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Abstract

We describe methods to measure the following properties of grey level corners: subtended
angle, orientation, contrast, bluntness (or rounding of the apex), and boundary curvature (for
cusps). Unlike most of the published methods for extracting these properties these methods
are relatively simple, efficient and robust. They rely on the corner being pre-detected by
a standard operator, thus making the measurement problem more tractable. Using 13000
synthetic images the methods are assessed over a range of conditions: corners of varying
orientations and subtended angles, as well as different degrees of noise.

1 Introduction

The three most commonly used features in computer vision are regions, edges, and corners.
Whereas regions are normally attributed properties to make them useful as input for subsequent
processing stages such as matching, little except for strength was extracted by early edge and
corner detectors e.g. [11,20], not to mention more recent ones e.g. [5,21]. Being sparse features,
their mere presence was considered sufficiently informative. However, over the past few years more
attention has started to be paid to the properties of edges and corners too. The reason for at-
tributing corners with ever more properties is that they then provide much richer descriptions,
thereby making them more effective features. For instance, in tracking, model matching, or model
indexing, corner properties are capable of constraining the corner correspondences either as unary
constraints or n-ary constraints between several corners. The latter enables viewpoint invariance.
For example, under orthographic projection selected pairs of coplanar corners may be expected to
have identical, but unknown, subtended angles or orientations. In [17] we demonstrated how the
addition of relative colour and subtended angle corner properties (binary and unary constraints
respectively) enabled the number of arcs in the association graph to be drastically reduced (by
almost two orders of magnitude) in a model recognition application using maximal clique graph
matching. In that paper and this we restrict our attention to L-corners. Examples of analyses of
higher order corners are given by Deriche [8] and Rohr [15].

Recent examples of edge properties being measured are scale [3], diffuseness, height and width [22].
Regarding corners, several interesting methods have been developed recently to measure scale, ori-
entation, subtended angle, contrast, and blurring [4,10,12,2,15,16]. However, a problem with these
techniques is that they tend to be complex, iterative, and/or require second order partial deriva-
tives, which impacts on both their efficiency and reliability. In contrast, rather that attempt the
complicated task of simultaneously detecting and describing corners, in a previous paper we decou-
pled these two stages [17]. Standard algorithms were used to identify corner locations, and simple
non-iterative methods were then sufficient for extracting corner properties. Many of the techniques
we developed were based on local intensity or orientation histograms generated in the corner’s
neighbourhood. Before corner properties could be measured the histograms were smoothed by an
automatically determined amount and the two main peaks located. A weakness of this approach
is that it depends on correctly locating the peaks, which in turn depends on the appropriate level
of smoothing being correctly determined. In this paper we develop further techniques for measur-
ing corner properties more directly without recourse to histograms. By eliminating one potential
source of error this has the potential for improving reliability and accuracy. In addition to the



previously extracted corner properties we describe methods for measuring bluntness (or degree of
rounding of the apex) and boundary shape (i.e. straight or curved sides).

2 Measuring Properties

2.1 Contrast and Subtended Angle

Ghosal and Mehrotra [9] showed how Zernicke moments could be employed to recover many prop-
erties of corners and edges. Here we use the standard moments which are simpler to compute
to determine corner properties in a similar manner to Tsai’s [19] image thresholding scheme. We
define the moments of the image intensities I(z,y) as

mpf// (z,y)Pdxdy

which we calculate within a circular window about the corner. Disregarding spatial information
we model the corner in one dimension by two constant populations of gray levels b and d (bright
and dark) containing m and n — m elements respectively. The model’s moments are

m, = / bpdtJr/ Pt
0 m

= mb’ 4+ (n—m)d’

where n is the number of pixels in the window. The required parameters are obtained using the
method of moments. Taking the first three moments the resulting set of simultaneous equations
can be solved to determine the values of the background and foreground intensities:
b — mima—nms+t
2(m?—nm3)
d = mamg—nma—t

— 2(mZ—nmy)

where

t= \/—Bm%mg +4m3ms + 4m3n — 6mymamsn + m3n?.

