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Abstract

In order to improve the effectiveness of shape based classification there is an ongoing

interest in creating new shape descriptors or creating new measures for descriptors that

are already defined and used in shape classification tasks. Convexity is one of the most

widely used shape descriptors and also one of the most studied in the literature. There

are already several defined convexity measures. The most standard one comes from the

comparison between a given shape and its convex hull. There are also some nontrivial

approaches.

In this paper we define a new measure for shape convexity. It incorporates both area

based and boundary based information, and in accordance with this it is more sensitive

to boundary defects than exclusively area based convexity measures. The new measure

has several desirable properties and it is invariant under similarity transformations.

When compared with convexity measures that trivially follow from the comparison

between a measured shape and its convex hull then the new convexity measure also

shows some advantages – particularly for shapes with holes.

Keywords: Shape, convexity, measurement, shape classification.
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1 Introduction

Shape is a recurrent theme in computer vision, and is still an active area of research even

after thirty years. This paper only considers two dimensional shapes (and by shape we

mean a compact planar set with a nonempty interior), but the techniques discussed could

be directly applied to higher dimensions. A recent popular application of shape analysis to

3D data is the retrieval of objects from large collections of 3D surface models, such as the

Princeton Shape Database [11].

There are many ways to characterise shape. One possibility is to decompose the object

into parts and describe the parts and their interrelationships. Alternatively, more holistic or

global approaches treat the object as a single entity. Either the shape is then described by a

set of values (e.g. Osada et al.’s approach was to represent the shape signature of a 3D object

as a distribution of sample distances [11]) or else by a single scalar as a compact description

of some salient aspect of shape such as circularity, complexity, regularity, symmetry, etc.

This paper is an example of the latter approach, and defines a new convexity measure.

Over the years several convexity measures have been developed (e.g. [2, 5, 6, 9, 14, 15,

17, 21, 23, 24]) and have been used for applications such as shape decomposition [8, 20],

figure/ground segmentation [13], and pornography blocking [1]. Basically, these alterna-

tive convexity measures are derived from some suitable definition of convex shapes or by

comparing measured shapes with their convex hulls.

The most standard definition of convex shapes is the following.

Definition 1 A planar shape S is said to be convex if it has the following property: If points

A and B belong to S then all points from the line segment [AB] belong to S as well.

Based on the previous definition it is reasonable to define a convexity measure as follows.

Measure 1 For a given planar shape S its convexity measure C1(S) is defined to be the

probability that for randomly chosen points A and B from S all points from the line segment

[AB] also belong to S.

The convexity measure defined above has the following desirable properties:

• the convexity measure is a number from (0, 1];

• the convexity measure of a given shape equals 1 if and only if this shape is convex;

• there are shapes whose convexity measure is arbitrarily close to 0; (i.e., there is no gap

between 0 and the minimal possible convexity measured);
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• the convexity measure of a shape is invariant under similarity transformations of this

shape.

On the other hand, the main objection to Definition 1 is that the exact computation

C1(S) is not easy even if S is bounded by a polygon.

As mentioned above, shape convexity can be measured by comparing the measured shape

with its convex hull, where the convex hull of a given shape S is the smallest convex set which

includes S. As usual, the convex hull of S is denoted as CH(S) (see figure 1).

Considering a shape and its convex hull, the following two convexity measures follow

naturally. The first one can be understood as an area based one, while the second is boundary

based.

Measure 2 For a given planar shape S, its convexity measure C2(S) is defined to be

C2(S) =
Area(S)

Area(CH(S))
.

In practice, the C2 convexity measure is the one that is mostly used, and appears in

textbooks [22]. C2(S) is easy and efficient to compute and is very robust with respect to

noise. Its “discrete version”, where the real objects are presented as finite sets of points and

the area of object is simply estimated by using the number of points which fall into it, is

also widely used in practical applications.

