Science in China Series F: Information Sciences

© 2009 ®> SCIENCE IN CHINA PRESS

www.scichina.com
info.scichina.com
www.springerlink.com

@ Springer

Expressive line drawings of human faces from
range images

HUANG YueZhu'-?f, MARTIN Ralph R.2, ROSIN Paul L.2, MENG XiangXu' & YANG ChengLei!

1 Department of Computer Science and Technology, Shandong University, Jinan 250101, China;

2 School of Computer Science, Cardiff University, Cardiff, United Kingdom

We propose a novel technique to extract features from a range image and use them to produce a 3D
pen-and-ink style portrait similar to a traditional artistic drawing. Unlike most previous template-based,
component-based or example-based face sketching methods, which work from a frontal photograph as
input, our system uses a range image as input. Our method runs in real-time for models of moderate
complexity, allowing the pose and drawing style to be modified interactively. Portrait drawing in our
system makes use of occluding contours and suggestive contours as the most important shape cues.
However, current 3D feature line detection methods require a smooth mesh and cannot be reliably
applied directly to noisy range images. We thus present an improved silhouette line detection algorithm.
Feature edges related to the significant parts of a face are extracted from the range image, connected,
and smoothed, allowing us to construct chains of line paths which can then be rendered as desired.
We also incorporate various portrait-drawing principles to provide several simple yet effective non-
photorealistic portrait renderers such as a pen-and-ink shader, a hatch shader and a sketch shader.
These are able to generate various life-like impressions in different styles from a user-chosen viewpoint.
To obtain satisfactory results, we refine rendered output by smoothing changes in line thickness and
opacity. We are careful to provide appropriate visual cues to enhance the viewer’s comprehension of the
human face. Our experimental results demonstrate the robustness and effectiveness of our approach,
and further suggest that our approach can be extended to other 3D geometric objects.

portrait drawing, non-photorealistic rendering, line drawing, suggestive contour, occluding contour, feature line, stylization

1 Introduction .
computer graphics.

Although considerable re-

Human faces are fascinating, and very diverse.
They are so expressive of the most delicate emo-
tional nuances that many artists have devoted their
lives to portraiture. Line drawing is both concise
and expressive, and is important in both art and
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search has been done on non-photorealistic render-
ing (NPR) of line drawings!'~®/, computer gener-
ated portraiture is still a challenging task. This is
not only because of the complexity of facial appear-
ance, but also due to the fact that human observers
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Figure 1 Portraits produced by our system in different styles and from different viewpoints.

are extremely sensitive to minor details. Making
‘real’ looking drawings is hard.

With the development of digital entertainment,
expressive facial rendering is in increasing demand.
Meanwhile, recent advances in three-dimensional
sensor technologies have made possible the rapid
acquisition of high quality 3D data from human
faces in the form of range images or 3D meshes.

Unlike many current frontal photographic im-
age based caricature systems® 'Y which we discuss
later, we propose a novel technique to extract fea-
tures from a range image and use them to produce
a pen-and-ink style portrait rendering similar to a
traditional artistic portrait drawing. By using a
3D model, we can alter the viewpoint to one cho-
sen by the user and update the rendering in real
time as shown in Figure 1.

A huge range of guidance is available to artists

12-14]  Here, we

concerning portrait drawings!
summarize some suggested approaches to portrait
drawing:

1) Multiple lines may be used to emphasize im-
portant facial characters. For example, in Figure

2, multiple lines are used for the sides of the nose.

2) Hatching is often used to suggest tone and
shape.

3) Lines should vary in thickness, density, and
opacity according to the shape of the underlying
surface, and the shapes of the lines themselves.
Curvature variation is most important.

4) Lips are usually drawn by hatching accompa-
nied by an outline.

5) Eyes are usually carefully and precisely drawn
in portraits.