Since b > d the contrast is ;

=b—d=-—5——.
’ (mf —nms)
To find the subtended angle we use the fractions of the foreground and background populations
within the window: * and *—*. This is the same approach that we previously described for the
thresholding method [17] (although we determined contrast differently by thresholding first and

then applying some post-processing). The first moment is

m1 =mb+ (n—m)d
so that we solve for m by:

mi—nd mq—nd
m = =

b—d c

= ((m% — nmg)my — g(mﬂnz —nms3 — t)) /t.

Assuming that the subtended angle lies in [0, 180) it is simply calculated as

f = min <m7 n—m) x 360°.
n’ n

2.2 Orientation
2.2.1 Intensity Centroid

Using standard moments it is straightforward to determine the corner orientation (without having
to use the method of moments). Defining the moments as:

=> 2Py I(z,y)
z,y



the centroid is then determined as:
mig m
C= ( 10’ 01) .
Moo 1Moo
Assuming the co-ordinate frame has been set so that the image window containing the corner is
—

centred at the origin O, the corner orientation is the angle of the vector OC with a 180° correction
to cater for corners which are darker than their background:

B tan—! % if colour = bright
¢= tan~! - +180° if colour = dark

2.2.2 Gradient Centroid

Rather than use the moments of the image intensities it is possible to use the moments of the
intensity gradient magnitude G(z,y) instead:

L ey YG(2,Y)
> ey ¥G(2,y)

Although this requires the additional stage of edge detection (we use the Sobel operator to calculate
G(z,y)) it has the advantage that unlike the intensity centroid method no special care needs be
made concerning bright and dark corners, eliminating the need to predetermine corner colour (as
was necessary for the intensity centroid method).

¢ =tan"~

2.2.3 Symmetry

Another method for determining corner orientation is based on the symmetry of simple corners.
This implies that the orientation maximising symmetry will coincide with the corner orientation.
In a similar vein, Ogawa [13] detected corners (i.e. dominant points) of curves by measuring local
symmetry. We measure corner symmetry by requiring that intensities on either side of the corner
bisector should be equal. This is implemented by rotating the image window by the hypothesised
orientation ¢ using bilinear interpolation to obtain I4(x,y). Corner orientation can then be found
as the rotation angle that minimises the summed absolute differences in corresponding intensity
values:

o= mlnz Z [Ip(z,y) — I(x, —y)]|.
y=0z=—W
Since noise, quantisation, and the process of image rotation will introduce local errors we also
consider differencing not individual pixel values but sums of row intensities:
w

o= mlnz Z Iy(z,y) — Z Iy(x,—y)

y=0 |z=—W r=—W

or the two sums of all intensities on either side of the bisector:

o= mlnz Zl¢xy ZZI¢x—

—W z=— y=0zx=—W

Of course, both ¢ and ¢ + 180° will give the same symmetry value. Therefore we obtain an
initial estimate using any of one of the techniques that we described above, and then refine this by
searching over a small range of orientations (e.g. +45°) to minimise the symmetry measure. Note
that unlike the methods above we can use a square rather than circular window for convenience.

2.3 Bluntness

Corner detectors usually assume that the corners are perfectly sharp (i.e. pointed). Not only is
this invalidated by noise, blurring, and quantisation, but objects — both natural and man-made —
often have rounded corners. Few detectors explicitly cater for this (but see Davies [6]) and none
measure the degree of rounding or bluntness of the corner.

n the related field of corner detection in curves there has historically been more attention paid to greater
subtleties in shape (e.g. the curvature primal sketch [1]), while multi-scale analysis to detect coarse as well as fine
corners is much more common [7].



2.3.1 Kurtosis

One possible way to measure bluntness is to use the statistical measure of kurtosis which quantifies
the “peakness” of a distribution. It is defined using central moments as
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Assuming the corner orientation has already been found using one of the previously described
techniques we generate the projection of the image window along the direction of the corner
orientation see figure 1. We first rotate the image window by —¢ using bilinear interpolation as
before to align the corner along the X axis, and the projection is then given by

Py(y) = Is(x,y).