On the other hand, the measure C2 is not able to detect huge defects on boundaries of

shapes which have a relatively small impact on the shape areas. A simple example is given in

figure 2 (a) (see [24]). For small enough values of h the polygons P (t, h) have the measured

convexity C2 very close to 1, i.e.,

lim
h→0

C2(P (t, h)) = 1 for all t ∈ (0, 1).

For many applications the above estimate is not acceptable. Such an “anomaly” as

lim
h→0

C2(P (t, h)) = 1 can be avoided by using another convexity measure that is derived by

comparing the perimeter of the considered shape and the perimeter of its convex hull. We

give the following definition.

Measure 3 For a given planar shape S, its convexity measure C3(S) is defined to be

C3(S) =
Per(CH(S))

Per(S)

where Per(CH(S)) and Per(S) are the Euclidean perimeters of the boundaries of CH(S)

and S respectively.
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By the last definition we have a more acceptable situation for the shape presented in fig-

ure 2 (a): lim
h→0

C3(P (t, h)) =
2

3
. However, for applications to classification it is a disadvantage

that the last estimate does not depend on t. Even worse, for a fixed h ∈ (0, 1) the shape

P (t, h) changes significantly as t varies through (h/2, 1− h/2) but the measured convexity

C3(P (t, h)) =
4

4− h+
√
5h2 − 8h+ 4

is independent of t. The convexity measure defined here will overcome such a disadvantage.

While convexity measures C1, C2, and C3 follow directly from the definition of convex

shapes and their convex hulls, in the literature there exist measures which are not derived

in such a straightforward way – see [2], [23], and [24].

In this paper we define a new convexity measure which incorporates both area based and

boundary based aspects. It satisfies the basic requirements listed after Measure 1 but has

some advantages with respect to the previous convexity measure – particularly in measuring

shapes with holes and shapes with deep intrusions.

The paper is organised as follows. The new measure C is defined in Section 2. The

computation of C will be discussed in Section 3. Some possible modifications of the proposed

measure are discussed in Section 4. In Section 5 several experimental results are provided.

Section 6 contains concluding remarks.

2 A New Convexity Measure

In this section we define a new convexity measure. It follows naturally from the following

definition of shape convexity.

Definition 2 A planar shape S is said to be convex if it has the following property: If points

A and B belong to the boundary of S then all points from the line segment [AB] belong to

the shape S.

It is easy to see that Definition 1 and Definition 2 are equivalent. Based on Definition 2

it is reasonable to define a convexity measure as follows.

Measure 4 For a given planar shape S its convexity measure C(S) is defined to be the

probability that for randomly chosen points A and B from the boundary of S all points from

the line segment [AB] also belong to S, under the assumption that A and B are chosen

uniformly along the boundary of S.
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Note. If other probability distributions (rather than the uniform distribution) is chosen,

then we can generate other convexity measures. In the rest of the manuscript the uniform

distribution will be assumed if not mentioned.

The convexity measure is obviously boundary based since it is defined in terms of points

on the boundary. However, it also has an area based aspect since the randomly generated

line segments can be considered to be probes of the area of the interior of the shape.

The following theorem summarises the desirable properties of the polygon convexity

measure proposed here.

Theorem 1 For any shape S we have:

i) C(S) ∈ (0, 1];

ii) C(S) = 1 if and only if S is convex;

iii) for any α ∈ (0, 1] there is a shape S such that C(S) = α;

iv) C(S) is invariant under similarity transformations.

Proof. The items i, ) ii), and iv) follow easily from the definition.

