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Abstract 
A method is described for segmenting edge data into a 

combination of stmight lines and elliptic am. The westage 
process first segments the data into straight line segments. 
Ellipses are then fitted to the line data. ntis is much fmter 
than curve fitting directly topire1 data since the lines provide 
a great reduction in data. Segmentation is pegormed in the 
paradigm suwsted by Lowe [5]. A measure of significance 
is defined that produces a scale-invariant description and 
allows the replacement of sequences of line segments by 
ellipses without requiring any thresholds. A method for 
fitting ellipses to arbitrary curves, essential for this 
algorithm, has been develope4 based on an iterative 
Kdmm filter. This isguaranteed to produce an elliptical fit 
even though the best conic fit may be a hyprbola or 
parabola. 

Introduction 
A key problem area in computer vision is the 

extraction of meaninPful features from images with the 
most popular approach based on edges. To be useful for 
model matching, edges must be represented in a more 
manageable form. The type of description required can 
be very application dependent but is usually based on a 
combination of straight line approximations and higher 
order curves such as arcs, conic sections, splines, and 
curvature primitives. 

The majority of segmentation techniques depend on 
pre-set parameters to determine the accuracy of fit or the 
scale at which breakpoints are located. Fixed parameters 
prevent algorithms from b e i i  scale invariant; i.e. a pixel 
string of a particular shape should have the same 
description whatever its size. Scale invariance requires 
smaller thresholds and windows for finer scales. An 
approach has been suggested by Lowe [SI based on 
replacing fixed parameters by a measure that 
accommodates scale invariance. This measure 
normalizes the maximum error by the length of the 
representation. 

Q Both authors were formerly at City University, London, 
UK. 

Numerous techniques have been proposed for 
generating straight line approximations. However, less 
time has been devoted to extracting higher order 
representations because of the increased number of 
parameters or degrees of freedom and the ill-conditioned 
nature of the problem. Lowe's technique has previously 
been extended [lo] to deal with circular arcs. This paper 
describes a further extension for segmenting curves into 
straight lines and elliptic arcs. Ellipses are a powerful 
feature for matching since they can be used to determine 
the 3D orientation of objects containing circular features. 
Ellipses may occur in 2D images through the projection 
(either perspective or orthogonal) of 3D circles onto the 
image plane. 

The method has the advantage that a pixel string is 
segmented into a combination of lines and ellipses 
without requiring any thresholds, producing an 
approximately scale invariant description. 

Tree Searching 
A simple example of tree searching takes a list of edge 

pixels which is hypothesised by a straight line passing 
through its end points. The list is segmented into two, and 
the process is repeated recursively on each of the two lists. 
The recursive process is halted when the error between 
the line and the data is less than some threshold. The 
result of the recursive process is a tree in which the curve 
description at each level is a finer approximation of the 
level above. 

There are two issues which arise from such a simple 
algorithm. These are location of breakpoints and choice 
of threshold. Breakpoints can be located using a number 
of criteria such as point of maximum deviation or 
curvature extrema. Our method uses the maximum 
deviation criterion which has the advantage that no 
threshold is required. A better criterion than error 
thresholds, proposed by Lowe [SI, is significance. The 
significance rating for lines is the ratio of the line segment 
length divided by the maximum deviation of the curve 
from the straight line segment, This is based on a 
pseudo-psychological measure of perceptual 
significance: the longer the line, the greater the maximum 
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deviation tolerated. This favours long lines provided they 
fit reasonably well. An advantage of this measure is that 
it is normalised by the line length, and is therefore scale 
independent. Segmentation is continued until the line 
length or maxi" deviation is less than three. This 
termination is necessary to stop small perfect fits which 
would prevent longer, but imperfect, fits. Tail recursion 
is then used to choose the best line description at each 
level by comparing significances. 

Lowe's algorithm produces a high quality, general 
purpose polygonal approximation. No arbitrary error 
threshold is required, instead the most appropriate values 
are chosen dynamically throughout the procedure. For 
instance, curves of different sizes give very similar 
approximations (but at different d e s ) .  The use of a 
fixed threshold would approximate the smaller curves 
crudely, and larger curves with unnecessary detail. 

The techniques of Lowe's algorithm can be applied to 
subdivide curves into representations other than straight 
lines by fitting different functions to the curve. For 
example, West and Rosin [U] fitted circular arcs to the 
pixel data in place of straight lines using a least-squares 
circle fitting approach [U], and segmented curves into 
sequences of arcs. 

