
Measuring Corner Properties

Paul L. Rosin

Department of Computer Science and Information Systems,

Brunel University,

Uxbridge,

Middlesex UB8 3PH

email: Paul.Rosin@brunel.ac.uk

Abstract

We describe methods to measure the following properties of grey level
corners: subtended angle, orientation, contrast, bluntness (or rounding
of the apex), and boundary curvature (for cusps). Unlike most of the
published methods for extracting these properties these methods are
relatively simple, efficient and robust. They rely on the corner being
pre-detected by a standard operator, thus making the measurement
problem more tractable. Using 13000 synthetic images the methods
are assessed over a range of conditions: corners of varying orientations
and subtended angles, as well as different degrees of noise.

1 Introduction

The three most commonly used features in computer vision are regions, edges,
and corners. Whereas regions are normally attributed properties to make them
useful as input for subsequent processing stages such as matching, until recently
edges and corners were described by little except for strength. However, over the
past few years more attention has been paid to the properties of edges and corners
too, since richer descriptions make them more effective features. For instance,
in tracking, model matching, or model indexing, corner properties are capable
of constraining the corner correspondences either as unary constraints or n-ary
constraints between several corners. The latter enables viewpoint invariance. For
example, under orthographic projection selected pairs of coplanar corners may
be expected to have identical, but unknown, subtended angles or orientations.
In [14] we demonstrated how the addition of relative colour and subtended angle
corner properties (binary and unary constrains respectively) enabled the number
of arcs in the association graph to be drastically reduced in a model recognition
application using maximal clique graph matching.

Recent examples of edges properties being measured are scale [1], diffuseness,
height and width [18]. Regarding corners, several interesting methods have been
developed recently to measure scale, orientation, subtended angle, contrast, and
blurring [2, 5, 7, 8, 11, 12]. A problem with these techniques is that they tend
to be complex and iterative, which impacts on both their efficiency and relia-
bility. In contrast, rather that attempt the complicated task of simultaneously
detecting and describing corners, in a previous paper we decoupled these two
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stages [14]. Standard algorithms were used to identify corner locations, and sim-
ple non-iterative methods were then sufficient for extracting corner properties.
Many of the techniques we developed were based on local intensity or orientation
histograms generated in the corner’s neighbourhood. Before corner properties
could be measured the histograms were smoothed by an automatically determined
amount and the two main peaks located. A weakness of this approach is that it
depends on correctly locating the peaks, which in turn depends on the appropriate
level of smoothing being correctly determined. In this paper we develop further
techniques for measuring corner properties more directly without recourse to his-
tograms. By eliminating one potential source of error this has the potential for
improving reliability and accuracy. In addition to the previously extracted corner
properties we describe methods for measuring bluntness (or degree of rounding of
the apex) and boundary shape (i.e. straight or curved sides).

2 Measuring Properties

2.1 Contrast and Subtended Angle

Ghosal and Mehrotra [4] showed how Zernicke moments could be employed to
recover many properties of corners and edges. Here use the simpler standard
moments to determine corner properties in a similar manner to Tsai’s [17] image
thresholding scheme. We define the moments of the image intensities I(x, y) as

mp =

∫ ∫

I(x, y)pdxdy

which we calculate within a circular window about the corner. Disregarding spatial
information we model the corner in one dimension by two constant populations of
gray levels b and d (bright and dark) containingm and n−m elements respectively.
The model’s moments are

mp =

∫ m

0

bpdt+

∫ n

m

dpdt

= mbp + (n−m)dp

where n is the number of pixels in the window. The required parameters are
obtained using the method of moments. Taking the first three moments the re-
sulting set of simultaneous equations can be solved to determine the values of the
background and foreground intensities:

b = m1m2−nm3+t
2(m2

1
−nm2)

d = m1m2−nm3−t
2(m2

1
−nm2)

where

t =
√

−3m2
1m

2
2 + 4m3

1m3 + 4m3
2n− 6m1m2m3n+m2

3n
2.

Since b > d the contrast is

c = b− d =
t

(m2
1 − nm2)

.
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To find the subtended angle we use the fractions of the foreground and back-
ground populations within the window: m

n
and n−m

n
. This is the same approach

that we previously described for the thresholding method [13] (although we de-
termined contrast differently by thresholding first and then applying some post-
processing). Using the first moment we solve for m giving:

m =
(

(m2
1 − nm2)m1 −

n

2
(m1m2 − nm3 − t)

)

/t.

Assuming that the subtended angle lies in [0, 180) it is simply calculated as

θ = min

(

m

n
,
n−m

n

)

× 360◦.