In order to prove iii) just consider the ring R(r) from figure 3(a). Applying elementary

mathematics, the measured convexity C(R(r)) can be expressed as

C(R(r)) =
2

π(r + 1)
arccos r

while r varies from 0 to 1. Indeed, by the notations from figure 3(b), the angle β is equal to

arccos r, since |OA| = r and |OB| = 1 i.e. the length of the arc BC is arccos r. Thus, the

probability that the line segment [AX] belongs to R(r) is
2 arccos r

2πr + 2π
, where due to symmetry

A can be considered fixed as shown in figure 3(b), and X lies on the boundary of R(r)

which consists of the two circles. Similarly, the probability that the edge EY (where Y

belongs to the boundary of R(r)) is
4 arccos r + 2r arccos r

2πr + 2π
. By using those facts and the

total probability theorem (see the footnote 1) the last equality holds. The proven equality

implies iii). ✷

2.1 Measure Behaviour Illustrated by Synthetic Examples

In order to illustrate the behaviour of the new convexity measure, we consider a few synthetic

examples given in figure 2 and figure 3 that enable an easy analytical computation.
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The shape P (t, h) from figure 2 (a) depends on the parameters t ∈ (0, 1) and h ∈ (0, 1).

For a very small h the situation corresponds to a real shape with a very deep intrusion. It

is easy to show that

lim
h→0

C(P (t, h)) =
2t2 − 2t+ 5

9
, t ∈ (0, 1).

The minimum measured convexity is for t = 0.5 and it is 0.5. For t very close to 0 (or very

close to 1) the estimated convexity is close to 1, i.e. the shape is estimated as almost convex.

Those estimates could be understood as reasonable ones.

Note. It is important to mention that the measured convexity depends on t, which is an

advantage with respect to the convexity measure C3. Notice that even though C3 is boundary
based, it is insensitive to the changes of boundary of P (t, h) caused by the varying of t.

Indeed, lim
h→0

C3(P (t, h)) = 2/3 for any t ∈ (0, 1). As mentioned lim
h→0

C2(P (t, h)) = 1 is also

independent on t.

If we consider the shape T (t, h) from the same figure, then

lim
h→0

C(T (t, h)) = 4 + t2

(2 + t)2
, for each fixed t > 0.

This can be derived easily. Such a behaviour could be understood as reasonable. More

precisely, for very small t (let us say, if t → 0) it gives a measured convexity very close to

1 (i.e. the shape is estimated as “almost convex”). Also, when t is very large (let us say

t → ∞), the estimated convexity is again close to 1 which is acceptable because then the

main part of boundary of T (t → ∞, h → 0) degenerates into two coincident straight line

segments. The minimum convexity is measured for t = 2 and this minimum is 0.5. Note that

the convexity measure C2(T (t, h → 0)) also depends on t and it is (3 +
√
4t2 + 1)/(4 + 2t).

A circular ring (grey area) is presented in figure 3 (a). As it has been mentioned in the

proof of Theorem 1, if the bigger circle has a radius equal to 1 and the radius of the smaller

circle is r then the measured convexity of such a ring is
2

π
· arccos r for r ∈ (0, 1). That is in

accordance with our expectation that a very low measured convexity corresponds to r close

to 1 while a measured convexity close to 1 corresponds to a very small r.

3 Computation of C(P )

In this section we consider the computation aspects of the new measure. Our measure

is, in part, boundary based and consequently the shape boundary plays a key role in the
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computation of the measure. It is clear that when working with an image of an arbitrary

real shape S the boundary B(S) is unknown – i.e. it is not given in an analytical way.

Theoretically speaking, if we have such analytical expressions the measured convexity C can

be computed. A standard approach could be a suitable decomposition of the boundary of

the given shape and application of the total probability theorem 1 In practice, such a scenario

could be applied only to shapes with simple boundaries. In fact, this is what was done in

the case of the shapes in figure 2 and figure 3.

The situation is even worse when the measured shape S is presented in the corresponding

binary image [7] – there is always an inherent loss of information. Even if we could properly

extract the boundary points in order to apply the previous scenario we should know the

boundary length between the selected points that made a proper boundary decomposition.

But shape boundary length estimation (from a binary image) is also a very difficult problem

(for a comparative study see [3]).

