Edges: Saliency measures and automatic thresholding
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Abstract — Edges are useful features for structural im-
age analysis, but the output of standard edge detectors
must be thresholded to remove the many spurious edges.
This paper describes experiments with techniques for: 1)
automatically determining appropriate edge threshold val-
ues, and 2) alternative edge saliency measures to gradient
magnitude.

INTRODUCTION

In recent years edge based techniques from machine vi-
sion have been applied to remotely sensed imagery. This
can involve delineating regions which can then be pro-
cessed as complete units. Classifying regions rather than
individual pixels has the advantage that their average
spectral values are less prone to local fluctuations. More-
over, shape properties can be measured which can aid the
classification task. Alternatively, if particular structural
objects are to be identified in the scene (e.g. airports)
then edges are the most commonly used feature.

One drawback with using edges is that not only do edge
detectors extract meaningful and useful edges, but also
many other spurious ones which arise from noise and mi-
nor changes in spectral values. If all such edges are kept
then the resulting clutter is hard for subsequent processing
stages to analyse, while the large number of edge points
can seriously degrade computational performance. The
alternative is to select a subset of edges for further anal-
ysis, and disregard the remainder. This is generally done
by a threshold on the gradient magnitude of pixels.

AUTOMATIC THRESHOLDING

Unfortunately edge thresholding is normally done in an
ad-hoc manner, often requiring user tuning of parameters.
Standard image intensity thresholding algorithms cannot
be applied since they assume bimodal (or multi-modal)
intensity histograms while edge magnitude histograms are
more likely to be unimodal.

Voorhees and Poggio [12] showed that if the image noise
consists of additive Gaussian noise then the magnitude of

the gradient of the image

VIl = /22 + 12

has a Rayleigh distribution
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For an acceptable proportion of false edges (Pr) this al-
lows a suitable threshold to be selected:

T =0/ —2In(Pp).

However, in practice the edge distribution in a real im-
age is a combination of different sources of noise and
significant features, complicating the identification of the
non-noise components in the edge magnitude histogram.
Voorhees and Poggio’s approach was to smooth the his-
togram and attempt to locate the peak. Unfortunately
this requires various heuristically set parameters which
diminishes the robustness of the approach. Alternatively,
Amodaj and Popovic [1] iteratively fit a Raleigh function
to the lower portion of the histogram. However, the fitting
may not be robust since it depends on the portion of the
histogram used as well as on the initial estimate.

A simpler approach is to estimate the peak directly [4]
or iteratively [?] from the raw edge magnitude histogram,

since 0 = \/gm A potentially more reliable procedure
is to use estimation techniques from robust statistics such
as the median and least median of squares (LMedS) [10].
Rather than threshold edge pixels independently some
contextual information can be incorporated. For instance,
Canny [4] employs two thresholds using hysteresis, and a
reasonable lower threshold was experimentally determined
as half the high one. We have previously described an au-
tomatic thresholding technique that operates on complete
curves, and does not make assumptions about the noise
distribution [11]. It’s main dependence is on reasonable
connectivity, so that edge curves can be extracted from the
image. Unfortunately, although the method worked well
on man-made and natural scenes, the poorer definition of
objects in satellite imagery caused problems. Possibly this
could be rectified using sophisticated edge linkers [5, 9].



SALIENCY MEASURES

Although gradient magnitude is the primary measure
used to discriminate between good and bad edges other
possibilities have also been suggested.

Lifetime — This involves blurring the image and track-
ing edges over scale. Tracking can be performed in a fine-
to-coarse manner [3], or coarse-to-fine [2]. The longer an
edge persists the more likely it is to be significant.

Wiggliness — The expectation is that noisy edges are
less likely to be locally straight or smooth than significant
edges. One measures of edge wiggliness is angular disper-
sion [7]. A drawback with such approaches is that they
generally require a parameter specifying the window size
within which the wiggliness measure is calculated.

Width — The spatial width of an edge may also be
useful to discriminate between different edge types. As
mentioned by Prager [8], this can be implemented after
non-maximal suppression. The strength of each retained
edge is found in the unsuppressed edge map by integrating
the set of monotonically decreasing gradient magnitudes
on both sides of the edge.

Projection onto Edge-Subspace — Frei and
Chen [6] suggested that the local 3 x 3 image window
should be projected onto a set of nine orthogonal feature
basis functions. Thresholding would then be based on
the angle of window’s projection onto the edge subspace
formed by four of the bases.

EXPERIMENTS

Fig. 1a shows the 1st principal component of a 256 x
256 portion of a Landsat TM image taken in Portugal.
The Canny [4] edge detector (o = 1) is independently
applied to the six non-thermal bands, and the results OrRed
together (fig. 1b). Without thresholding (fig. 1c) there
are many spurious edges. The most significant edges were
selected by hand to provide an approximate reference set
for assessing the measures and thresholds (fig. 1d).

The distribution of edge gradient magnitudes only
roughly approximates a Rayleigh distribution (fig. 2). It
can be seen that the LMedS provides the best estimate of
the mode compared to the other normalised estimators,
being relatively unbiased by the fat tail which corresponds
to non-noisy edges.

The various saliency measures are rated by applying
them to the reference edge data and plotting in fig. 3 their
ROC (receiver operating characteristic) curves. These
demonstrate the trade-offs between the amount of true
and false positives for all the different threshold values. In
addition, each saliency measure can be rated by the area
under the ROC curve. It is clearly seen that the gradient

Figure 1: Test image and edges; a) 1st principal compo-
nent; b) Canny edge magnitudes ¢) All Canny edges d)
Hand-selected Canny edges

magnitude outperforms all the other salience measures in
discriminating between significant and spurious edges.

This is verified in table 1 which gives for each saliency
measure the optimal assessment measure (over all thresh-
olds). The assessment measure is calculated as the prod-
uct of the proportions of true positives and true nega-
tives [11].

Automatic thresholding was performed on the gradi-
ent magnitudes using the LMedS mode estimator with
90% confidence in rejecting noisy edges, determining the
threshold shown in fig. 2. However, the result (fig. 5a)
appears overthresholded. This is confirmed by the assess-
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Figure 2: Edge gradient magnitude distribution
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Figure 3: ROC curves of saliency measures
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ment measure curve in fig. 4, since the selected thresh-
old (the dotted line at 48) is greater than the optimal
threshold at 30 (fig. 5b). This occurs since, compared to
machine vision images, remote sensed images have many
more significant edges with low magnitudes, requiring a

lower threshold determined by Pr ~ 0.4.
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Figure 5: Thresholded edges; a) Pr = 0.1; b) Pr =04