Before calculating kurtosis the projection function is shifted so as to zero the tails
Py{y) = Pa(y) — min Py(y).

Furthermore, because high order moments are being used, kurtosis is very sensitive to noise. As a
precaution small values of P}(y) are zeroed:

V[ Pl i Py(y) > 7 max, Py(w)
Ps(y) = { 0 otherwise.

where 7 € [0, 1] is a threshold we have set to 0.1.

We can analytically determine expected values of kurtosis for simple distributions. For example,
a suitable model for a perfectly sharp corner aligned on the Y axis and centred on the origin
(eliminating mg) is the following triangular function:

(@) —ax+b ifx>0
- axr —b otherwise

Since the function is symmetric about 2 = 0 we need only consider one quadrant (z,y > 0), giving

fob/a %x‘ldx 12

K= Y 5 = = =24,
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where
b/a b2
A= dr = —.
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In a similar manner a blunt corner can be roughly modelled by a parabola aligned on the Y axis
and centred on the origin:
f(x) = —ax® +b.

Integrating over the positive Y portion of the function gives

VE f@) .4
fi\/ijdx 15
K= < :7%2.143
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where
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The extreme case of rounding in the limit as the subtended angle tends to zero is a semicircle:

fla) = Vi a2



giving
ot
K= =2
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where
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Thus it can be seen that rounding the corner decreases the value of the measured kurtosis. Also
note that the measure is invariant to the subtended angle (which is a function of a in the above
equations). For convenience we normalise the measure as xy = “=2 to return an expected value
in the range [0,1].2
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2.3.2 Model Fitting

A more direct way to measure corner bluntness is to fit a parametric model to the pixels in the
image window. Rather than perform multivariate fitting (e.g. Rohr [15]) we assume that most of
the corner properties have already been determined by other simpler methods such as those we
have already described. This allows a one-dimensional fit for bluntness to be carried out that is
both efficient (even without the use of partial derivatives) and robust. In particular, we require
orientation, subtended angle, and foreground and background intensities to be known. This enables
the image window to be rotated to align the corner with the X axis, and the model is then fitted
using Brent’s method [14] to minimise

woow
Z Z |I(x,y) — corner(zx, y, p)|

r=0y=—W

to obtain the value of the parameter p.

We model a rounded corner by a hyperbola aligned along the X axis. This provides a reasonable
approximation, although it does cause the corner to be narrowed slightly on approaching the apex.
Knowing the subtended angle § means that the locations of the expected boundaries of the perfect
sharp corner are known. We constrain the model hyperbola to pass though the intersection of the
image window and the corner boundaries. These two points are found as

(W, +Wtan §) if 6 < 90°
(z1,91) = (Le, j:W) otherwise.

tan 5

so that the implicit equation of the hyperbola is

2 2
2 I1—a

Q(z,y) = 2% = =—5—y* —a® = 0.
Y1
The free parameter a specifies the distance of the rounded apex from the ideal sharp point of the
corner, and increasing values of a imply increased rounding. The complete model for a blunt model

is then
foreground if x > 0 and Q(z,y) >0

corner(z, y, a) = { background otherwise.

Another corner model we have experimented with uses the perfect wedge and replaces the apex
by a circular section. For a circle of radius r we wish to locate it so that it smoothly joins the
straight sections of the corner. This is obtained if the circle is positioned at z. = ;-v/m? + 1, and
so the tangent point can be determined:

j— xc
(zr,yr) = mﬂm?:r )
where 6 is the subtended angle and m = tan g. The model is then

foreground  if [z >z and |y| < mz] or [(z — zc)? 4+ y* < r?]

corner(z,y,r) = { background otherwise .

20f course, other distributions that might be produced by oddly shaped corners could produce values outside
this range.