Clearly, many other rules are also useful when
drawing portraits. In this paper, we attempt to
take into account some of these rules in our render-
ing system, in particular to ensure that we clearly
capture characteristic features and the personality
of the face. We render these in a way which mim-
ics the pen-and-ink style of portrait drawing. In
real range data, the face area is often incompletely
acquired, particularly around the eyes (for exam-
ple, due to self-occlusion and related problems dur-
ing scanning), and can contain high levels of noise.
Our method is designed to cope with such defects
in scans, although clearly the result will be lacking

Figure 2 Portrait drawing from an art student’s work. Note the highlight on the lips and multiple lines on the sides of the nose.
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in detail in such areas. We also note that range
scanners cannot capture details of hair, and we
omit sketching of hair from consideration. The
main contributions of our research are as follows:

1) We extend previous feature line detection
methods in a way which performs much bet-
ter with typical noisy range images (suggestive
contours!'®! are an example of the kind of fea-
ture lines intended).

2) We present a strategy for generating long
smooth feature line paths which can be flexibly
used as a basis for various stylization approaches.

3) We apply expressive yet flexible portrait ren-
dering tools which are based on suggested artistic
rules for portrait drawing.

In the remainder of the paper, section 2 gives
an overview of the related work, while section 3
describes our extended feature line detection algo-
rithm, and presents our chaining strategy for gen-
erating long feature line paths. Section 4 focuses
on rendering. Section 5 demonstrates our results,
while section 6 draws conclusions.

2 Related work

2.1 Related work

Computer graphics has typically pursued the goal
of realism. However, in many cases, photoreal-
ism is not the best way to efficiently express ideas,
especially if we want to concentrate on the most
important aspects of a scene or object. Instead,
we may prefer artistic depictions which attract the
viewers’ attention to significant aspects and which
NPR can provide the
means for visual abstraction and effective commu-

omit superfluous details.

nication. A major area within NPR concerns stylis-
tic computer-generated line drawing of 3D models.
Here, we briefly review NPR work with particular
relevance to NPR rendering of human faces.
Humans interpret line drawings remarkably well,
being able to perceive and understand 3D structure
from very sparse collections of lines. A portrait is
a concise yet expressive representation of a given
person. However, there have been relatively few at-
tempts to interactively or automatically generate a
stylistic sketch of a face similar to those drawn by
artists. Akleman['”l described a template-based fa-

cial caricature system which simply linked face fea-
ture points using image processing methods; it pro-
duces rather lifeless sketches. Gooch!" presented a
method for creating black-and-white illustrations
from photographs of human faces; furthermore, he
evaluated the effectiveness of the resulting images
using psychophysical studies which assessed accu-
racy and speed in both recognition and learning

tasks. Liang et al.®—11

reported caricaturing sys-
tems which preserve individually recognizable fa-
cial features of the person whose portrait is being
produced. Chen” developed an example-based
character drawing system which allows exaggera-
tion. This work provided an alternative way to
create caricatures from the typical approach of ex-
Such

methods do not strictly represent the original face

aggerating the difference from the mean.

characters, and the results often tend to beautify
or exaggerate features of the human face. Luol'®
presented an image processing method for generat-
ing cartoon facial expressions from a frontal photo-
graph. Xul®! proposed a hierarchical composition
model for facial representation and sketching allow-
ing the production of portrait sketches at different
resolutions given an input face image and a dictio-
nary of sketches.

Our approach differs from these methods in that
we start from 3D range data, allowing portraits to
be drawn from different views, unlike photograph-
based methods which usually draw a frontal cari-
cature. Previous approaches also often need many
tedious manual operations such as marking feature
points and so on.

Other work has also considered creating carica-
tures from 3D data. Fujiwaral?’! used a mesh model
to cover a head and then generated a face represen-
tation by finding the differences between the input
face and a mean face. Boyer®!! produced a 3D face
mesh by comparing a face to a canonical model,
but simply rendered feature lines without any styl-
Often, such research focuses on how to
exaggerate the face shape, and then renders it in
simple caricature style, taking little account of the
methods of traditional portrait drawing.

ization.

