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Abstract— This paper describes a novel approach to building
models of temporal dynamics for facial animation with appli-
cations in performing perceptual testing of trustworthiness. A
vital component of the system is a method to bring two image
sequences into temporal alignment. Our approach is to project
the two sequences into face space (built using shape models
[1]) and apply dynamic time warping (DTW). However, the
variability in the sequences causes the standard DTW algorithm
to perform poorly on our data, and so we have overcome this by
extending DTW in the following ways: 1) the signal magnitudes
are augmented by incorporating derivatives [2], and a scheme
for estimating weights in the cost function is proposed, 2) the set
of sequences is used to build a graph, with nodes representing
sequences and edges indicating the cost of applying the extended
DTW to align pairs of sequences; better alignments between
sequences can now be found by traversing the minimum cost
path through the graph.

Once all signals are aligned to a common temporal reference
it is straightforward to map the temporal dynamics from one
face to another. A remapped face is synthesised using the new
trajectory in face space to drive an active appearance model
[1]. Furthermore, the common temporal reference allows us to
build a statistical model of the dynamics. This can be used to
both identify dynamics of interest and also to manipulate the
dynamics, e.g. to reduce or exaggerate facial dynamics.

I. INTRODUCTION

Facial animation is becoming an increasingly important

area in computer graphics as various media (movies, televi-

sion, video games) look to produce more and better computer

generated animation. Much of the early work focused on

generating a face that looked as realistic as possible, but

recent emphasis is directed at making these faces move in a

realistic manner.

Due to recent advances in computer graphics it is becom-

ing increasingly common for psychologists to use computer

generated stimuli to conduct perceptual experiments since

they can be more easily controlled and manipulated than

direct video footage.

The goal of this work is to enable psychologists to analyse

the trustworthiness of a speaker as determined by the percep-

tion of their facial dynamics. For this a system is required

that allows the dynamics of a speaker to be modified. In our
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work we require a system that allows automatic manipulation

of a speaker’s dynamics. We also require a system that

both retains the shape and appearance characteristics of a

subject, and also modifies the speech of a subject so that

after modification the audio and video remain synchronised.

The necessity for life-like animation requires the use of

performance driven animation [3]. Current techniques do not

easily allow manipulation of the timing of facial dynamics,

nor can they be easily used to synchronise the audio and

video data.

Previous work on performance driven animation has in-

cluded work by Vlasic et al [4], Zhang et al [5] and

Chang and Ezzat [6]. Statistical models such as the Active

Appearance Model (AAM) are widely used due to their

ability to encode a high level of information using only

several parameters. Cosker et al [7] describe how AAMs can

be used to transfer expressions between AAMs and morph-

target based models by identifying key regions of the face

and manipulating these regions independently of one another.

Theobald et al [8] and De la Hunty et al [9] both describe

how AAMs can be used for real time expression transfer. In

[8] the authors drive the AAM mean of one model with the

modes of variation from another model. While this produces

very realistic animations, it does not allow any control over

the dynamics. The method in [9] is an extension of an early

version of the method in [8] and suffers the same drawback.

This paper addresses those issues using a framework based

on dynamic time warping (DTW) and shape and appearance

models. Firstly, we explain our novel approach for extending

existing DTW methods. We then, using shape models to

capture the face dynamics, show how the trajectories of shape

models from a reference video and target video are aligned

using DTW. The aligned shape trajectories are used to re-

synthesise a new video sequence with the desired dynamics.

Our method differs from previous work as it allows us to

manipulate the temporal dynamics in a more sophisticated

manner. As well as simply mapping temporal dynamics,

we can exaggerate them, compute mean dynamics, identify

typical and atypical dynamics etc. The alignment found using

DTW can also be used to warp the audio to ensure synchrony

with the video. It should also be pointed out that none of

the methods cited above allow simultaneous warping of the

speech as our method does.

II. DYNAMIC TIME WARPING

Dynamic time warping (DTW) is a method to find the op-

timal non-linear alignment between two time series signals.

It achieves this by warping (compressing or expanding) the

time base of two signals. The classic DTW algorithm is as



follows [10]. Given two sequences s1 and s2 of length M

and N respectively, a warping path W can be found that

defines a mapping (alignment) between s1 and s2. To align

the two sequences an M by N distance matrix must first be

constructed where the (ith, jth) element of the matrix contains

the distance between the ith point in s1 and the jth point in

s2. Typically the Euclidean distance is used.