Thus, it seems that the most acceptable way to estimate C(S) is to approximate the

boundary of S by a polygon and then estimate the measured convexity (of such a polygonal

approximation) by applying a standard numerical approach (that uses a number of randomly

generated sample points). That is because the exact computation of the convexity of the

obtained polygonal approximation could be very complex if such a polygonal approximations

has many vertices. How to approximate a curve by a polygonal line is well-studied problem

(for an overview see [19]) with several very efficient solutions. Now, we recommend the

following, very simple algorithm for an estimation of C.

ESTIMATION OF C(S)
Input: A binary image of a shape S and a number N that depends on the required

precision that should be reached.

Step 1 Find a polygonal approximation PA(S) of the boundary of S;

Step 2 Find the perimeter Per(PA(S)) of PA(S) and fix an arbitrary point X

on PA(S);

Step 3 Generate N pairs

(a1, b1), (a2, b2), . . . , (aN , bN)

of random numbers from the interval [0,Per(PA(S))];

1Given n mutually exclusive events B1, . . . , Bn whose probabilities sum to unity, and an arbitrary event

A. The formula of total probability says that P (A) =
∑n

i=1
P (A|Bi)P (Bi) where P (A|Bi) is the conditional

probability of A assuming Bi.

7



(a) For any pair (ai, bi) i = 1, 2, . . . , N determine the points Yi and Zi lying

on PA(S) such that

– the part of PA(S) between points X and Yi (taken in the counterclockwise

order, for example) has the length ai;

and

– the part of PA(S) between points X and Zi (taken in the counterclockwise

order) has the length bi;

(b) Check if the straight line segment [Yi, Zi] belongs to the area bounded by

PA(S);

Output: The convexity C(S) is estimated as the number of edges that belong to the

area bounded by PA(S) divided by N.

Note. Let us notice that the previous algorithm works if shape S consists of several disjoint

parts (i.e. S is not connected) or/and if S has holes. In such situations PA(S) consists of

all polygonal approximations of all parts (i.e. including all holes) PA(Ai) (i = 1, 2, . . . , k),

listed in an arbitrary order. On each PA(Ai) an arbitrary point Xi should be fixed. The

interval [0,Per(PA(S))] can be expressed as the union of k intervals I1, I2, . . . , Ik such that

[0,Per(PA(S))] = Ii ∪ I2 ∪ . . . ∪ Ik =

[0,Per(PA(A1))] ∪ [Per(PA(A1)),Per(PA(A1)) + Per(PA(A2))] ∪

. . . ∪




∑

1≤i≤k−1

Per(PA(Ai)),Per(PA(S))



 .

To determine the points Yi and Zi from Step 3 of the algorithm, the interval Iv0 to

which ai belongs should first be determined. Then the point Yi is on the distance ai −
∑

1≤j<v0−1 length of Ij from the point Xv0 . Zi is determined in the analogous way.

4 A Modified Convexity Measure

Some modifications of the new convexity measure are possible. One idea comes from [15].

The authors used an idea of generating pairs of points from a measured shape S and then

checking if certain points on the corresponding line segment belong to the shape S. They use

a parameter α to determine the exact location of the point on the line segment. Formally,

it can be formulated as follows.
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Measure 5 Fix α ∈ (0, 1). For a given shape S its convexity measure is defined as the

probability that for randomly chosen points A ∈ S and B ∈ S, the point αA+ (1− α)B also

belongs to the shape S.

It is easy to see that a shape is convex if and only if its measured convexity is equal to 1.

Of course, infinitely many different measures can be obtained by varying the parameter α.

A very similar approach is to define a convexity measure which does not take into account

the complete line segment or a single point of it but does take a sub-segment of it. Also,

wishing to keep the benefit of the easier generation of random points from the boundary,

rather than interior points from the shape interior, we give the following definition.

Measure 6 Fix α ∈ [0, 0.5]. For a given shape S its convexity measure Cα is defined as the

probability that for randomly chosen points A and B from the boundary of S, the straight

line segment [αA+ (1− α)B, (1− α)A+ αB] completely belongs to S.

