g h 

 

Fig. 5. a) Region to be copied (white box), Region to be forged (black box), b) Forged image, c) Zoom-in view of 

forged region  before post-processing, d) Post-processed forged image, e) Zoom in view of region (black box) before 

forgery, f)  Zoom in view of forged region (black box) after forgery and post-processing, g) Histogram of DRLBP 

descriptor of region (black box) before forgery (features value along x-axis and frequency along y-axis), h) 

Histogram of DRLBP descriptor of region (black box) after forgery.  



9 
 

 
 

3.2.1 Computation of DRLBP Descriptor 

An overview of computing the DRLBP descriptor is given below, for details see [17] and [42]. 

DRLBP descriptor first encodes local changes in the form of LBP codes and then estimates their 

distribution considering the local gradient magnitude at the corresponding locations, i.e. the 

DRLBP descriptor encodes the local change considering the amount of change. First LBP codes 

with radius 1 and neighborhood 8 are calculated from the image and then the weighted histogram 

𝑊𝐿𝐵𝑃 of LBP codes is computed using the following equation: 

𝑊𝐿𝐵𝑃(𝑖) = ∑ ∑ 𝑤𝑁−1
𝑦=0

𝑀−1
𝑥=0 𝛿(𝐿𝐵𝑃𝑥,𝑦, 𝑖), 𝑖 = 0, 1, … , 𝑛 − 1.           (2) 

𝛿(𝑗, 𝑖) = {
1,
0,

𝑗 = 𝑖
           0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where n (=28) is the number of LBP codes, i.e. the number of bins in the histogram, 𝑤 is gradient 

magnitude of the pixel at location (𝑥, 𝑦), which weights the contribution of the corresponding LBP 

code according to the amount of local change at the pixel and M×N is the resolution of the 

chrominance component.  To remove the effect of the reversal in the foreground and the 

background, a robust weighted histogram 𝑊𝑅𝐿𝐵𝑃 is calculated using 𝑊𝐿𝐵𝑃 as follows: 

𝑊𝑅𝐿𝐵𝑃(𝑖) = 𝑊𝐿𝐵𝑃(𝑖) + 𝑊𝐿𝐵𝑃(28 − 1 − 𝑖),    0 ≤ 𝑖 < 27.            (3) 

Further, to enhance the discriminative effect of patterns, a discriminative weighted histogram  

𝑊𝐷𝐿𝐵𝑃 is calculated as follows: 

𝑊𝐷𝐿𝐵𝑃(𝑖) = |𝑊𝐿𝐵𝑃(𝑖) − 𝑊𝐿𝐵𝑃(28 − 1 − 𝑖)|, 0 ≤ 𝑖 < 27 .             (4) 

The DRLBP is constructed by concatenating the robust LBP and the discriminative LBP as 

follows:  

𝐷𝑅𝐿𝐵𝑃 = {𝑊𝑅𝐿𝐵𝑃 , 𝑊𝐷𝐿𝐵𝑃}.                      (5) 

After calculating DRLBP histogram from each channel 𝐶ℎ {𝐶𝑏 , 𝐶𝑟 } of the given image, the 

DRLBP descriptor (𝑓𝑣) is calculated by concatenating the DRLBP histograms corresponding to 

channels  𝐶ℎ {𝐶𝑏 , 𝐶𝑟 } as follows: 

𝑓𝑣 = [𝑓𝑣𝐶𝑏 , 𝑓𝑣𝐶𝑟].  (6) 

The descriptor 𝑓𝑣 computes the overall distribution of changes occurred due to forgery without 

taking into consideration their spatial locations. The incorporation of the information regarding 

spatial locations of patterns into 𝑓𝑣 further enhances its discriminative potential because forgery 

cues are of small scale and spatially localized. If features are extracted from an image, the spatial 

location of forgery cues may be lost. For this reason, we divide each channel of image into 𝐾 

blocks (sub-images), 𝐵1, 𝐵2, … , 𝐵𝐾 each of resolution 𝑙 × 𝑚 such that 𝐾(𝑙 × 𝑚)  =  𝑀 × 𝑁. The 

descriptor 𝑓𝑣 𝐵𝑖 is computed from each block 𝐵𝑖 and all descriptors are concatenated to form the 

descriptor 𝑓𝑣𝐶ℎ of each channel 𝐶ℎ {𝐶𝑏 , 𝐶𝑟 } i.e., 𝑓𝑣𝐶ℎ = [𝑓𝑣1
𝐶ℎ, 𝑓𝑣2

𝐶ℎ, … , 𝑓𝑣𝐾
𝐶ℎ]. In this way 

the  dimension of 𝑓𝑣   for 𝐶𝑏  or 𝐶𝑟  is (𝑅𝐿𝐵𝑃 𝑏𝑖𝑛𝑠 + 𝐷𝐿𝐵𝑃 𝑏𝑖𝑛𝑠) × 𝐾. Finally, the DRLBP 

descriptor representing the input image is obtained using (6). The whole process of the 

computation of 𝑓𝑣  is  detailed in Algorithm 1. 
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3.2.2 Statistical Analysis of the DRLBP Descriptor 

To show that the DRLBP descriptor has the potential to discriminate authentic and tampered 

images, we give a statistical analysis of the descriptor in two different ways.  