The warping path W is a contiguous set of matrix elements

defined as:

W = w1,w2, . . . ,wk, . . . ,wK max(M,N) ≤ K ≤ n+m− 1

(1)

where K is the length of the warp path and wk = (i, j)k . The

aim of DTW is to find the path W through the distance matrix

with the least cost. To this end the following constraints are

employed:

• Monotonicity: the indices i and j are monotonically

spaced in time.

• Continuity: if wk = (i, j)k then wk+1 = (i ′, j ′)k+1 where

i ′k+1− ik ≤ 1 and j ′k+1 − jk ≤ 1. This limits (in time) the

distance between the aligned points.

• Boundary: The warping path must start and finish at

diagonally opposite corners of the distance matrix, w1 =
(1,1) and wK = (M,N).

There are many warping paths that satisfy the above

constraints, but the path of interest has the minimum warping

cost:

CDTW =
K

∑
k=1

D(ik, jk) (2)

Using dynamic programming [10], the path with the

minimum cost can be found by building an accumulated cost

matrix C which is defined as follows:

C(i, j) = D(i, j)+min







C(i, j− 1)
C(i− 1, j)
C(i− 1, j− 1)







(3)

The above equation controls the step size of DTW, and

modification of (3) produces a different alignment.

While the classic DTW algorithm performs well for

signals that are similar except for local accelerations and

decelerations in the time axis, Keogh and Pazzani [11]

describe how it is prone to failure when the two sequences

differ in amplitude. Other typical errors are when a small

portion of one signal maps to a large portion of the other

signal or when a rising edge is incorrectly mapped to a falling

edge because they are close in time.

A. DTW variation

To improve the accuracy of the warping path there have

been many proposed variations to the classic algorithm;

several are discussed by Muller [10]. Typically, one or more

of the following variations are used.

Globally constraining the domain of the warp path can

speed up the DTW computation. Also, it will limit the degree

of certain failures but may not prevent them. The Sakoe-

Chiba band [12] and the Itakura parallelogram [13] are the

two most widely used global constraints. A weighting factor

can be introduced to (3) to bias the direction of the warp

path. This can prevent the many to one mapping situation,

but a bad choice of weights can force an incorrect path to be

taken. The step pattern (3) can also be modified and is one

of the more popular methods of varying the DTW algorithm

due to the flexibility it allows.

The above DTW variations are not always effective, and

it may be necessary to incorporate additional information.

To this end Keogh and Pazzani [11] proposed the Derivative

DTW (DDTW) algorithm. They calculate the first derivative

of the sequences which provides shape information of the

signals. Their experiments show that the DTW and DDTW

have similar performance with signal distortion confined to

the time axis. However, DTW performs poorly when there

is a distortion in the amplitude of the signals, whereas the

DDTW algorithm performs significantly better.

According to Benedikt et al [2], DDTW is highly sensitive

to noise, so they expand on the work in [11] by proposing a

Weighted Derivative DTW (WDTW) algorithm. The WDTW

is a weighted combination of classic DTW and DDTW, and

they also use the local second derivative of the signals. The

use of the second derivative allows information on accelera-

tion to be included in the calculation of the alignment. Their

experiments show the WDTW produces a better alignment

than relying on just the signal magnitudes or derivatives

alone. However, the values of the weights were carefully

chosen manually as the magnitudes of the derivatives and

the original signal are not in the same range.

Figure 1 shows the results of applying the classic DTW

algorithm and the WDTW algorithm to a pair of signals.

The original signals are shown in Fig 1(a), and they are

taken from our data set to highlight why existing methods

may not give the desired results. Fig 1(b) is the result of

applying the classic DTW algorithm to the signals, and

Fig 1(c) is the result of applying the WDTW algorithm. It

is clear that both methods have to some degree aligned the

two signals, however, this has been achieved at the cost of

creating periods where there is no amplitude variation. This

repeating of a value for several samples may not be an issue

for some applications. However, as we want to resynthesise

video with realistic dynamics this a problem as the face will

appear frozen for several frames which appears unrealistic.

In our work we use the WDTW algorithm as the basis

of our DTW framework but contribute the following novel

extensions. The first is a simple method for automatically

calculating the weight values. Secondly, we describe a graph

based DTW algorithm that, given a set of signals to be

aligned, can find the best mapping between two signals by

using intermediate steps of first mapping to other signals in

the set and then to the target signal.

B. Automatic Weight Selection

Weighted derivative DTW (WDTW) is simply a weighted

combination of the DTW and DDTW methods. It is also

possible to include higher derivatives, but as in [2] we

limit ourselves to using first and second derivatives only.