Computation of Cα follows the algorithm given in Section 3, except that in Step 3b the

line segment [Yi, Zi] is replaced by the sub-segment [αYi + (1− α)Zi, (1− α)Yi + αZi].

Again, it is easy to see that a shape is convex if and only if its measured convexity is

equal to 1 independently of which α ∈ [0, 1/2] has been chosen.

Obviously, if α = 0 then C0 is equal to the convexity measure C introduced in Section 2.

In the case α = 0.5, i.e, when the line segment [AB] is scaled by the maximum amount

α = 0.5 it collapses to its midpoint. This provides a similar type of convexity measure to

that proposed by Rahtu et al. [15] (see Measure 5), which is based on the probability of a

midpoint lying inside the polygon. The difference between the two measures is that they use

different distributions of tested line segments.

The implication α ≤ β ⇒ Cα ≤ Cβ is an easy consequence of the definition of Cα.
A practical interpretation of this implication is that a higher value of α would penalise

less heavily the intersections between the generated line segments and the shape exterior

if the intersections occur closer to the shape boundary. That can be useful when working

with shapes having poorly extracted boundaries – or with shapes with irregular or textured

boundaries. This observation will be verified on fractal examples in the next section.

5 Experimental Results

While the maximum convexity value of C of one is reached for any convex polygon, what

shapes produce values approaching zero? A trivial example is given in figure 3. The presented
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circular ring R(r) is expected to have the measured convexity tending to zero when its area

tends to zero (i.e. when r → 1). Another class of such shapes are fractals; as demonstrated

in figure 4 which shows the computed convexity for a Koch snowflake, recursively generated

at a finite number of levels of detail. At the highest level of detail that was generated (i.e. 10)

there were over 780,000 edges in the polygon. As the fractal’s detail is increased the shape

becomes more convoluted, thereby reducing the probability that the tested line segments do

not intersect the boundary. However, if only part of the line segments are tested then the

measure become less sensitive to minor deviations from convexity, as can be seen in figure 4.

Even for complex shapes the convexity measure converges reasonably quickly. This is

demonstrated in figure 5 which analyses the Koch snowflake with 2, 3, 4, and 5 levels of

detail, the polygons containing between 12 and 768 edges. It can be seen that a relatively

accurate estimate is obtained after testing only 1000 line segments. To ensure high accuracy

the experiments in this paper have used the conservative number of 100000 line segment

tests.

The following show examples of the application of the proposed convexity measure along

with results from several other convexity measures described in the literature by Žunic and

Rosin [24] (CJ), Rahtu et al. [15] (CR), Rosin and Mumford [21] (CQ), as well as the convex

hull based methods C2 and C3.
Figure 6 illustrates with a set of simple synthetic polygons how the different convexity

measures are affected by changes to the data:

• The area based methods (C2, CQ, and CR) are invariant under affine transformations.

• The convex hull methods (C2 and C3) are insensitive to rotations and translations of

holes (or concavities so long as the transformations do not affect the convex hull).

• Measure CJ is invariant to translations of holes (or concavities as above), but is sensitive

to rotations.

• Measure CQ uses a fitted convex polygon that is something like the convex hull or

convex skull depending on whether the input polygon mostly contains intrusions or

protrusions. It is insensitive to rotations and translations of both intrusions and pro-

trusions.

• The new measure C is sensitive to rotations and translations of both intrusions and

protrusions.

In figure 7 the differences in the various convexity measures are highlighted by applying

them to a wide range of shapes. We note first that all measures correctly assign the only
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perfectly convex shape a maximum score, but differ in the ranking of the remaining shapes.

It can be observed that the perimeter based methods (C3, CJ) overestimated the convexity

of the “L” shape (second last shape in the second row). On the other hand, those convexity

measures give shapes that contain many narrow but deep intrusions (such as the first shape

in the second row) much lower convexity scores than other measures. Note that the rankings

by C2 and CQ (which are both area measures based on a convex polygon) are similar. Also,

CR and C0.5 are similar – which is expected since they are based on similar principles.

measures accuracy

C2, C3, CJ 58.40%

C0.0 55.81%

C0.0, Cprot 69.77%

C0.0, Cprot, CQ 74.42%,

C0.0, Cprot, CQ, C3 83.72%

Table 1: Classification accuracies for 43 desmids using the nearest neighbour classifier with

Mahalanobis distances and leave-one-out cross validation.