2.2 Feature lines

As Colel?? points out, feature lines, including sil-
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houettes, ridges, valleys, suggestive contours, ap-
parent ridges, and others, play an important role
in shape perception. He presents the results of a
study in which artists made line drawings intended
to convey specific 3D shapes.
artists in this study often overlapped one another,

Lines drawn by

particularly along the occluding contours of the ob-
ject. A natural question to ask is: “How well can
current line drawing algorithms describe human
artists’ lines?” This study revealed that feature line
types which can be automatically extracted, such
as occluding contours, suggestive contours, and ap-
parent ridges, account for about 80% of artistic
lines. Inspired by the effectiveness and aesthetic
appeal of artistic line drawings, many image-based
and object-based algorithms have been proposed
for automatically generating such line drawings.
Decarlo®® provides a useful bibliography concern-
ing the production of line drawings from 3D data,
and the perception of line drawings; here we simply
review the most recent developments in line draw-
ing.

Based on the insight that a line drawing can be
understood as an abstraction of a shaded image,
Decarlo? suggests use of two kinds of highlight
lines where diffuse shading would yield thin bright
areas using a single point light located at the cam-
era. Leel?! extends Decarlo’s work to cases involv-
ing diffuse and specular highlights under arbitrary
illumination, and gives a‘ GPU-based algorithm for
rendering a 3D model as a line drawing. However,
drawing lighting-dependent lines can result in cer-
tain important features not being depicted under
particular lighting setups.

Decarlo!™1% describes suggestive contours as a
new type of feature line that can be combined
with silhouettes to produce effective line drawings
of smooth shapes. Suggestive contours are curves
along which the radial curvature is zero: the view
vector v is projected onto the local surface tan-
gent plane at the point p to obtain w; the radial
plane spans the surface normal n and w, slicing
the surface along the radial curve, whose curvature
gives the radial curvature (see Figure 3). Judd?¢
defines apparent ridges as the loci of points that
maximize view-dependent curvature, and defines

view-dependent curvature as the variation of the
surface normal with respect to a projection plane.
Unfortunately, suggestive contours and apparent
ridges can only be reliably computed on smooth
meshes due to their sensitivity to noise: suggestive
contours are based on second derivatives of sur-
face information while apparent ridges are based on
third derivatives. Directly computing suggestive
contours or apparent ridges from limited-resolution
range data meshes typically produces results which
are too noisy. We instead propose the use of a
novel feature-line detection algorithm which is effi-
cient yet robust. It is based on reliable suggestive
contours and follows the object space algorithm de-
scribed by Decarlo!'>16]. Tt takes a set of visible sil-
houette edges produced from the range image, and
efficiently chains them to form long smooth line
paths, to which stylization algorithms may be effec-
tively applied. Our algorithm gains efficiency and
robustness over existing methods by directly ex-
ploiting the analytic connectivity information pro-
vided by the range image and minimizing the im-
pact of noise during rendering. In addition, we
filter artifacts in connected edges during the pro-
cess to improve the visual quality of strokes after
stylization.

3 Computing extended feature lines

Our goal is to turn a range image of a face into a
3D portrait with a similar appearance to an artist’s
work, allowing real-time interaction to choose the
point of view, and rendering style. We have broken
down the problem into four separate parts. Firstly,
since we only focus on the face, we trim away irrele-
vant parts of the range image. Secondly, we extract
feature lines including occluding contours and ex-
tended suggestive contours. Thirdly, we chain all
feature lines into long curves and smooth them. Fi-
nally, we render these curves with a chosen stylistic
shading method. This section describes our ex-
tended suggestive contour algorithm in detail.