First, we computed the pairwise distances for the three cases using the city block between (i) 

authentic images, (ii) forged images, and (iii) authentic and forged images of CASIA v2.0.  The 

cases (i) and (ii) represent intra-class distances whereas case (iii) represents inter-class distances; 

Figure 6 shows the histograms of the three cases. Most of the pairwise distances for the intra-class 

cases (Figures 6a and 6b) are between 0.0 and 2.00 while those for the inter-class case (Figure 6c) 

are between 1.5 and 2.5. There is an overlap of approximately 6% between pairwise distances 

belonging to intra-class and inter-class cases. This indicates that the DRLBP descriptor has the 

potential for discriminating the authentic and forged images. The effect of the overlap is reduced 

when a kernel SVM is used for classification because the kernel computes the distances in a higher 

dimensional space where the patterns become separable.  

   
a b c 

 

Secondly, the effect of DRLBP descriptor is analyzed using scatter matrix based measure 

because of its simplicity [43, 44].  For this purpose, two scatter matrices: (i) within class scatter 

matrix (𝑊𝑆) and (ii) between class scatter matrix (𝐵𝑆). 𝑊𝑆 and 𝐵𝑆 are defined as follows: 

𝑊𝑆 = ∑ ∑ (
𝑁𝑖
𝑗 =1

𝑐
𝑖=1 𝑥𝑖𝑗 − 𝑥𝑖̅)(𝑥𝑖𝑗 − 𝑥𝑖̅)

𝑇
,                          (7) 

𝐵𝑆 = ∑ 𝑁𝑖
𝑐
𝑖=1 (𝑥𝑖̅ − 𝑥̅ )(𝑥𝑖̅ − 𝑥̅ )𝑇 ,                                                    (8) 

where 𝑥𝑖𝑗 is the feature space, 𝑁𝑖 is the number of samples in 𝑖𝑡ℎ class, 𝑥𝑖̅ is the mean vector 

for the 𝑖𝑡ℎ class, 𝑥̅ is the mean vector for all classes and 𝑐 is the number of classes. The traces of  

𝑊𝑆   and 𝐵𝑆 represent intra-class and inter-class scatters, respectively. The features are 

discriminative if the intra-class scatter is small and the inter-class scatter is high. Table 1 shows 

Algorithm 1: The computation of DRLBP descriptor of a given image. 

Input: RGB image I, the number K of blocks 

Output: DRLBP based feature vector 𝑓𝑣 

Procedure: 

1. For a given image I extract chrominance components 

a. 𝐶ℎ {𝐶𝑏 , 𝐶𝑟 } 

2.  For each 𝐶ℎ {𝐶𝑏, 𝐶𝑟 }    

a. Divide 𝐶ℎ into 𝐾 blocks: 𝐵1, 𝐵2, … , 𝐵𝐾 

b. For each block 𝐵𝑘 , 𝑘 = 1, 2 , … , 𝐾  

- Compute DRLBP histogram 𝑓𝑣𝑘
𝐶ℎ  

c. 𝑓𝑣𝐶ℎ = [𝑓𝑣1
𝐶ℎ , 𝑓𝑣2

𝐶ℎ , … , 𝑓𝑣𝐾
𝐶ℎ] 

3. 𝑓𝑣 = [𝑓𝑣𝐶𝑏 , 𝑓𝑣𝐶𝑟] 

Fig. 6. a) Histograms of pairwise distances of DRLBP features of CASIA v2.0 dataset; (a) 

Pairwise distances within authentic class, (b) Pairwise distance within forged class, and (c) 

Pairwise distance between authentic and forged classes. 
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the traces of  𝑊𝑆  and 𝐵𝑆 of five datasets. In each case, the trace of 𝐵𝑆 is high and  𝑊𝑆 is small 

indicating that the DRLBP descriptor is discriminative (see Table 1). 
Table 1. Trace of 𝑊𝑆 and 𝐵𝑆 on DRLBP features of benchmark datasets. 

Dataset Trace of 𝑾𝑺 Trace of 𝑩𝑺 

CASIA v1.0 [45] 1.24 2.87 

CASIA v2.0 [45] 1.37 2.57 

CoMFoD [2] 1.48 2.21 

MICC-F2000 [4] 1.28 2.01 

FRITH 1.47 2.35 

3.3 Classification Model Training (Building) 

To identify an image as authentic or forged is a two-class problem. The process of training a 

classification SVM model is described in Algorithm 2.  

SVM [46], deals with two-class problems by its construction and provides better generalization 

among kernel based classifiers [47-49]. The SVM has a variety of kernel functions such as radial 

basis function (RBF), polynomial, and sigmoid kernels, etc. 