A final demonstration of the convexity measures is given for the small scale classification

task carried out in our previous paper on convexity [24]. Nine species of a type of algae

called desmids were analysed. The data set contained 43 outlines, each containing 1000–

10000 pixels, with 4–7 drawings for each species, and were taken from West and West’s [25]

flora. Some examples are shown in figure 8. As before, the outlines were preprocessed by

performing polygonal approximation using Ramer’s algorithm [16], and a threshold of 3.

The polygonal approximation is mainly intended to substantially reduce the number of

polygon vertices, thereby speeding up the line intersection tests. A second consequence is

that noise and fine detail is eliminated. If the polygonal approximation algorithm’s thresh-

old parameter is set higher to remove significant detail then the measured convexity value

could be increased significantly. Note that increasing α for the Cα measure has a similar

effect, as shown in figure 9; also when the threshold is increased to 40 the ordering of the

desmids becomes closer to C0.5 applied to a fine polygonal approximation (figure 8). The

advantage of using a coarse polygonal approximation rather than applying Cα with large α to

a fine polygonal approximation is computational efficiency. However, the drawback is that

the convexity measure becomes increasingly sensitive to the performance of the polygonal
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approximation algorithm as alternative coarse polygonal approximations with similar fitting

errors could vary substantially. For that reason we prefer to retain an accurate polygonal

approximation, and modify α as required. Consequently, the Cα measure will be insensitive

to variations in the polygonal approximation. That is, alternative polygonal approximation

algorithms, or modifications to the data (e.g. due to noise, rotation, quantisation) will all

produce an output polygon with a small (e.g. Hausdorff) distance from the input, even if

the selection of vertices in the outputs vary. This is demonstrated in figure 10 in which

the different polygonal approximation algorithms have produced slight variations in output

which are only apparent on close examination. A single parameter value was set for each al-

gorithm, and so the numbers of vertices for each outline varies across the algorithm outputs.

Nevertheless, the C values for each shape compared across the algorithms are fairly similar,

as are the orderings.

Previously we showed that combining the three convexity measures C2, C3, and CJ
achieved 58.40% classification accuracy. In the current paper classification was performed

using a nearest neighbour classifier2 with Mahalanobis distances, and leave-one-out accu-

racy values computed. To find a good set of convexity features sequential forward search

was employed, in which all unused features are considered, and the feature, which combined

with the current feature set maximises the classification rate, is added to the current fea-

ture set [12]. Table 1 shows that the best single convexity measure for the classification of

desmids was C0.0. Furthermore, combining certain other convexity features, namely Cprot,3

CQ and C3 was sufficient to substantially increase classification accuracy (combining further

convexity measure resulted in a drop in accuracy). This demonstrates that although the dif-

ferent convexity measures are all designed to measure the same basic characteristic of shapes,

they nonetheless actually capture different aspects (which was also implied by the differing

invariances displayed in figure 6). Of course, classification accuracy could be increased still

further by incorporating additional non-convexity shape measures.

2We found that the nearest neighbour classifier was preferable to our previous use of the OC1 decision

tree [10] since the results of the latter depended on the ordering of the data. Given the data matrix of

samples versus features, permuting either the rows or columns could affect the classification rate, although

generally only by a small amount.
3Cprot is a measure of protrusion based on the same convex polygon from which the CQ convexity measure

is calculated [21]. Note, also that only the first stage of the optimisation process for determining the convex

polygon was carried out (no vertex perturbation was carried out), as the subsequent refinement stage was

shown to be not cost-effective [21].
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6 Concluding Remarks

We have described a new shape convexity measure Cα which varies from most other such

measures in several ways:

• it incorporates both area based and boundary based information;

• it is sensitive to rotations and translations of both intrusions and protrusions to the

shape;

• it incorporates a parameter α that determines its sensitive to boundary fluctuations.