3.1 Extended suggestive contours
algorithm

We regard occluding contours and suggestive con-
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Figure 3 (a) Radial curvature; (b) a radial plane section of the surface around point p. A reliable suggestive contour appears at the

inflection point p on the radial curve. If the camera is located in the dark grey region, the surface will have a reliable suggestive con-

tour at p and will extend to the light grey region.

tours as the major shape cues to be used during
portrait drawing. Decarlo!*®'% describe an object
space algorithm for finding suggestive contours. If
we directly apply it to range data, it typically pro-
duces too many noisy lines. Although threshold-
ing can be used to eliminate some of the noisy
or too-short lines, the results still look quite un-
pleasant. If we choose a larger threshold, too few
lines are extracted; if we choose a smaller thresh-
old, too many broken, unordered, noisy lines are
extracted. One might consider the use of mesh
smoothing®” to eliminate the noise, but if suf-
ficient mesh smoothing is used to eliminate the
noise, it typically also eliminates certain geometric
features of the face which are essential for portrait
drawing. Instead, we have designed a direct fea-
ture line extraction method which is robust in the
presence of noise, inspired by the idea of hysteresis
thresholding®®!. The assumption is that if a sug-
gestive contour passes through a certain triangle,
it is very likely to continue to pass through adja-
cent triangles. Therefore, if strong evidence for a
suggestive contour exists in one place, it may be ex-
tended to neighbouring triangles, even if evidence
for the contour there is weaker. Our extended sug-
gestive contour algorithm first finds an initial reli-
able suggestive contour segment, and then extends
it into selected surrounding areas.

We first briefly recall the definition of sugges-

tive contour™. Suggestive contours are the set of
points on a surface at which its radial curvature k,
is 0, and the directional derivative of k, in the di-
rection of w is positive (w is the projection of the

view vector on the local surface tangent plane):

ke (p) =0, (1)
Dyk,(p) > 0. (2)

Here, the directional derivative Dk, is defined as
the derivative of k,.(p) with respect to distance,
measured along w. These curvatures and their
directional derivatives may be computed using a
curvature tensor fitting scheme as described in
Decarlo!*>1!

3(b)), the suggestive contour is unstable because it

In the magenta region (see Figure

changes drastically with small changes in the view-
point (because w changes direction quickly). Fur-
ther instability arises due to errors in curvature es-
timation. To find reliable suggestive contours, we
use the method following Decarlo!*?), which further
requires

_1 (n(p)-v(p)
0= <cos <Hv(p)H > ®)

td < Dwkr/ || w ||7 (4)

where 6.,t; are thresholds. This gives suggestive
contour points which are stable in the presence of
We choose these thresholds so that they

work consistently for range image meshes showing

noise.
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a range of objects and viewpoints. They should be
set large enough to ensure the stability of the con-
tours found, and to minimize the impact of errors
and noise. As can be seen from Figure 3(b) and
eqs. (3) and (4), the larger 6. and t,, the fewer
reliable suggestive contours will be extracted. In
all the examples produced by our system, we set 6,
and t, as suggested by Decarlo.

Having found initial reliable suggestive contour
segments, we extend them to a k-ring neighbor-
hood on the mesh by detecting suggestive contours
without using the thresholds 6, and t,;: we extend
the initial reliable suggestive contours one ring at
a time to the 3-ring neighborhood area in Figure 4.
The size k of the neighborhood can be specified by
the user. Note that we only extend suggestive con-
tours where they would be visible. This provides
the following advantages:

1) All feature lines found are visible, avoiding
time consuming visibility tests in subsequent chain-
ing and stylization processing.

2) Lines tend to be connected to form long paths,
which is important for coherent rendering.