2.4 Boundary Shape

So far we have assumed that corners have straight sides (although possibly a rounded apex). Now
we consider curved sides, and distinguish between concave and convex, although the following
approach is restricted to symmetric corners, i.e. both sides are either concave or convex. We
work with the projection along the corner orientation again. Since the precise shape of the corner
boundary is unknown we do not fit a parametric model. Instead we look to see how much the
boundary is indented into or out of the foreground. Each half of the projection along the spatial axis
should correspond to one side of the corner. The indentation of each side is measured by dividing
the non-zero elements into two halves and fitting straight lines to each. The angle 1) between the
lines then indicates the degree of concavity or convexity. If positive angles are calculated in the
counterclockwise direction then the measures are simply

o Y
concavity = ———
contrast
L =y
convexity = ————
contrast

where large values imply greater curvature. Even though the projection is obtained by integrating
the image it may still be noisy. We therefore require the line fitting to be robust, and use the least
median of squares (LMedS) method [18].

3 Results

Ideally we would like the methods for measuring corner properties to work reliably over a range of
conditions: varying orientations, subtended angles, degrees of noise, etc. To assess the accuracy and
robustness of the new methods described here and also some of the previous ones given in [17] they
have been extensively tested on synthetic data. Idealised corners were generated for 13 different
subtended angles (6 = [30°,150°]) as 160 x 160 images, and then averaged and subsampled down to
40 x 40. Different levels of Gaussian noise (¢ = [5,60]) were then repeatedly added to create a total
of 13000 test images. Some examples are shown in figure 4 with 6§ = {30°,60°,90°,120°,150°} and
o = {5,10, 20, 40,60} respectively. The contrast between corner foreground and background was
kept constant at 200, so that the images contained signal to noise ratios ranging from 40 to 3%.
Note that unless otherwise stated all tests use a window size of 31 x 31 and the corner properties
were measured at the ideal location: (20, 20).

A limitation in the orientation histogram methods for determining orientation and subtended
angle as well as the average weighted orientation method for determining orientation described
in [17] is that they cannot distinguish between an angle 6 and its complementary angle 180° — 6.
Although it would be possible to correct this by additional checks we have not pursued that here.
However, the results for these methods on the synthetic data have been corrected to account for
this problem.

Table 1 shows the error rates of each method averaged over all 13000 test images. The tests
were carried out twice. The first time the corner properties were measured at the known true
location of the corner (20,20). The second time the Kitchen-Rosenfeld [11] detector was applied to
the images, and the properties were measured at the corner that was detected closest to the true
location. As well as this summary information we also examine the effects of changing each of the
image conditions in turn.

3.1 Effects of subtended angle

Figure 5 shows that the two multi-scale orientation histogram methods perform well only around
90° corners. This is to be expected since they operate on the difference between two orientation
peaks — these peaks are most widely separated at 90° since orientations are only measured in the
range [0°,180°). It can be concluded that for measuring orientation the multi-scale histogram
method is only suitable for subtended angles of 90° +30°. The gradient centroid method performs
relatively poorly and is also sensitive to subtended angle. The remaining methods are comparable
and are relatively insensitive to subtended angle, therefore outperforming the first two methods.
For measuring subtended angle the multi-scale orientation histogram method does best at
subtended angles of 90° 4= 40°. The other methods are roughly independent of subtended angle,



Table 1: Summary of error rates for each method of measuring corner properties

METHOD AVERAGE ERROR
true position approximate position
p | o po ] o
Orientation
average orientation 1.289° | 0.949° 1.314° 0.957°
multi-scale orientation histogram | 3.674° | 10.552° | 3.608° 10.318°
thresholding 1.223° | 1.175° 1.515° 1.795°
gradient centroid 3.675° | 4.090° | 4.085° 4.469°
intensity centroid 1.285° | 1.173° 1.629° 1.845°
symmetry (pixel differences) 1.763° | 0.574° 1.976° 1.172°
symmetry (line differences) 1.224° | 0.670° | 1.505° 1.406°
symmetry (region differences) 1.114° | 0.755° 1.593° 1.682°