Mathematically this is expressed as:
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(c) Signals warped using WDTW

Fig. 1. Plots of, (a) two signals from our dataset, (b) the signals warped
using the classic DTW algorithm and (c) the signals warped using the
WDTW from [2].

CW = w0 ×C0 +w1 ×C1 +w2 ×C2 + . . .+wq ×Cq (4)

where C0 is the distance matrix found using the classic

DTW method, Cq is the distance matrix found using the

q th derivative and wq is the weight associated with the q th

derivative.

Each pair of signals to be warped requires the weight

values for each of the distance matrices in (4), the wrong

values of these weights can lead to a bad alignment by

including too much or too little of the derivatives. Without

loss of generality, the weight w0 is chosen to be 1.

To find values for w1 and w2 the following is used. Given

two signals to warp s1 and s2 of length n and m respectively,

treat each signal independently, in this case work with s1

first:

1) First calculate s′1 and s′′1 , the first and second order

derivatives respectively.

2) Randomly permute s1,s
′
1 and s′′1 to obtain s1P,s

′
1P and

s′′1P.

3) Find w1 and w2 using the following ratios:

w1 =
∑(s1P − s1)

2

∑(s′1P − s′1)
2

(5)

and

w2 =
∑(s1P − s1)

2

∑(s′′1P − s′′1)
2

(6)

This results in a set of weights for sequence s1,

{ws10,ws11,ws12}. The same procedure can be applied to

sequence s2 to obtain the set of weights {ws20,ws21,ws22}.

Using either of these sets of weights risks biasing the WDTW

algorithm in favour of one of the signals. To counter this we

find the mean set of weights:

w0 = ws10 = ws20 = 1 (7)

w1 = E(ws11,ws21) (8)

w2 = E(ws12,ws22) (9)

where E is the expectation value.

The above is easily extended for multi-dimensional sig-

nals, by summing the numerator and denominator of (5) and

(6) over each dimension. For example, for (5) we would

have:

w1 =
∑∑

R
r=1(s1rP − s1r)

2

∑∑
R
r=1(s

′
1rP − s′1r)

2
(10)

where R is the number of dimensions. A similar expression

is obtained for (6).

III. GRAPH BASED DTW (GWDTW)

The signals we wish to warp are not guaranteed to have a

high correlation in shape and will have different amplitudes,

thus it is quite possible for the previously mentioned DTW

methods to fail to align the signals correctly. As mentioned in

[11] the amplitude difference will have a significant impact

on the “correctness” of the warp. If however there exists a

set of sequences S = {s1,s2, . . . ,sY }, it may be possible to

correctly warp s1 to sx by first warping via sy where 1 ≤
x,y ≤ Y .

If the signals are treated as nodes and the warping between

two signals as edges the set of signals and their respective

warping can be treated as a graph (see Figure 2). This may

be viewed as a complete graph as all nodes are connected

to each other. It is therefore possible to align any two

signals in the set. Each pair of aligned signals will have an

associated error (the mismatch between the resulting aligned

signals) and this is used as a weight value for the graph

edges. Figure 2 is an example graph containing four signals

represented as nodes and the associated edge weights given

by the signal mismatch error values. The total error of the

warping path W is used as the edge weights for pairs of

signals. i.e e = wK .



To find the best warping path between two signals it is

simply a case of finding the shortest path through the graph.

As the error values are non negative, Dijkstra’s shortest path

algorithm [14] can be applied. The path with the smallest

total error e is chosen as the warping path. Typically in our

small dataset we find path lengths of two or three.

IV. FACE APPEARANCE MODEL

To transfer the facial dynamics from one face sequence to

another we first capture the shape and appearance of each

face using the standard active appearance model (AAM) de-

veloped by Cootes et al [1]. To obtain the shape information,

salient feature points on the face must be chosen and tracked

through each frame in the video sequence. This is a highly

time consuming process if done manually, therefore, an

automatic method is sought. It is possible to use make up or

markers placed on the subject’s face prior to capture to track

facial features, however, we wish to use the captured textures

for re-synthesis, so it is preferable to avoid post processing

the images to remove unwanted make up and markers. There

are methods that can automatically track landmarks, but

while they are adequate for rigid motion, they are still not

fully reliable for highly non-rigid movement, particularly in

tracking the lips as the lips are highly deformable.