Our algorithm extends suggestive contours
across the mesh until they become occluded as
shown in Figure 3(b). But note that the algorithm

P], 5
) >

Y

P]T
}-,li}
Pys

[ Ring I-neiborhood
[ Ring 2-neiborhood
B ling 3-neiborhood
+, positive radial curvature
-, negative radial curvature

(a)

is designed to extend any initial reliable suggestive
contours. Usually, various unwanted noisy lines ex-
ist together with these initial suggestive contours,
and our algorithm will extend these too. To reduce
the visible effects of such cases, we make the algo-
rithm terminate in any case after reaching the spec-
ified final ring of the neighborhood. When extend-
ing the suggestive contours, we ignore the thresh-
olds . and t4, and simply add suggestive contours
which satisfy egs. (1) and (2). In fact, we could
require these suggestive contours to in addition sat-
isfy thresholds which are less stringent than those
used to find the initial reliable suggestive contour
segments, but it is not easy to tune such thresh-
olds. Thus, for simplicity we omit their use: we
find that we can still obtain good results without
using relaxed thresholds. The process is demon-
strated in Figure 4, where we assume we find an
initial reliable suggestive contour segment repre-
sented by AB, which then results in an extended
suggestive contour JIHGABCDFEF by consider-
ing the 3-ring neighborhood of triangle Py P, Ps.

3.2 Line chaining

The classical path-and-style metaphor for non-
photorealistic rendering, which draws lines of vary-

Extended Suggestive Contour Algorithm
Input: Range image M
Output: Extended Suggestive Contour lines

Preprocess: Convert M into triangle mesh M’

Algorithm:
For each visible face in M’
Determine if it contains a reliable Suggestive Contour.
End
For each relible Suggestive Contour
For i=1 to k
Extend the Suggestive Contour to neighbourhood
ring i if possible

End

End

(b)

Figure 4 (a) An extended suggestive contour starts from AB and is extended as JINGABCDEF. (b) Algorithm for extended

suggestive contours.
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ing styles based on underlying paths, was first
used by Finkelstein®. It can be applied to do-
mains ranging from vector graphics to pixel graph-
ics. Our approach for finding suggestive contours
generates small discrete pieces of feature line, and
these must be chained to give longer smooth con-
nected paths as a basis for drawing strokes us-
ing this metaphor. Although much literature dis-
cusses stylistic rendering®~8!, few papers focus on
the chaining strategy.

Sousal® mentions the silhouette edge chaining
problem, but does not explicitly state any chaining
strategy. Image-based contour generation methods

B and intelligent scissors(®?,

like active contours
focus on generating object boundaries to segment
an image represented as a pixel array, while we wish
to join line segments on a mesh. To address this
problem, our approach is based on the concept that
a segment should only be added to the end of an ex-
isting feature line if it agrees in direction, and it is
near enough. We construct a directed graph com-
prising all feature line segments, and chain those

line paths which satisfy egs. (5) and (6):

D(eivej) <¢, (5)

i#3j. (6)

Here, e denotes a feature line path composed of line
segment s;, and € denotes its weighted average di-
rection taking into account all segment directions

max{wdis(ei, ej) + wdir(av e_J))} 2 c,

contained in this line path using

si€e s;€e

where w; = 270D i = 1,... n. D(e;,e;) repre-
sents the Euclidian distance between the nearest
end points of e;, e;. wais(e;, e;) is a distance weight
function defined by

wdis(eiaej) =
a lf D(ei,ej) < 517 (8)
exp(1 — D(e;,e;)/&) otherwise,

and wg;, (€;, e_;) gives directional weighting defined

by
wdir(av e—;) =

b if e - e >, (9)
exp((1+e; - €;)/2) otherwise.

Note that &1,&,6,a,b, c are constants which are
specified by the user (typically by regarding the
model size as 1, default values are & = 0.08,&; =
0.25¢,0 = 0.9,a = 5,b = 4,¢c = 4.5). wa(e;,€;)
and wg;s(e;, ;) are given additional importance as
shown if e; - €, or distance weight D(e;,e;) lies
within the specified thresholds & and 6 respec-
tively. From eq. (5), we first limit the chaining
of line paths using the threshold distance £; then
we further constrain the chaining using a tradeoff
between direction and distance, as expressed by eq.
(6).