2.2 Orientation

2.2.1 Intensity Centroid

Using geometric moments it is straightforward to determine the corner orientation
(without having to use the method of moments). Defining the moments are as:

mpq =
∑

x,y

xpyqI(x, y)

the centroid is then determined as:

C =

(

m10

m00
,
m01

m00

)

.

Assuming the co-ordinate frame has been set so that the image window containing
the corner is centred at the origin O, the corner orientation is the angle of the

vector
−→

OC with a 180◦ correction to cater for corners which are darker than their
background:

φ =

{

tan−1 m01

m10

if colour = bright

tan−1 m01

m10

+ 180◦ if colour = dark

2.2.2 Gradient Centroid

Rather than use the moments of the image intensities it is possible to use the
moments of the intensity gradient magnitude G(x, y) instead:

φ = tan−1

∑

x,y yG(x, y)
∑

x,y xG(x, y)
.

Although this requires the additional stage of edge detection (we use the Sobel
operator to calculate G(x, y)) it has the advantage that unlike the intensity cen-
troid method no special care needs be made concerning bright and dark corners,
eliminating the need to predetermine corner colour.
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2.2.3 Symmetry

Another method for determining corner orientation is based on the symmetry
of simple corners. This implies that the orientation maximising symmetry will
coincide with the corner orientation. In a similar vein, Ogawa [9] detected corners
(i.e. dominant points) of curves by measuring local symmetry. We measure corner
symmetry by requiring that intensities on either side of the corner bisector should
be equal. This is implemented by rotating the image window by the hypothesised
orientation φ using bilinear interpolation to obtain Iφ(x, y). Corner orientation
can then be found as the rotation angle that minimises the summed absolute
differences in corresponding intensity values:

φ = min
φ

W
∑

y=0

W
∑

x=−W

|Iφ(x, y) − Iφ(x,−y)| .

Since noise, quantisation, and the process of image rotation will introduce local
errors we also consider differencing not individual pixel values but sums of row
intensities or the two sums of all intensities on either side of the bisector. Of course,
both φ and φ+180◦ will give the same symmetry value. Therefore we only search
over a small range of orientations (e.g. 45◦) centred at an initial estimate obtained
using another technique such as those above. Note that unlike the methods above
we can use a square rather than circular window for convenience.

2.3 Bluntness

Corner detectors usually assume that the corners are perfectly sharp (i.e. pointed).
Not only is this invalidated by noise, blurring, and quantisation, but objects – both
natural and man-made – often have rounded corners. Few detectors explicitly cater
for this (but see Davies [3]) and none measure the degree of rounding or bluntness
of the corner.

2.3.1 Kurtosis

One possible way to measure bluntness is to use the statistical measure of kurto-
sis which quantifies the “peakness” of a distribution. It is defined using central
moments as

κ =
m4

m2
2

.

Assuming the corner orientation has already been found using one of the previously
described techniques we generate the projection of the image window along the
direction of the corner orientation see figure 1. We first rotate the image window
by −φ using bilinear interpolation as before to align the corner along the X axis,
and the projection is then given by

Pφ(y) =
∑

x

Iφ(x, y).

Before calculating kurtosis the projection function is shifted so as to zero the tails

P ′

φ(y) = Pφ(y) − min
y
Pφ(y).
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Furthermore, because high order moments are being used, kurtosis is very sensitive
to noise. As a precaution small values of P ′

φ(y) are zeroed:

P ′′

φ (y) =

{

P ′

φ(y) if P ′

φ(y) > τ maxy P
′

φ(y)

0 otherwise.

where τ ∈ [0, 1] is a threshold we have set to 0.1.

P(y)

y

Figure 1: Projection of image window along corner orientation

We can analytically determine expected values of kurtosis for simple distribu-
tions [15]. For example, a triangular function, a parabola, and a semicircle produce
values of κ = 2.4, 2.143, and 2, respectively. Thus it can be seen that rounding the
corner decreases the value of the measured kurtosis. For convenience we normalise
the measure as κN = κ−2

0.4 to return an expected value in the range [0, 1].1

2.3.2 Model Fitting

Y

X

(x1,y1)

θ a

W

Figure 2: Hyperbola model

y = mx

(xc,0)

(xT,yT)

θ

Figure 3: Circular arc model

A more direct way to measure corner bluntness is to fit a parametric model
to the pixels in the image window. Rather than perform multivariate fitting we
assume that most of the corner properties have already been determined by other
simpler methods such as those we have already described. This allows a one-
dimensional fit for bluntness to be carried out that is both efficient and robust.
In particular, we require orientation, subtended angle, and foreground and back-
ground intensities to be known. This enables the image window to be rotated