Alternatively, the Line and Arc Detection Algorithm 
[lo], segments the curve into a sequence of lines and arcs 
using a two-stage process. For most environments a 
combined line and arc representation is a more 
appropriate description than arcs alone. First, curves are 
segmented into straight line segments. In a similar 
manner, circular arcs are fitted to sequences of straight 
lines and segmented by subdividing at the vertex with the 
maximum deviation from the arc. 

The two-stage process has several advantages over 
fitting higher-order curves directly to pixel data. Arc 
fitting is much faster since only the vertices are 
considered as data points, providing a great data 
reduction over the edge pixels. In addition, the decision 
to replace lines by arcs needs no arbitrary threshold. The 
signi6cance of an arc is calculated in a similar manner to 
the siiicance of a line, namely the ratio of the maximum 
deviation divided by the length of the representation, i.e. 
the arc. Since their signi6cances are commensurate, an 
arc replaces a sequence of lines and/or arcs if it is more 
signiricant than all of them. The replacement of lines by 
arcs is straightforward since arc breakpoints (and 
therefore subarc endpoints) correspond to line 
endpoints. That is, an arc always replaces a sequence of 
complete line segments. 

Although arcs are a powerful cue for recognition, in 
the 3D world, circular edges are more likely to appear as 
ellipses or elliptical d o n s  in an image. Therefore, it is 
desirable to deted ellipses in images. Two approaches 
have been investigated along the same lines as the arc 

detection methods described above in which arcs are 
fitted to pixel or line data. Crucial to this approach is a 
robust ellipse fitting algorithm. 

Ellipse Fitting 
The two main approaches to ellipse fitting are the 

Hough transform and least-squares error fitting. The 
Hough transform is not appropriate here since it does not 
produce a unique solution (the search space can be 
multi-dimensional and sparse), and requires a large 
number of data points. 
To be incorporated into our approach, we require a 

method that wiU fit the best ellipse to any data. That is, 
both image curves that are not ellipses as well as those 
that are. Since an ellipse is described by the general 
equation for a conic 

m 2 + b x y + c y 2 + d r + e y + f = O  (1) 

with the constraint b 2 - k  C O ,  the problem of 
constraining the fitted conic to be elliptical is non-linear. 
Thus, most researchers using least-squares error 
techniques for curve fitting fit general conic sections 
rather than ellipses. However, this often leads to 
hyperbolic and parabolic arcs b e i i  fitted in place of 
elliptic arcs. Even for approximately elliptical data a 
hyperbolic or parabolic arc may give a lower fitting error 
than an elliptic arc. In particular, sections of low 
curvature data tend to be fitted best by hyperbolic arcs. 
The main options when fitting conics are: 

0 All conic types - hyperbolic, parabolic, and elliptic - 
are allowed [4,8]. 

.The possibility of non-elliptic fits is not considered 
[7,9], often because some heuristic has been used to reject 
non-elliptic data sets. 

0 All non-elliptic conic fits are rejected [6,11], and are 
typically replaced by a simpler representation such as 
circular arcs or straight line segments. 

0 The conic fit is forced to be an elliptic arc [l-31. 

Cooper and Yalabik [2] attempted to force the best 
fitting conic to be an ellipse by adding a few artificial data 
points at appropriate locations. This method only worked 
in some instances. Another approach [3] added to the 
error function a penalty function N(b2 - 4uc) for 
b2 - 4uc >O, where N is a positive constant, large 
compared with the term b2 - 4uc. Unfortunately this often 
tended to force the curve to be a single branch of a 
hyperbola with the other branch pushed out towards 
infinity for large N .  



The RANSAC method [l] iteratively selected five 
data points at random until the resulting computed conic 
through them was an ellipse coming close to a sufficiently 
large number of points. A standard least-squares conic fit 
would then be performed on all non-outlying points. If 
after a fmed number of trials no acceptable fit was found 
the procedure terminated without fitting an ellipse. 