Figure 5(a) explains the overall strategy of our
line chaining algorithm. The input comprises the
line segments S resulting from the extending sug-
gestive contour algorithm. These line segments are
chained only if the sum of their distance weight
evaluated by eq. (8) and direction weight evaluated
by eq. (9) is greater than a user-specified value c.
Find_And_Add_Predecessor(FP;, G) returns the first
found predecessor P; of P; for which the distance
between P; and P; is 0, and adds the edge P;P; to
the graph. Find_And_Add_Successor (P;,G) simi-
larly returns the first successor P; of P, for which
the distance between P, and P; is 0, and adds the
edge P, P; to the graph. An example is shown in
Figure 5. The initi-al direction of input line seg-
ments is assigned at random, e.g. FyP, or P P,
(see Figure 5(b)). After Build_All_Line_Paths (G,
L) the line paths are PyPyPyP,Py; P P2 P3P, Ps
PsP;PyP; and PyyPsPyPoPyPsPsP;PyP3  (see
Figure 5(c)). Since they have common points like
Py, Ps, they are then merged (see Figure 5(d)). The
algorithm ensures that we chain all compatible line
segments together. In the worst case the algorithm
takes time O(|E|?) where | E/| is the number of edges
in G.

3.3 Refinement

If we directly render using the feature line paths
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Line chaining Algorithim

Input: line segments S

Output: line path sets L

Algorithm:

create an empty direeted graph &

for cach line segment in S

add both ends as nodes into directed graph G,

add the line segment as an edge with
random orientation:

end

for each node P,EG

if P, has no predecessor

clse if P, has no successor
| Find And Add Suceessor (F,, &) if one exists;
ene - - -
for each P,€ G with no predecessor or successor
Build_Single Line Path(G, L, P;);

end
Build All Line Paths(G, L).
for each €€ L
if e;N e7®
merge ¢ into e, and remove ¢; from L
end

Find_And_Add_Predecessor (P, () if one exists;

Build_Single Line Path(G, L, P;)
set P; as the start point of new line path e
while P; has successor Pj and .”Il;'rfr
add P, into e, P~ P,

add e into line path set L.

Build_All_Line Paths(G, L)
for each line path ¢,€ L
initialize w=0;

for each line path e;€ L(i# j) satisfying

D((‘?@" E‘?)Gf_
w=max{wwy,(e;.e;)+wy.(e;e)}:

end

if w=e
conmnect e; into e;, remove €; from L.

end

Figure 5

edge directions; thick arrow denotes edge direction changes.

generated above, the resulting drawings still look
unpleasant because of remaining noise and arti-
facts. We therefore further refine the generated
paths.

3.3.1 Point clustering. When constructing the
graph, several nodes may actually represent a sin-
gle point. See Figure 5(b), where Py, P5, Py, Py are
all the same points. We need to cluster them as one
point. At the same time, and more importantly, if
the distances between any two points on feature
lines are too small (typically 0.5% of the model
size), we cluster them as a single point, which im-
proves the connectivity and shape of feature lines.
3.3.2 Line path smoothing. Walking along each
line path in turn, we use eq. (10) to iteratively
smooth the path by averaging adjacent points. We
first smooth each line path in a forward direction,

(a) Line chaining algorithm; (b) the initial G; (c¢) G after Build_All line_paths (G, L); (d) G after merge. Arrows denotes

and then in the reverse direction.
P+ P+ P
R

P; on linepath, i =1,...,n— 1. (10)
3.3.3 Line length filter. Often, it is hard to de-
cide whether a short piece of line is due to noise
or represents a real feature. We simply regard line

paths which are too short as noise, and discard
them, as they are not important for rendering the
main features of a face, and more likely to be a
distraction. We typically set the length filter to be
5% of the model size.