Experiments are performed using these three kernels to find an optimal kernel. Experiments 

for identifying the optimal parameters representing the classification is performed using individual 

dataset or combination of datasets. A cross validation (CV) protocol is used to divide each dataset 

Algorithm 2:  Image Forgery Detection Model Training (Building) Procedure. 

Input:  𝑋𝑡    is the set of forged/tampered images, 𝑋𝑎,   is the set of authentic images, c and 𝑔 (gamma) are the 

parameters of SVM with RBF kernel, 𝑐𝑚𝑖𝑛,  𝑔𝑚𝑖𝑛,  𝑐𝑚𝑎𝑥    and   𝑔𝑚𝑎𝑥 are minimum and maximum values of 

𝑐 (to handle misclassification) and 𝑔 ( to handle non-linear classification) respectively. 

Output: Trained classification model SVM 

Procedure: 

1. for each image 𝐼𝑖  in 𝑋𝑡 

         Create features vector 𝑓𝑣𝑖 for each tampered image using Algorithm 1  

𝑡𝑓𝑣𝑖 = 𝑓𝑣𝑖 

Create labeled featured vector 𝑡𝑓𝑣𝑖𝐿 by assigning label 1 to 𝑡𝑓𝑣𝑖 

end for 

2. for each image 𝐼𝑖  in 𝑋𝑎  

         Create features vector 𝑓𝑣𝑖 for each authentic image using Algorithm 1 

𝑎𝑓𝑣𝑖 = 𝑓𝑣𝑖 

Create labeled featured vector 𝑎𝑓𝑣𝑖𝐿 by assigning label -1 to 𝑎𝑓𝑣𝑖  

end for 

3. 𝐷 ← 𝑡𝑓𝑣𝑖 𝐿 ∪   𝑎𝑓𝑣𝑖L 

4. 𝐴𝐶 = 0,  
5. for 𝑐 = 𝑐𝑚𝑖𝑛 𝑡𝑜 𝑐𝑚𝑎𝑥 do  

6.  for 𝑔 = 𝑔𝑚𝑖𝑛 𝑡𝑜 𝑔𝑚𝑎𝑥  do  

          Divide 𝐷 into equally 𝑘 folds (𝑘 = 10) 
           for 𝑖 = 1 to 𝑘 do 

     Train SVM(𝑐, 𝑔) on 𝐷/𝐹𝑖 to get model MSVM (c, g) % all training data 𝐷 except ith fold 𝐹𝑖  

     Test MSVM (c, g) on fold 𝐹𝑖 

     Record the 𝐴𝐶𝐶(𝑖) on fold 𝐹𝑖 

          end for 

             𝐴𝑣𝑔𝐴𝐶 =
1

𝑘
∑ 𝐴𝐶𝐶(𝑖)𝑘

𝑖=1    % compute average accuracy on k folds  

             if  𝐴𝑣𝑔𝐴𝐶𝐶 > 𝐴𝐶𝐶   

                  𝐴𝐶𝐶 =   𝐴𝑣𝑔𝐴𝐶𝐶, 𝑐𝑜𝑝𝑡 = 𝑐, 𝑔𝑜𝑝𝑡 = 𝑔 

             end if 

 end for 

end for 

7. Fit the SVM (𝑐𝑜𝑝𝑡 , 𝑔𝑜𝑝𝑡) model on training data  
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or combination of datasets into k (10)-folds. The SVM parameters are tuned on the training 

examples (9 out of the 10-folds) and that parameterization is used on the remaining (unused) fold. 

Each time the testing fold changes, the parameters are recalculated using k-1 folds on k iterations. 

Finally, the average value of k iterations parameters is considered final value of the trained model. 

All experiments are performed using the standard Lib-SVM [50], because SVM finds an optimal 

hyperplane with maximum margin between the two classes [46]. SVM uses the posterior 

probability of classification score which is the signed distance of a sample point from the decision 

boundary. The positive score classifies the sample point as positive, otherwise it is classified as 

negative [51]. 

3.4 Pre-trained Model Testing using Cross Dataset  

Further experiments are performed to ensure the generalizability of the proposed image 

classification approach using the cross-dataset evaluation. In this process, the features of the test 

image are extracted and passed to the trained model to classify whether the image is authentic or 

forged.    

4 Datasets and Evaluation Criteria 

To build a reliable and robust image forgery detection model, training and testing on 

benchmark datasets is very important. We need authentic as well as forged images in datasets. 

Forged images should contain as many possible varieties of geometric and postprocessing 

operations as possible. Further, for testing a trained image forgery model on unseen images, a 

collection of real forged images is very important to ensure the reliability of the trained model for 

real practical applications. In consideration of the above facts, a description of carefully selected 

datasets for use in our research is given in the next subsection. Furthermore, to measure the 

performance of any classification model, a selection of appropriate evaluation measures is 

necessary. This is described in the subsection 4.2. 