Our approach fits an ellipse by iteratively applying the 
Kalman filter. It is straight-forward to employ the Kalman 
filter - a recursive least-squares filter - to fit a conic (e.g. 
[9]). For an ellipse the value of a + c in equation (1) can 
never be zero. To maintain the minimal representation of 
five parameters for an ellipse the arbitrary scale factor is 
removed by the normalisation a + c = 1. Now 
rectangular hyperbolae cannot be represented, but all 
ellipses can still be described. An initial estimate is 
required, whose degree of influence on the final fit is 
controlled by the covariance matrix. Fitting is initiated 
with a circle obtained by the least-squares method [12]. A 
large covariance value will fit the conic unbiased by the 
circle fit, while a zero covariance matrix forces the conic 
to the initial circle. Since a circle is a special instance of 
an ellipse, we can guarantee an ellipse fit simply by 
reducing the covariance value. The Kalman filter is first 
run with a large covariance value to provide an unbiased 
fit. If the fitted conic is an ellipse the procedure 
terminates successfully. Otherwise, the Kalman filter is 
iteratively performed, and the fitted conic forced to an 
ellipse by lowering the covariance value. The optimal 
covariance value will be the largest value possible that fits 
an ellipse. This will give the ellipse fit that is the least 
biased by the initial circle estimate. The covariance value 
can be approximately determined in a small number of 
iterations by performing a binary search of the covariance 
values between the initial large value and zero for the 
cross-over value where the conic fits change from 
hyperbolic or parabolic to elliptic. The search is 
continued until the range of covariance values is smaller 
than a threshold, and the ellipse fit arising from the lower 
covariance value of the range is returned. 

Figure la shows synthetic data consisting of a section 
of one arm of a hyperbola. In figure lb  the various 

representations of the data generated by the algorithm 
are shown. Starting with the initial circle fit (a) the 
algorithm goes through a number of hyperbolae (b-h) 
until an ellipse is found (i). This result demonstrates 
forcing the fit, determined by the Kalman filter, to 
non-elliptical data to be an ellipse. 

Examples 
The following examples use edge lists extracted by the 

Man-Hildreth edge detector followed by an endpoint 
linking algorithm. Insirmificant edge lists are removed by 
a threshold on their summed pixel edge strengths. 

The image is shown in figure 2a, and the edge data in 
figure 2b. Figure 2c shows the results of fitting ellipses to 
the pixel data resulting in a representation consisting 
purely of ellipses. Most true elliptical features have been 
represented with reasonable accuracy. For instance the 
edge of the plate and the rim of the cup. As ellipses are 
the only representation allowed, straight line segments 
have been approximated by sequences of elliptical arcs 
with low curvature. Figure 26 shows the lines extracted by 
Lowe's algorithm and figure 2e shows the result of fitting 
ellipses to the line representation. In general the line data 
has been correctly segmented into ellipses and lines. 
Large ellipses have been accurately fitted. Small ellipses 
are typically represented by less lines which gives rise to 
less accurate ellipse fitting. Some of the obviously 
elliptical data has been incorrectly classified as lines 
because there were too few line segments to fit ellipses to. 
The ellipse fitting requires at least five lines (i.e. six 
endpoints). With less than five points the fitting process 
is underconstrained, and for five points there is only a 
unique, perfect conic fit. Perfect line or ellipse fits are 
disallowed as they may prevent larger fits which are 
imperfect, but nevertheless perceptually better. To avoid 
ellipses being missed due to too few points would require 
additional points to be inserted. These points could either 
be interpolated from the line data or be passed on from 
the line approximation stage as "soft break" points. No 
obvious straight line data has been misclassified as 
elliptical. Finally, figure 2f shows the ellipses from figure 
2e overlaid onto the original image. 

I 

Figure 1 (a) hyperbolic data; (b) sequence of 1 tits to (a). 

Conclusions 
The task of describing edges present in images is an 

important area of interest and research in the field of 
computer vision. Many algorithms have been proposed 
for detecting lines, arcs, and higher order curves. In this 
paper a method for the detection of lines and ellipses, 
based on a paradigm proposed by Lowe [4 has been 
proposed. It has the advantage over other methods in that 
no thresholds are required. Instead a significance 
measure is used which is relatively scale invariant and 
produces perceptually agreeable results. A method for 
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Figure 2 (a) original image; (b) edge ( 
I 

ita; (c) ellipse fittting to pixel data; (d 
fitting to line data; (0 ellipses in (e) superimposed on original image. 

fitting ellipses to arbitrary curves, essential for thii 
algorithm, has been developed, based on an iterative 
Kalman filter. This is guaranteed to produce an elliptical 
fit even though the best conic fit may be a hyperbola or 
parabola. 
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