4 Stylistic rendering

Portraiture books!'?>~'4 show that even when only
using pencil, artists are able to create great visual
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impact. The most frequently used line styles are
hatching lines and over-sketching. We attempt to
simulate such effects using a pen-and-ink shader,
a hatching shader and an over-sketching shader.
Inspired by previous research on stylistic stroke
[3-8,30] e apply stroke shaders to the line
paths we have already computed.

rendering

4.1 Portrait rendering

4.1.1 Pen-and-ink shader.
commonly used for portrait drawing.

Pen-and-ink style is
Winken-
bach!® discusses use of pen-and-ink illustration for
architecture. In portrait rendering, we find that it
is almost impossible to give the tone of each facial
part precisely; thus, instead, we control the overall
tone by using a series of textures. We follow the
method describe in Lake®’ to achieve a real-time
pencil portrait sketching effect. We use v - n (v
denotes the light direction, n is the normal of the
triangle face) to determine the texturing: regions
receiving less light are given a higher density of
pencil strokes. This coincides with the rules used
by an artist when applying pen-and-ink strokes.
Typical results are shown in Figures 1, 7(k), and
8.

4.1.2 Hatching shader. Hatching is a widespr-
ead NPR style that uses patterns and arrangements
of line strokes to represent tones and shapes; usu-
ally simple line strokes are used in groups of ap-
proximately parallel strokes. The basic principle
for hatching lines is that they should be placed over
feature lines to convey geometric shape and light-
ing. The key challenge in incorporating these ideas
into our portrait hatching shader is how to arrange
hatching strokes. Artists tend to place the hatch-
ing strokes around feature lines. Our hatching
shader accordingly places hatching strokes along
line paths to enhance shape and tone perception.
An example can be seen in Figure 8, where we ren-
der line strokes following the lip shape, and use
hatch lines to enhance shape cues while leaving a
certain are white to provide the highlight. This ef-
fect is similar to line drawings executed by hand:
see the lip in Figure 2.

4.1.3 Over-sketching shader.
being free and bold while not worrying about mak-

Sketching involves

ing mistakes. Over-sketching is widely used in por-

trait drawing, and we achieve this effect by drawing
multiple strokes with random small offsets in the
normal direction. This effect is shown in Figure
7(h). The offset stroke points are given by

p; in stroke, +=0,...,n,

(11)

where rand() returns a random value between 0

p; = p; +rand()n;,

and 1, and mn; is the normal to point p;.

4.1.4 Combination of shaders. There is no single
way to generate all desirable portrait styles, and
the usual practice is to combine multiple shaders.
Our system flexibly allows combination of shaders
as chosen by the user. We believe the more flex-
ible the combination can be, the more potentially
creative the final results.

4.2 Stylistic control

Within each shader, we still can create different vi-
sual effects by varying the stroke type, thickness,
and opacity.

4.2.1 Thickness control. Many NPR systems
employ strokes to convey shape. Often more at-
tention is paid to where to draw lines, rather than
how to determine stroke thickness. However, it is
generally believed that curvature driven thickness
and viewing distance driven thickness give good
results. Goodwin[**
mining stroke thickness in computer-generated il-
lustrations, but the method is intended for smooth
surfaces without creases or boundaries, and is not
We extend their
work for portrait drawing, modifying it to provide

gives an approach for deter-

suitable for portrait drawing.

smooth variations in thickness by considering the
context of the current stroke. We determine the
stroke thickness by not only considering its own
properties but those of the preceding stroke. This
can be simply achieved by using a weighted average
(see eq. (8)) of the thickness of the current stroke
and previous strokes:

i=1 =1

where ¢t denotes the stroke thickness, and t; de-
notes the ith previous stroke thickness. A weight
w; = 270D 4 = 1,...,n is used to progressively
decrease the effect of previous strokes. Results can
be seen in Figure 7(a) and (b).
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Figure 6 Feature lines produced by our algorithm and other methods. At each point 6. = n(p) - v(p). (a) Original range image; (b)

apparent ridges; (c) suggestive contours t3=0.05; (d) suggestive contours t;=0.1; (e) extended suggestive contours t;=0.1, 1-ring; (f)

extended suggestive contours t3=0.1, 3-ring.
4.2.2  Stroke type variation. Artists use pencils
with different shapes of tip (sharp, or with an edge
rubbed flat, etc.) to produce different line types.
In our system, we provide the user with different
stroke types to flexibly produce different visual ef-
fects. We can see different stroke types applied in
Figure 7(e) and (f).