4.1 Datasets Description 

     Image forgery evaluation datasets are created using different cameras and image editing 

software packages. Publically available benchmark datasets: Columbia color DVMM (DVMM) 

[52], CASIA v1.0 [45], CASIA v2.0 [45], CoMFoD [2], UNISA [35], MICC-F220  [4] and MICC-

F2000 [4] are used to evaluate and validate the proposed approach. A comprehensive experimental 

analysis is also performed by combining different datasets with the aim that performance may 

improve by increasing both variety and sample size of data. Set-A and Set-B are combination of 

different datasets to analyze the impact of different formats, resolutions, geometric and post-

processing operations on image forgery detection. The datasets are grouped into Set-A or Set-B 

based on benchmarks, forgery types, postprocessing operations and number of authentic/forged 

images. Details of each dataset characteristics such as number of authentic and forged images, 

forgery types, file types, resolution, geometric and post-processing operations applied on images 

to make the dataset challenging are given in Table 2. An example of authentic and forged images 

from CSAIA v2.0, CoMFoD, UNISA and MICC-F2000 are shown in Figure 7. 
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4.1.1 Forged Real Images Throughout History (FRITH) a new Dataset for Evaluation of 

Image Forgery Detection  

In the forensic literature, many publicly available benchmarks datasets have been used for the 

detection of specific types of image forgeries. These benchmark datasets have been developed for 

supporting copy-move and splicing forgeries, having specific file formats, resolutions, geometric 

and post-processing operations. For example, the DVMM dataset has uncompressed authentic and 

forged images of sizes 757 × 568 and 1152 × 768 pixels. The CASIA v1.0 dataset has authentic 

and spliced images of size 384 × 256 pixels. The CoMFoD dataset has 200 sets of images of size 

512 × 512, each set containing authentic and forged examples. Both authentic and forged images 

were post-processed to enlarge the size of dataset (10,400 post-processed authentic and forged 

images). MICC-F220 consists of 220 images, while MICC-F2000 contains 2000 images, all 2048 

× 1536 pixels. The existing benchmark datasets have been created artificially by academic 

researchers with a specific goal in mind, primarily for the purposes of testing their algorithms only. 

However, in most cases the forgeries are fairly crude, and made by experts with the intention of 

forgery detection. We validated that the purpose of applying post-processing operations is to create 

semantically meaningful forged images. To the best of our knowledge, the applicability of existing 

benchmark datasets to realistic scenarios is always limited. Therefore, a benchmark dataset of 

semantically meaningful forged images used intentionally for false propaganda or malpractices 

should be made available to the researchers for the reliable testing of image forgery detection 

algorithms. Therefore, a new benchmark dataset has been created and labelled as Forged Real 

Images Throughout History (FRITH), consisting of real forgeries including many famous 

examples [53]. 

Fig. 7.  Authentic (bottom), forged (top). a) CASIA v2.0: A bird object is copied, rotated, and then pasted 

to another location of the same image. b) CoMFoD: The white object is multiply cloned in different 

locations of same image. c) UNISA: In the forged image, the rock is spliced at the bottom right corner of 

the authentic image. d) MICC-F2000: in the forged image, an object is pasted at the right-hand side of the 

authentic image. 
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The collection of forgeries in [53] provided the starting point of creating FRITH. However, 

mostly [53] just contains a single image for each type of forgery, and generally does not provide 

the source of authentic images. For proper evaluation of image forgery detection, we require a 

dataset consisting of both authentic and forged image sets. Therefore, we used the forged images 

from [53] as queries in an internet search and selected the best quality versions of the matches to 

provide both the forged and their authentic samples. In total, 255 historic forged images were 

collected. Among these authentic (untampered) versions of 155 forged images are also obtained. 

The dataset has many challenging characteristics such as: i) many images have been scanned 

as the originals were not digital, ii) the forged images contain a variety of image forgeries such as 

copy-move and splicing forgeries by transferring objects or regions, forgery by inserting fake 

objects, manipulation of existing objects, forged images being post-processed using lightening 

effects, and image enhancement/ tuning operations. The FRITH dataset has enough variety of real 

copy-move and splicing forgeries, in addition to other types of forgeries such as fake objects 

insertion, false captioning, and image enhancement operations. In future versions, we plan to add 

more real forged images with their authentic ones. The dataset will be made available for the public 

usage and can be downloaded from [54]. Example images of FRITH are shown in Figure 8 and its 

detail is listed in Table 2. 

 

 

4.2 Evaluation Criteria 

Accuracy (ACC), true positive rate (TPR), true negative rate (TNR), F-Measure and area under 

ROC curve (AUC)  are widely used to evaluate image forgery detection techniques [55, 56]. We 

evaluate our proposed approach using ACC, TPR, TNR, F-Measure, and AUC with cross dataset 

evaluation. The evaluation measures are defined as the follows. 