Subtended Angle
single scale orientation histogram | 7.688° | 13.653° | 7.589° 13.911°

multi-scale orientation histogram | 5.178° | 6.416° 5.179° 6.353°
thresholding 8.353° | 4.064° | 11.711° 5.165°
moments 8.353° | 4.064° | 11.711° 5.165°
Contrast
multi-scale intensity histogram 35.898 | 52.800 | 34.134 51.851
thresholding and average 17.816 | 14.101 | 17.212 13.751
thresholding and median 7.443 12.019 6.989 11.667
moments 8.622 7.459 8.245 7.218

but the graph appears noisy. In particular, the thresholding/moments method has an unexpected
dip at 80° Repeated tests confirmed this anomaly, and we suggest that it may be an artifact of
the digitised synthetic corner. The noisy shape of the single-scale orientation histogram is not
surprising when we redraw the performance graph with error bars at 10 (see figure 6a) as there is
substantial variability. The lesser variance of the thresholding / moments method does not explain
the unexpected dip.

When measuring contrast the multi-scale intensity histogram degrades markedly as the sub-
tended angle decreases. This is because at small angles the peak in the histogram corresponding
to the corner foreground is small, and cannot be identified and located accurately. The other
methods degrade more moderately with decreasing subtended angle; thresholding and differencing
the medians of the two populations generally performs best.

3.2 Effects of noise

Figure 7 shows the robustness of the methods against increasing amounts of noise. For calculating
orientation most methods are fairly insensitive to noise. The major exception is the multi-scale
orientation histogram method which breaks down dramatically for large amounts of noise. This
is caused by the automatic smoothing technique breaking down, causing the wrong histogram
peaks to be selected. The gradient centroid method also degrades significantly. For measuring
subtended angle there is less differentiation as all the methods suffer sever degradation. When
measuring contrast the multi-scale intensity histogram method breaks down again at high levels
of noise while the other methods show a somewhat less severe degradation.

3.3 Effects of window size

Next, we show the effect of changing the window size within which the measures are calculated
(see figure 8). With the exception of the multi-scale orientation histogram increasing the window
size provides a moderate improvement in measuring orientation for all methods. In particular, the
gradient centroid method performs poorly when a small window is used. For calculating subtended
angle an increase in window size again has little effect on the multi-scale orientation histogram



method, but considerably improves the thresholding/moments method. When calculating contrast
increasing window size has most effect on the multi-scale orientation histogram and provides a
small improvement for the other methods.

3.4 Bluntness

Now we look at the effectiveness of the methods for measuring bluntness. Each of the three meth-
ods assumes a different model of corner rounding. We cannot therefore generate synthetic blunt
corners using any of these models since this would favour the corresponding bluntness measurement
method. Instead we blunten the corners by cropping the apex by a straight edge. Examples in
figure 9 show cropping by 0, 4, and 8 rows of pixels with added noise at ¢ = {0, 20,60} respec-
tively. For each degree of cropping 1000 examples of 90° corners containing various amounts of
noise were generated for testing. Results are shown in figure 10. Both the kurtosis and hyperbola
fitting methods do well over a range of degrees of cropping, displaying a fairly linear behaviour.
The circle fitting method does not fare so well as it breaks down under large amounts of cropping,
losing its linear response, and showing substantial variance. We can quantify the linearity of the
methods using Pearson’s correlation coefficient. For the kurtosis method we test 1 — ky against
cropping, while for the other two we simply test a and r respectively. The coefficients are 0.98364,
0.98507, and 0.93383, verifying that the first two methods are superior to the third.

3.5 Cusps

To test the measurement of concavity and convexity of cusps one synthetic symmetric example
was generated of each, and Gaussian noise added as before to provide two sets of 1000 test images.
Two instances can be seen in figure 11a and 1lc. Also shown are the corresponding projections
with the lines fitted according to the LMedS criterion. The results of testing the method on test
images of each corner type are shown in figure 12a. For convenience the spatial axis has been
scaled which also causes the angles to be scaled. Even at low S/N ratios the concave and convex
corner types can be reliably discriminated. For comparison the method was also tested on 1000
examples of a noisy 90° straight corner. The measured angle is close to zero, allowing it to be
confidently classified as a straight edge.