1Of course, other distributions that might be produced by oddly shaped corners could produce

values outside this range.
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to align the corner with the X axis, and the model is then fitted using Brent’s
method [10] to minimise

W
∑

x=0

W
∑

y=−W

|I(x, y) − corner(x, y, p)|

to obtain the value of the parameter p.
We model a rounded corner by a hyperbola aligned along the X axis. Knowing

the subtended angle θ means that the locations of the expected boundaries of the
perfect sharp corner are known. We constrain the model hyperbola to pass though
the intersection of the image window and the corner boundaries. These two points
are found as

(x1, y1) =

{ (

W,±W tan θ
2

)

if θ < 90◦
(

W

tan θ

2

,±W
)

otherwise.

so that the implicit equation of the hyperbola is

Q(x, y) = x2 − x2
1 − a2

y2
1

y2 − a2 = 0.

The free parameter a specifies the distance of the rounded apex from the ideal
sharp point of the corner, and increasing values of a imply increased rounding.
The complete model for a blunt model is then

corner(x, y, a) =

{

foreground if x ≥ 0 and Q(x, y) ≥ 0
background otherwise.

Another corner model we have experimented with uses the perfect wedge and
replaces the apex by a circular section. For a circle of radius r we wish to locate
it so that it smoothly joins the straight sections of the corner. This is obtained
if the circle is positioned at xc = r

m

√
m2 + 1, and so the tangent point can be

determined:

(xT , yT ) =

(

xc

m2 + 1
,mxT

)

,

where θ is the subtended angle and m = tan θ
2 . The model is then

corner(x, y, r) =

{

foreground if [x ≥ xT and |y| ≤ mx] or
[

(x− xc)
2 + y2 ≤ r2

]

background otherwise

2.4 Boundary Shape

So far we have assumed that corners have straight sides (although possibly a
rounded apex). Now we consider curved sides, and distinguish between concave
and convex, although the following approach is restricted to symmetric corners,
i.e. both sides are either concave or convex. We work with the projection along
the corner orientation again. Since the precise shape of the corner boundary is
unknown we do not fit a parametric model. Instead we look to see how much the
boundary is indented into or out of the foreground. Each half of the projection
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along the spatial axis should correspond to one side of the corner. The indentation
of each side is measured by dividing the non-zero elements into two halves and fit-
ting straight lines to each. The angle ψ between the lines then indicates the degree
of concavity or convexity. If positive angles are calculated in the counterclockwise
direction then the measures are simply

concavity =
ψ

contrast
; convexity =

−ψ
contrast

where large values imply greater curvature. Even though the projection is obtained
by integrating the image it may still be noisy. We therefore require the line fitting
to be robust, and use the least median of squares (LMedS) method [16].

3 Results

Ideally we would like the methods for measuring corner properties to work reliably
over a range of conditions: varying orientations, subtended angles, degrees of noise,
etc. To assess the accuracy and robustness of the new methods described here and
also some of the previous ones given in [14] they have been extensively tested on
synthetic data. Idealised corners were generated for 13 different subtended angles
(θ = [30◦, 150◦]) as 160 × 160 images, and then averaged and subsampled down
to 40 × 40. Different levels of Gaussian noise (σ = [5, 60]) were then repeatedly
added to create a total of 13000 test images. Some examples are shown in figure 4
with θ = {30◦, 60◦, 90◦, 120◦, 150◦} and σ = {5, 10, 20, 40, 60} respectively. The
contrast between corner foreground and background was kept constant at 200,
so that the images contained signal to noise ratios ranging from 40 to 3 1

3 . Note
that unless otherwise stated all tests use a window size of 31 × 31 and the corner
properties were measured at the ideal location: (20, 20).

Figure 4: Sample test corner images

Table 1 shows the error rates of each method averaged over all 13000 test
images. The tests were carried out twice. The first time the corner properties
were measured at the known true location of the corner (20, 20). The second time
the Kitchen-Rosenfeld [6] detector was applied to the images, and the properties
were measured at the corner that was detected closest to the true location.