Accuracy (ACC) 

Accuracy is the proportion of correctly predicted authentic and forged images and is defined as: 

Fig. 8. Examples of authentic (bottom) and forged (top) images from the FRITH dataset: a) A doctored 

image showing Jeffrey Wong receiving an award, b) Tampered image of Obama’s meeting with Iranian 

President Hassan Rouhani, c) The Boston Marathon bombing tampered photo showing less disturbing 

content, d) A digitally altered puddle of water made to appear as blood flowing from the temple of 

Hatshepsut in Luxor Egypt. 
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𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 × 100%.  (9) 

where True Positive (TP) is the number of tampered images, which are classified as tampered; 

False Negative (FN) is the number of tampered images, which are classified as authentic; True 

Negative (TN) is the number of authentic images, which are classified as authentic; and False 

Positive (FP) is the number of authentic images, which are classified as tampered ones. 

True Positive Rate (TPR) 

TPR also known as sensitivity (SN) is the probability of recognizing a tampered image as tampered 

and is computed as follows: 

𝑇𝑃𝑅 = 𝑆𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100%. (10) 

True Negative Rate (TNR) 

TNR also known as specificity (SP) is the probability of recognizing an authentic image as 

authentic and is computed as follows: 

𝑇𝑁𝑅 = 𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100%.  (11) 

F−Measure  

F-measure is the harmonic mean of precision and sensitivity, and is computed as follows: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
.  (12) 

Area under the Curve (AUC) of Receiver Operating Characteristic (ROC) 

The ROC curve is used to present the performance of the binary classifier. It plots TPR versus 

FPR for exclusive thresholds of the classifier significances [57]. 

Cross Dataset Evaluation 

Cross dataset evaluation (training on one dataset and testing on another dataset) is the ultimate 

evaluation to expose the weaknesses and ensure the robustness of any image forgery detection 

method. In our experimental analysis, the performance of image forgery detection is evaluated 

using cross dataset protocol. 
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Table 2. Datasets description used for evaluation of image forgery detection algorithms and cross-dataset validation. 

Sr# Dataset Name Authentic Forged Forgery Types Image Resolution Image Formats 
Geometric 

Operations 

Post-Processing 

Operations 

1 DVMM  183 180 Splicing 
757 × 568 to 1152 × 

768 
TIFF and BMP No Uncompressed 

2 CASIA v1.0  800 925 
Splicing and Copy-

move 
384 × 256 JPEG 

resize, rotation 

deform, and 
distortion 

blurring, JPEG 

compression,  

3 
 

CASIA v2.0 
7491 5123 

Splicing and Copy-

move  

240 × 160  

900 × 600 

TIFF, JPEG, and 

BMP 

resize, rotation and 

distortion 

blurring, JPEG 

compression,  

4 CoMFoD  5000 5000 Copy-move 512 × 512 BMP   

JPEG compression, noise 
adding, blurring, brightness 

change, color reduction and 

contrast adjustment 

5 UNISA  2000 2000 
Splicing and Copy-
move 

4928 × 3264  
6016 × 4016 

TIFF, JPEG 
scaling, rotation, 
and distortion 

JPEG compression, 

blurring 

6 FRITH 155 255 

Copy-move, 
Splicing, 

Retouching, False 

Captioning, Fake 
objects insertion, 

Image enhancement 

Variety of 

dimensions 

JPEG, TIFF, 

PNG, BMP 

scaling, rotation, 
shearing, deform 

and distortion 

uncompressed, JPEG 
compression, blurring, 

noise adding, brightness 

change color reduction and 
image enhancement 

7 MICC-F220  111 110 Copy-move 737 × 492 JPEG scaling and rotation 

JPEG compression 

8 MICC-F2000 1300 700 
Splicing and Copy-

move 
2048 × 1536 JPEG scaling and rotation 

JPEG compression 
blurring 

noise adding 

contrast adjustment 

9 Set-A 13474 13228 Set-A is combination of DVMM, CASIA v1.0, CASIA v2.0 and CoMFoD datasets 

10 Set-B 3566 3065 Set-B is combination of MICC-F220, MICC-F2000, UNISA and FRITH datasets 
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5. System Parameters 

To find the best parameters of the system we performed a series of experiments by considering 

different combinations. Cb and Cr components are found suitable  due to their better performance 

during experiments as also referred in methods [6, 29, 31, 41]. For calculating the DRLBP features, 

each component is divided into overlapped blocks with 20% overlapping rate. In the case of 

DRLBP, we found that the uniform (u2) LBP (maximum two bits’ transitions) with P=8 and R=1 

is an appropriate choice due to its better performance as referred in [17].  

The optimization of the SVM parameters was done using the training datasets, and we found 

that the RBF kernel had the best performance. The RBF kernel involves two parameters: 𝑐 and 𝑔. 

The setting of these parameters plays a significant role in classification. The parameter 𝑐 is used 

to balance the model complexity by fitting minimum error rate. The kernel function parameter 𝑔 

is used to determine the nonlinear mapping from the input space to the high-dimensional feature 

space [58]. Kernel parameters 𝑐  and 𝑔 , were tuned using grid-search method, and found 𝑐  =
25 and 𝑔 = 2−5 best. Different k-fold cross validations (CV) such as 5-fold, 7-fold, and 10-fold 

were considered to best fit training data on classification model, and we found that 10-fold CV 

was most appropriate due to its lower sensitivity while dividing data for training and 

testing/validation for model fitting.  