A. Landmarking a video sequence

To automatically landmark a sequence of images it is

typically required to manually landmark an image in the

sequence (usually the first frame) and then automatically

track these landmarks through the image sequence. However,

this can prove to be unreliable for the lips, especially the

outer and inner edge of the lower lip due to the nature and

amount of deformation they undergo whilst speaking or per-

forming facial expressions. To overcome this we use a semi-

automatic framework based around groupwise registration of

the frames in each sequence. To landmark a video sequence

the following steps are taken. First the groupwise registration

algorithm of Sidorov et al [15] is applied which performs

non-rigid alignment of every image in a sequence. The result

of this is a mean image, where the sharper the mean image

is the better the registration and a set of deformation maps

{Dn;n = 1, . . . ,N}, where N is the length of the sequence.

The deformation map describes the pixel mapping from

a single image to the mean. Therefore, we only need to

landmark a single frame (the mean image) and use the set of

deformation maps to reverse map the landmarks onto the

original images. Figure 3 contains example mean images

from groupwise registration of one sequence in our dataset.

Fig. 2. Example graph, where nodes s1, . . . ,s4 are the signals and the edges
ei j are the error values obtained from warping signals i and j.

Fig. 3. Mean images from the first (left) and last (right) iteration of
groupwise registration from one sequence from the dataset

The left image is the mean image from the first groupwise

iteration. The blurring around the edge of the face and the

mouth region highlights the amount of respective rigid and

non-rigid motion in the sequence. The right image is the

final groupwise output. The image is visibly sharper, hence,

landmarks placed in this image will be mapped to the correct

positions in the original set of images with little to no manual

correction.

While we have found this technique significantly reduces

the manual placement of landmarks, we find that some

frames occasionally need to be manually corrected. This

is because groupwise registration requires the deformation

in the image set to be diffeomorphic. When working with

faces, blinking or mouth opening will violate this rule. The

sequences we use have the subjects speaking, and through all

sequences we find that only several frames require manual

correction (where the sequence length varies between 60 and

100 frames), so there is still a significant saving in manual

landmarking.

B. Active Appearance Models

Active appearance models (AAMs) [1] are a joint statisti-

cal model of shape and colour values (texture), where a single

appearance parameter defines a corresponding texture and

shape vector. The shape model is obtained from the Cartesian

coordinates of the landmarks. For a single image, Φ( j) is the

vector of landmark coordinates, and the collection of vectors

{Φ( j)},1 ≤ j ≤ N describe the shape variation over the set

of images N. As we wish to re-synthesise colour video, the

textures from within these shapes are described by the texture

model Γ. By applying principal component analysis (PCA)

to the shape and texture data separately, the statistical shape

and texture models are obtained. The shape model can be

expressed as:

Φ = Φ+PΦbΦ (11)

and the texture model is expressed in a similar format:

Γ = Γ+PΓbΓ (12)

where Φ and Γ are the mean shape and texture vectors, PΦ

and PΓ are matrices formed from eigenvectors, and bΦ and

bΓ are the corresponding eigenvalues, typically referred to as

shape and texture parameters respectively. Varying the shape



and texture parameters bΦ and bΓ allows any of the original

images to be approximated, or indeed new images to be

synthesised. The advantage of using shape and appearance

models is that the shape and texture parameters allow the

high dimensional space within which the images lie to be

represented by only a few parameters.

To construct a full AAM we combine PΦ and PΓ and apply

PCA once more to obtain a combined shape and appearance

parameter. The number of shape and texture parameters

retained can be chosen by either retaining the several highest

shape and texture values, or by retaining a percentage of their

total energy.

To align the dynamics of a reference and target sequence

we first align the trajectories of the shape parameters of the

reference to the target. A new sequence is resynthesised

by using the shape parameters of the aligned reference

sequence to correctly manipulate the appearance model of

the reference sequence.

V. DATA COLLECTION AND EXPERIMENTS

The data used in the following experiments was recorded

using an interlaced digital video camera at 25fps and the

subjects were filmed under the same lighting conditions.

Each subject was asked to recite the sentence “Once upon

a time”, and to also elongate one word in the sentence. We

recorded seven sequences and denote these as s1,s2, . . . ,s7.

To build the shape and appearance models we used the

semi-automatic procedure described in Section IV to anno-

tate each frame with 49 landmarks. For each subject we

retained 95% of the variance in the shape model and for

the appearance model we retained 99% of the total variance.

The purpose of this work is to transfer the dynamics

of one subject’s facial actions onto another subject who is

performing a similar set of facial actions. The idea being that

one subject inherits the timing of the dynamics of the other

subject. Each of the shape parameters will have a trajectory

through the image sequence, so for actors performing sim-

ilar actions there should be similarities between the shape

trajectories. This is shown in Figure 4, which depicts the

trajectories of the principal shape component from the actors

reciting the same phrase.