3.1 Bluntness

Now we look at the effectiveness of the methods for measuring bluntness. Each of
the three methods assumes a different model of corner rounding. We cannot there-
fore generate synthetic blunt corners using any of these models since this would
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Table 1: Summary of error rates for each method of measuring corner properties

METHOD AVERAGE ERROR
true position approximate position
µ σ µ σ

Orientation
average orientation 1.289◦ 0.949◦ 1.314◦ 0.957◦

multi-scale orientation histogram 3.674◦ 10.552◦ 3.608◦ 10.318◦

thresholding 1.223◦ 1.175◦ 1.515◦ 1.795◦

gradient centroid 3.675◦ 4.090◦ 4.085◦ 4.469◦

intensity centroid 1.285◦ 1.173◦ 1.629◦ 1.845◦

symmetry (pixel differences) 1.763◦ 0.574◦ 1.976◦ 1.172◦

symmetry (line differences) 1.224◦ 0.670◦ 1.505◦ 1.406◦

symmetry (region differences) 1.114◦ 0.755◦ 1.593◦ 1.682◦

Subtended Angle
single scale orientation histogram 7.688◦ 13.653◦ 7.589◦ 13.911◦

multi-scale orientation histogram 5.178◦ 6.416◦ 5.179◦ 6.353◦

thresholding 8.353◦ 4.064◦ 11.711◦ 5.165◦

moments 8.353◦ 4.064◦ 11.711◦ 5.165◦

Contrast
multi-scale intensity histogram 35.898 52.800 34.134 51.851
thresholding and average 17.816 14.101 17.212 13.751
thresholding and median 7.443 12.019 6.989 11.667
moments 8.622 7.459 8.245 7.218

favour the corresponding bluntness measurement method. Instead we blunten the
corners by cropping the apex by a straight edge. For each degree of cropping
1000 examples of 90◦ corners containing various amounts of noise were generated
for testing. Results are shown in figure 5. Both the kurtosis and hyperbola fit-
ting methods appear to do well over a range of degrees of cropping, displaying a
fairly linear behaviour. The circle fitting method does not fare so well as it breaks
down under large amounts of cropping, losing its linear response, and showing sub-
stantial variance. We can quantify the linearity of the methods using Pearsons’s
correlation coefficient. For the kurtosis method we test 1 − κN against cropping,
while for the other two we simply test a and r respectively. The coefficients are
0.98364, 0.98507, and 0.93383, verifying that the first two methods are superior to
the third.

3.2 Cusps

To test the measurement of concavity and convexity of cusps one synthetic sym-
metric example was generated of each, and Gaussian noise added as before to
provide two sets of 1000 test images. The results of testing the method on test
images of each corner type are shown in figure 6a. For convenience the spatial axis
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Figure 5: Measuring bluntness

has been scaled which also causes the angles to be scaled. Even at low SNRs the
concave and convex corner types can be reliably discriminated. For comparison
the method was also tested on 1000 examples of a noisy 90◦ straight corner. The
measured angle is close to zero, allowing it to be confidently classified as a straight
edge.
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(a) concave and convex cusps

0 10 20 30 40

signal to noise ratio

-50

0

50

100

co
nc

av
ity

(b) straight boundary corner

Figure 6: Effect of noise on measurement accuracy for boundary curvature

4 Conclusions

We have described various methods for measuring corner properties. In order
to compare them they have been extensively tested on synthetic data. This pa-
per presents their average performance. A more detailed analysis is presented in
Rosin [15] which helps demonstrate their strengths and weaknesses, and shows
under what conditions each method is suitable. It concludes that some methods
work very well all the time; for instance the thresholding followed by median and
the moments methods consistently measure contrast better than the multi-scale
intensity histogram or thresholding followed by averaging methods. Other meth-
ods perform better than others only over a restricted range of conditions. For
example, in the range of subtended angles 90◦ ± 40◦ the multi-scale orientation
histogram method for measuring subtended angle outperforms the other methods,
but outside this range it breaks down. Another example is when applying the
multi-scale orientation histogram method to measure corner orientation. Again it
outperforms all the other methods, but breaks down when the SNR drops below
10.
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Overall, the average orientation, thresholding, intensity centroid and all the
symmetry methods are all good choices for measuring orientation. Although it
breaks down for very narrow or wide corners the multi-scale orientation histogram
method is probably the best choice for measuring subtended angle. The threshold-
ing followed by median and the moments methods are best for measuring contrast.
The moments method being more robust under severe noise or when a small mea-
surement window is used.

A more limited set of tests have been applied to the methods for measuring
bluntness and cusp boundary curvature. For measuring bluntness the kurtosis and
hyperbola fitting methods do better than the circle fitting method when the corner
is substantially rounded. Finally, the method for measuring boundary shape of
cusps appears to work reliably.
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