6. Experimental Results, Comparison, and Discussion 

The classification accuracy of the proposed method on different datasets is presented in Figure 

9.  
 

 

 

 

 

 

 

 

 

 

 

The 

results reported here were obtained using the optimal parameters values of the system. 

6.1 Comparison of Proposed Method Terms of Training and Testing on the same Dataset.  

In this section, the results of the proposed method and state-of-the-art methods are compared, 

in terms of training and testing on same dataset (see Table 3) 
Table 3. Comparison of Proposed method with recent state-of-the-art methods in terms of training and testing on 

same dataset. 

Train and Test 

Dataset 
Approaches 

ACC 

(%) 

TPR 

(%) 

TNR 

(%) 

F-Measure 
AUC 

DVMM 

Proposed 97.52 96.67 98.36 0.97 0.97 

Alahmadi et al. [59] 96.66 96.33 79.09 -- 0.96 

Hussain et al. [34] 94.19 -- -- -- -- 

Fig. 9.  Classification accuracy of proposed method on different datasets in terms of training on same 

dataset and testing on same dataset. 
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Muhammad et al. [31] 96.39 -- -- -- -- 

Rao et al. [60] 96.38 -- -- -- -- 

Pham et al. [37] 96.90 -- -- -- -- 

Wang et al. [38] 82.31 -- -- -- -- 

CASIA v1.0 

Proposed 98.96 99.03 98.88 0.99 0.98 

Alahmadi et al. [59] 97.00 98.24 97.07 -- 0.97 

Shen et al. [61] 97.00 -- -- -- -- 

Alfy and Qureshi [6] 98.65 98.80 98.39 -- 0.99 

Goh and Thing [62] 90.18 -- -- -- -- 

Hussain et al. [34] 96.53 -- -- -- -- 

Muhammad et al. [31] 94.89 93.91 -- -- 0.93 

Rao et al. [60] 98.04 -- -- -- -- 

Pham et al. [37] 96.90 -- -- -- -- 

CASIA v2.0 

Proposed 99.21 99.02 99.33 0.99 0.99 

Cattaneo et al. [35] 90.00 -- -- -- -- 

Alahmadi et al. [59] 97.50 98.45 96.84 -- 0.97 

Rota et al. [33] 97.44 96.16 97.44 -- 0.99 

Shen et al. [61] 98.00 -- -- -- -- 

Alfy and Qureshi [6] 99.00 99.55 99.65 -- 0.99 

Hussain et al.  [34] 94.17 -- -- -- -- 

Muhammad et al. [31] 97.33 98.50 -- -- 0.97 

Rao et al. [60] 97.83 -- -- -- -- 

Pham et al. [37] 96.90 -- -- -- -- 

MICC-F220 

Proposed 99.64 99.9 99.20 0.99 0.99 

Amerini et al. [4] -- 98.21 91.84 -- -- 

Wang et al. [38] 98.92 -- -- -- -- 

MICC-F2000 

Proposed 99.64 98.57 99.23 0.99 0.99 

Amerini et al. [4] -- 93.43 89.04 -- -- 

Wang et al. [38] 99.14 -- -- -- -- 
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The comparison shows that the proposed method has better performance on different datasets in 

terms of training and testing on the same dataset, and the proposed method is robust against 

different geometric and post-processing operations applied on forged images of these datasets. The 

reason for this robustness is the ability of the DRLBP texture descriptor to model the structural 

changes in images that occurred due to forgery. The results of the proposed method are also 

comparable with the method of Yan et al., [40] which is trained using CNN architecture. The 

proposed method best detection accuracy on the combination of different datasets is 99.10 %, 

while the method of Yan et al., best detection accuracy is 86.89 %.  

6.2 Comparison of Proposed Method in Terms of Training and Testing on Different Dataset.  

Usually the same dataset is divided into two parts for training and testing or an n-fold strategy 

is applied but on the same dataset. For successful practical applications, it is necessary to develop 

the model through the process of training/validating on one dataset and finally testing the model 

on another dataset acquired from different sources, which is called cross dataset validation. For 

this purpose, four state-of-the-art methods [34, 35, 38, 59] are implemented together with the 

proposed approach.  
Table 4. Comparison of the proposed method and other recent state-of-the-art methods on cross dataset evaluation 

Testing Dataset results are reported. 

  

Table 3. . .       