It should be noted that even though the shape parameters

are multi-dimensional, it is trivial to adapt the classic DTW,

its variants and our GWDTW technique to be used with such

signals.

A. Experiments

One issue with using shape models is ensuring the princi-

pal components (modes of variation) of different subjects are

correlated. By this we mean that the first t modes correspond

to the same features in all subjects. It would be useless

to have the first 2 modes of subject one corresponding

to vertical and horizontal motion of lips and the first 2

modes of subject two corresponding to eye motion. To ensure

correspondence we manually inspect the first t modes of each

subject to ensure they correspond.
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Fig. 4. Plots of the first mode of variation of the shape model from each
of the subjects in the dataset. The plots (a) to (g) are the sequences 1 to 7
respectively.

In the following experiments we do not show the results

of using the classic DTW algorithm to align the sequences,

but only consider the WDTW and our proposed GWDTW

method. To test the accuracy of the method we start by

first comparing the result of warping sequence seven (s7) to

sequence three (s3) with the weights w0,w1,w2 = 1. Figures

5 and 6 show the results of aligning the signals using the

WDTW and GWDTW methods respectively. In Figure 5 s3

is represented by the blue curve and s7 by the red. It can be

seen that until around frame 30, the WDTW method appears

to have aligned the signals correctly, but from thereon the

trajectories are not aligned.

Using our GWDTW method we find that there is not a

satisfactory direct warp from s7 to s3. Instead s7 is first

warped to s4 and then warped to s3. Figure 6 depicts the

result of warping s7 to s4 with the blue curve and the result

of warping from here to s3 with the red curve, which is in
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Fig. 5. Sequence s7 warped to s3 using WDTW with the weights fixed at
w0 = w1 = w2 = 1.
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Fig. 6. s7 warped to s3 using our GWDTW method with the weights fixed
at w0 = w1 = w2 = 1.

fact s7 but with the time base of s3. The dashed black curve

is s3 shown for comparison with the warped version of s7. It

is clear from these results that in this instance a better warp

is achieved by using the intermediate step of warping via s4.

To test the automatic weight selection scheme described

in Section II-B we automatically calculate the weights as

described and then apply them to the WDTW and GWDTW

methods. The results are shown in Figures 7 and 8 respec-

tively. We find that the GWDTW method still provides a

better alignment than the WDTW. Also it should be noted

that the path GWDTW takes through the graph has now been

altered (because of different weights) and now maps directly

from s7 to s3.

Figure 9 contains example frames from two original se-

quences, s7 and s2, and the resulting resynthesised sequence

when s7 is warped to s2. The actors are saying the phrase

“Once upon a time”, however, s2 is elongating the word

“once” while s7 is not emphasising any words. Because of

this the sequences are of different lengths, s7 has 55 frames

and s2 has 68 frames. Applying our GWDTW method to

the shape parameters of s7 and s2 allows us to produce

a resynthesised sequence for s7 which now has the same

temporal dynamics as s2 and is also of the same length.

Frame 15 (Figure 9(b)) indicates the opening of the mouth

for the word “once” in both, but by frame 33 (Figure

9(c)) s7 is beginning to pronounce the word “upon”. In the

resynthesised sequence, the dynamics of s7 have now been
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Fig. 7. s7 warped to s3 using WDTW with the weights w1 and w2 calculated
automatically.
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Fig. 8. s7 warped to s3 using our GWDTW method with the weights w1

and w2 calculated automatically.

aligned with s2.

VI. CONCLUSION

In this paper we have described a novel approach for

building models of temporal dynamics. Our application is to

generate stimuli, consisting of videos of talking heads, for

experiments to investigate how the perceived trustworthiness

of individuals is affected by alterations to their temporal dy-

namics. Image sequences were represented as trajectories in

face space, and aligned with GWDTW, our improved version

of dynamic time warping. GWDTW was shown to perform

better than the standard DTW, and could successfully map

the dynamics of one speaker onto another.

Current work is looking at the warping of audio, using

the mappings determined from the alignment in face space.

Early work has shown promising results. Our method will

then be used to generate stimuli for the initial perceptual ex-

periments. Finally, we plan to build and exploit PCA models

of temporal dynamics for further perceptual experiments.



(a) Frame 1

(b) Frame 15

(c) Frame 33

(d) Final frame

Fig. 9. Frames from two original sequences and the resulting resynthesised
sequence. Left column s7, Middle column s2, Right column the resynthe-
sised sequence of s7 warped to s2.
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