4.2.3 Opacity control.
lines and prevent them from appearing abruptly

To produce smoother

as viewpoint changes, we add opacity control to
each stroke, again taking into consideration opac-
ity of the preceding stroke. We use D, k,./ | w |
as the stroke’s initial opacity, and then average the
stroke opacity using

0= (1 —Zn:wi> o—i—zn:wioi, (13)
i=1 i=1

where o denotes the stroke thickness, o; denotes the
ith previous stroke thickness, and w; = 270+V 4 =
1,...,n as before.

5 Results and discussion

All experiments in this paper were performed on
a laptop with 1.66 GHz Intel processor and 1 GB
RAM, without code optimization. The range im-
ages we used come from the Biometrics Database
of the University of Notre Damel®”!. As shown in
Table 1, the feature line extraction process is quite
fast, and the time for line chaining is approximately
quadratic in the number of feature lines, as ex-
pected; the bottleneck of our system lies in stylis-
tic rendering stage. The number of feature lines
increases with the model size. When the number
of feature lines reaches around 2k, the total time
becomes more than 1.5 s. However, modern hard-
ware with a newer graphics card, and optimised
code should provide much faster rendering. Our
system can currently generate images for moder-
ate resolution models (under 10k triangles) in less
than a second and can be thus used in real time
applications.
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(i)

Figure 7 Noses drawn with different stylistic control. (a) Thickness smoothing off; (b) thickness smoothing on; (c) opacity variation

off; (d) opacity variation on; (e) sketch with light strokes; (f) sketch with double lines; (g) smoother sketch; (h) over-sketching; (i) hatch-
ing strokes; (j) diffuse hatching strokes; (k) diffuse hatching+hatching texture; (1) hatch-shaded.
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Figure 8 The Stanford bunny, and further portraits drawn by our system.
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Table 1 _Time taken to render various face models®)

Model FN LN ET CT TT

04267d141 7158 1050 0.012 s 0.136 s 0.367 s
04311d182 9170 1381 0.015 s 0.258 s 0.681 s
04366d74 7957 1037 0.012 s 0.148 s 0.459 s
02463d452-1 9028 1339 0.014 s 0.240 s 0.686 s
02463d452-2 13325 1973 0.023 s 0.516 s 1.521 s
02463d452-3 18513 2508 0.028 s 0.404 s 4.295 s

a) FN: Number of triangles; FL: number of feature lines; ET: time for extracting feature lines; CT: time for line chaining and

smoothing; TT: total time including ET, CT and rendering.

Here we compare the output resulting when find-
ing apparent ridges, suggestive contours and our
extended suggestive contours. As mentioned be-
fore, if we directly apply Decarlo’s method*1% to
range data, it typically produces too many noisy
lines (see for example Figure 6(c)). Although
thresholding can be used to eliminate some of
the noisy or too-short lines, the result still looks
quite unpleasant (see Figure 6(d)). Our extended
suggestive contour algorithm is simple, but works
quite well for noisy range images. Figure 6 shows
that our method produces better feature lines al-
though some noise still exists. However, we note
that while producing better feature lines, it also
enhances some unwanted lines caused by noise, as
can be seen for example on the nose tip in Figure
6(d). Fortunately, many such unwanted lines are
discarded by the subsequent chaining and smooth-
ing processes, as shown in Figures 7 and 8.

We note that our approach for extending sugges-
tive contours can in principle be applied to other
kinds of feature lines such as apparent ridges!?%.
However, on attempting to extend apparent ridges
on medium-resolution range images of faces, we en-
counter the problem that locating initial apparent
ridges cannot be done reliably, as their computa-
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