Train and Test Dataset Approaches 
ACC 

(%) 

TPR 

(%) 

TNR 

(%) 

F-Measure 
AUC 

Set-A 

Proposed 99.10 99.20 99.18 0.99 0.99 

Cattaneo et al. [35] 92.88 93.74 92.03 0.93 0.92 

Hussain et al. [34] 97.37 98.28 96.48 0.97 0.97 

Alahmadi et al. [59] 97.50 98.45 96.84 0.97 0.97 

Wang et al. [38] 98.00 98.00 98.00 0.98 0.98 

Set-B 

Proposed 98.02 97.88 98.15 0.98 0.98 

Cattaneo et al. [35] 89.88 88.09 91.42 0.89 0.90 

Hussain et al. [34] 96.52 96.25 96.75 0.96 0.96 

 Alahmadi et al. [59] 97.50 98.45 96.84 0.97 0.97 

 Wang et al. [38] 97.41 96.00 96.57 0.97 0.97 

Testing 

Dataset 

Training 

Dataset 
Approaches ACC (%)  TPR (%) TNR (%) F-Measure AUC 

MICC-F220 Set-A 

Proposed 84.16 86.36 81.98 0.84 0.84 

Cattaneo et al., [35] 67.12 61.26 72.97 0.65 0.67 

Hussain et al., [34] 74.21 70.91 77.48 0.73 0.74 

Alahmadi et al., [59] 65.33 60.34 71.97 0.64 0.65 

Wang et al., [38] 82.61 83.63 80.89 0.81 0.81 
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A series of experiments were performed to analyze the performance of the proposed method 

on cross dataset testing. We trained the model on Set-A dataset and then tested it on the MICC-

F220, MICC-F2000, UNISA and FRITH datasets (see Table 4). 
 

Table 5. Comparison of the proposed method and other state-of-the-art methods on cross dataset evaluation, Testing 

Dataset results are reported. 

 

To determine the robustness of the image forgery classification model, experiments were 

performed by training the model on the Set-A dataset and then performing testing on the Set-B 

dataset and vice versa (see Table 5). The cross-dataset performance of the proposed system is 

better than the state-of-the-art methods, which indicates that the proposed method has better 

robustness. 

Our work adds to previous reports using cross dataset testing, which is an important area of 

research and an important component in real practice where different images need to be classified. 

Our experiments with cross dataset testing showed that our proposed method achieved better 

performance than those of  [34, 35, 38, 59] (see Figure 10).  

 

 

Table 4. . . 

Testing 

Dataset 

Training 

Dataset 
Approaches ACC (%)  TPR (%) TNR (%) F-Measure AUC 

MICC-

F2000 
Set-A 

Proposed 86.50 83.33 88.46 0.81 0.85 

Cattaneo et al., [35] 69.75 56.43 76.92 0.67 0.68 

Hussain et al., [34] 76.11 70.71 78.95 0.73 0.74 

Alahmadi et al., [59] 75.00 74.17 77.59 0.75 0.75 

Wang et al., [38] 83.05 84.13 84.16 0.82 0.82 

UNISA Set-A 

Proposed 77.46 85.00 70.00 0.79 0.77 

Cattaneo et al.,  [35] 56.25 60.00 52.50 0.58 0.56 

Hussain et al., [34] 67.50 70.00 65.00 0.68 0.67 

Alahmadi et al., [59] 68.05 72.00 67.90 0.69 0.69 

Wang et al., [38] 75.34 80.20 68.29 0.75 0.75 

FRITH Set-A 

Proposed 74.39 72.55 77.42 0.78 0.77 

Cattaneo et al., [35] 48.78 47.60 51.61 0.53 0.49 

Hussain et al., [34] 63.41 62.75 64.25 0.66 0.63 

Alahmadi et al., [59] 69.94 68.57 69.52 0.71 0.71 

Wang et al., [38] 72.93 71.15 75.24 0.75 0.75 

Testing 

Dataset 

Training 

Dataset 
Approaches 

ACC 

(%) 

TPR 

(%) 

TNR 

(%) 

F-

Measure 
AUC 

 

Set-A 

 

Set-B 

Proposed 81.27 81.10 81.45 0.81 0.81 

Cattaneo et al., [35] 68.54 68.25 68.83 0.68 0.68 

Hussain et al., [34] 72.29 72.03 72.54 0.72 0.72 

Alahmadi et al., [59] 73.92 73.30 73.45 0.73 0.73 

Wang et al., [38] 79.72 78.01 78.39 0.78 0.78 

Set-B Set-A 

Proposed 77.89 77.16 78.52 0.76 0.78 

Cattaneo et al., [35] 66.10 60.85 70.89 0.63 0.65 

Hussain et al., [34] 69.84 67.37 71.96 0.67 0.69 

Alahmadi et al., [59] 70.29 71.13 72.54 0.71 0.71 

Wang et al., [38] 76.98 75.61 77.25 0.75 0.75 
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6.3 Discussion 

The objective of this paper was to perform a comprehensive analysis of image forgery detection 

algorithms and the role of datasets used to evaluate these algorithms. We introduced an edge-

texture feature based approach for classifying authentic and tampered images. The novelty in our 

experimental analysis is that: i) we explored state-of-the-art texture descriptors and found DRLBP 

to be a robust texture descriptor, which models the structural changes occurred in images due to 

forgery using edge-texture features that incorporate information such as texture, boundary 

discontinuities and inconsistencies. ii) we validated our approach and four state-of-the-art methods 

[34, 35, 38, 59] by performing a series of experiments on publicly available datasets. iii) we also 

prepared a new dataset FRITH to evaluate an image forgery detection technique on forged images 

used intentionally for false propaganda or malpractices rather than datasets designed specifically 

by academic researchers. From the experimental analysis, it is observed that success of any forgery 

detection system depends on: i) modeling the artifacts of forgery in a precise way; ii) training a 

model on samples with as many as possible different types of forgeries, geometric transformations 

and postprocessing operations rather than increasing the size of samples in general.  