3.6 Application to a real image

We also show the application of some of the methods to measure corner properties in real images.
Since ground truth is not known the results can only be evaluated by eye. Corners are detected
using the Kitchen-Rosenfeld detector [11], applying non-maximal suppression, and then thresh-
olding based on both the cornerity and edge magnitude value. To reduce the problem of clutter
interfering with the measurements a smaller window (21 x 21) is used than for the synthetic images
of isolated corners.

Figure 13a shows the selected corners and displays both the orientation (calculated using the
thresholding method) and subtended angle (calculated using region symmetry), represented by
arcs and radii. Most corners seemed to be correctly characterised, although some are rotated by
180° due to the region symmetry occasionally being poorly initialised by the gradient weighted
centroid method.

Figure 13b represents corners by circles with radii proportional to contrast. Although variations
in contrast are generally small, the results appear reasonable. For instance, inspection shows that
the corners of the computer monitor are correctly about half the contrast of the corners of the
black and white rectangle on the wall above it.

Finally, figure 13c shows bluntness, again represented by proportionally sized circles. There
is little variation in bluntness over the image, corresponding to the uniformity of corners in the
scene. Apart from some responses which do not appear to arise from true corners, most corners
have a bluntness value between 0.4 and 0.5, caused by quantisation and blurring of the corners
that were originally sharp in the scene. The remaining corners whose measured bluntness is higher
than average appear correct. See, for instance, the bottom lefthand corner of the white square
containing the Kaniza triangle.



4 Conclusions

We have described various methods for measuring L-corner properties.® In order to compare them
they have been extensively tested on synthetic data. This helps demonstrate their strengths and
weaknesses, and shows under what conditions each method is suitable. Some methods work very
well all the time; for instance the thresholding followed by median and the moments methods con-
sistently measure contrast better than the multi-scale intensity histogram or thresholding followed
by averaging methods. Other methods perform better than others only over a restricted range of
conditions. For example, in the range of subtended angles 90° 4+ 40° the multi-scale orientation
histogram method for measuring subtended angle outperforms the other methods, but outside this
range it breaks down. Another example is when applying the multi-scale orientation histogram
method to measure corner orientation. Again it outperforms all the other methods, but breaks
down when the signal to noise ratio drops below 10.

Overall, the average orientation, thresholding, intensity centroid and all the symmetry methods
are all good choices for measuring orientation. Although it breaks down for very narrow or wide
corners the multi-scale orientation histogram method is probably the best choice for measuring
subtended angle. The thresholding followed by median and the moments methods are best for
measuring contrast. The moments method being more robust under severe noise or when a small
measurement window is used.

A more limited set of tests have been applied to the methods for measuring bluntness and cusp
boundary curvature. For measuring bluntness the kurtosis and hyperbola fitting methods do better
than the circle fitting method when the corner is substantially rounded. Finally, the method for
measuring boundary shape of cusps worked reliably on the simple test set.
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Figure 1: Projection of image window along corner orientation
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Figure 2: Modelling a blunt corner with a hyperbola
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Figure 3: Modelling a blunt corner with a circular arc
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Figure 4: Sample test corner images
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Figure 6: Measurement uncertainty of subtended angle; error bars show one standard deviation;
(a) single-scale orientation histogram, (b) multi-scale orientation histogram, (c) thresholding /
moments
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Figure 7: Effect of noise on measurement accuracy for orientation, subtended angle, and contrast
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Figure 8: Effect of window size on measurement accuracy for orientation, subtended angle, and

contrast
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Figure 9: Sample test corner images with cropping
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Figure 10: Measuring bluntness
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Figure 11: Line fitting for measuring cusp boundary turning angle
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(b) contrast
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(c) bluntness

Figure 13: Corner properties measured from real image
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