Detecting forgery that has been carried out by inserting a new object or manipulating an 

existing object is also a challenging task. Scene lighting and geometry parameters may help to 

detect such tampering. Experiments revealed that exploiting the texture of such suspected images 

may give a reasonable cue to detect such tampering. We recommend that there must be a large 

dataset containing object insertion and manipulation forgeries, such as FRITH (it has some 

examples of such manipulations), to ensure the robustness of an image forgery detection system 

in real scenarios. 

Erasing manipulations disturb the structural changes occurred in images due to forgery and can 

be traced by exploiting the JPEG compression artifacts, if the original images were compressed 

after such tampering. From a forensics point of view, forgery by means of changing the lighting 

conditions of an image is dangerous due to their potential of concealing forgeries. For example, a 

splicing forgery may be concealed by changing the lightening parameters, Again JPEG 

compression artifacts may help to find such traces. 

Image enhancement operations such as blurring (filtering), noise, contrast adjustment, are 

applied on forged images with the intention to remove low-level traces of forgery. We observed 

from experimental analysis by counting small pixel fluctuations and having texture information 

together with edges that it is possible to detect such traces because image enhancement operations 

only soften the edges, and not erase them completely.  
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6.3.1 Failure Analysis  

The proposed method achieved good performance, however, is less effective for some cases. 

The proposed method and methods in [34, 35, 38, 59], failed to predict some real forgeries shown 

in Table 6. After analyzing the failure cases, it is found that texture and edges of the forged images 

contain a mix of colors from the foreground and background of the source image which still a 

challenge. We will address such problems in future by exploring manipulation-relevant features 

using deep learning approaches. 
Table 6. Example images of failure cases of forged images from FRITH dataset. 

 

In this image text in the passport is manipulated and the image of the 

passport is used to gain some illegal benefit. The person in the image 

altered his particulars to hide the passport contents. 

 

The Polish subsidiary of Microsoft ran a version of a company 

marketing campaign in which the photo was altered by replacing the 

face of middle person. 

 

The image was August 2007 cove of the scientific publication Nature 

showing three aircrafts measuring atmospheric pressure. The top and 

bottom aircrafts are cloned. 

 

In this image the Swiss tabloid Blick digitally altered a puddle of water 

to appear as blood flowing from the temple to show terrorist attack at the 

temple of Hatshepsut in Luxor Egypt. 

 

In the image lady Franken dressed up like a baby bunny, wearing adult 

diapers and clutching a fluffy white teddy bear is fake. 

 

7. Conclusion and Future Work 

In this paper, a novel image forgery detection method based on DRLBP and SVM has been 

proposed. The chrominance components of an input image are divided into overlapping blocks, 

and then the DRLBP code of each block is calculated. Later, histograms of all the blocks of both 

Cb and Cr components are used as features. Classification is performed using an SVM. The method 

was extensively evaluated on individual and combined benchmark datasets in terms of training 

and testing on splits of the same dataset, and on different datasets (i.e., cross dataset validation). 
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The proposed method was evaluated using eight benchmark datasets: DVMM, CASIA v1.0, 

CASIA v2.0, CoMFoD, MICC-F220, MICC-F2000, UNISA, FRITH, Set-A and Set-B. The 

classification accuracy of our method is consistent across the eight datasets, and it has better 

performance than state-of-the-art methods due to the effective modeling structural changes 

occurring in tampered images by DRLBP texture descriptor. The results on combinations (Set-A 

and Set-B) of datasets indicate that the proposed method is robust and consistent under different 

post-processing operations, file types, and image resolutions (small, medium, and high). The cross-

dataset evaluation (training on one dataset and testing on another dataset) shows that the 

performance of the proposed method is significantly better than state-of-the-art methods. DRLBP 

is an elegant texture descriptor to represent important features of image tampering and helps in 

classifying whether an image is tampered or authentic. Furthermore, the approach is robust against 

different geometric transformations and post-processing operations. Cross-dataset evaluation is 

the ultimate test to expose the weaknesses and robustness of any image forgery detection method.  

The results of this study are better than other state-of-the-art image forgery detection methods 

in terms of cross-dataset validation, there is still room for improving the approach to ensure the 

robustness of an image forgery detection method on unseen images. It is believed that the research 

community should adopt the cross-dataset validation procedure from now on. From the 

experimental analysis, it is considered that statistical artifacts of possible types of image forgeries 

must be presented by benchmark datasets to enable the development off a robust model. As future 

work it is planned to localize the tampered regions and tune the parameters using meta-heuristics 

methods to improve the cross-dataset validation performance. dynamic learning of the 

classification method when tested on unseen images is another plan for future research. 
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