Moreover, it is simple to implement. Although its computation is based on the Monte Carlo

method, it is reasonably efficient to compute. Running time for a C implementation applied

to a relatively complex polygon containing 200 edges after polygonal simplification takes

about 5 seconds on a 2.0 GHz Pentium 4 using 100000 line segment tests. However, the

number of tests (and consequently the running time) can be reduced by one or two orders

of magnitude with only small changes to the measured convexity values. The polygonal

approximation algorithm stage takes a negligible computation time: about 40 milliseconds

for an input outline containing 4000 vertices.
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Figure 1: Non-convex polygon P and its convex hull CH(P ) (dashed line).
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Figure 2: The measure C1 gives an acceptable limh→0 C1(P (t, h)) = 1 − 2t + 2t2 and un-

acceptable limh→0 C1(T (t, h)) = 0 (for any fixed t).The measure C2 gives an unacceptable

limh→0 C2(P (t, h)) = 1 and acceptable limh→0 C2(T (t, h)) = 2

2+t
(for any t).The measure

C3 gives limh→0 C3(P (t, h)) = 2/3 and limh→0 C1(T (t, h)) = (3 +
√
4t2 + 1)/(4 + 2t) (both

acceptable).
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Figure 3: (a) When r varies through (0, 1) the measured convexity C(R(r)) varies through

the same interval, as well. (b) Notations are given in order to make an easier derivation of

C(R(r)).
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Figure 4: Convexity values C for a Koch snowflake. As the number of levels of detail is

increased C0.0 approaches a value close to zero. When the tested line segments are shrunk

then the measure becomes less sensitive (although not totally insensitive) to minor deviations

from convexity. Thus, in the extreme case where the lines are shrunk to their midpoints,

the C0.5 value drops initially after the first level (i.e. the convex triangle), but thereafter its

value does not vary much. The Koch snowflake is shown generated at each of the first three

levels of detail.
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Figure 5: Graph showing convergence of the convexity measure C0.0 for the Koch snowflake

with 2, 3, 4, and 5 levels of detail (given by the plotted lines in descending order).
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C2
0.772 0.772 0.772 0.784 0.855 0.855 0.855 0.855 0.864

C3
0.659 0.660 0.660 0.660 0.758 0.831 0.843 0.860 0.902

CJ
0.604 0.651 0.651 0.651 0.743 0.807 0.813 0.815 0.878

CQ
0.873 0.873 0.873 0.873 0.876 0.877 0.877 0.877 0.877

CR
0.683 0.746 0.775 0.928 0.928 0.929 0.933 0.944 0.952

C0.0
0.426 0.435 0.438 0.448 0.510 0.522 0.524 0.534 0.543

C0.5
0.728 0.746 0.751 0.768 0.809 0.814 0.820 0.830 0.831

Figure 6: Convexity values for simple synthetic shapes, showing the effects of rotation and

translation of intrusions/protrusions, and global skew.
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C2
.322 .480 .486 .498 .524 .548 .619 .629 .720 .725 .788 .829 .913 1.00

C3
.228 .280 .318 .338 .459 .489 .522 .562 .595 .696 .736 .794 .918 1.00

CJ
.233 .272 .285 .345 .466 .488 .512 .573 .607 .620 .722 .742 .852 1.00

CQ
.217 .394 .529 .644 .652 .713 .753 .754 .785 .785 .856 .897 .904 1.00

CR
.512 .523 .535 .638 .729 .768 .821 .872 .893 .950 .957 .993 .997 1.00

C0.0
.064 .091 .096 .125 .178 .222 .242 .280 .282 .434 .480 .533 .625 1.00

C0.5
.392 .410 .477 .601 .633 .636 .675 .740 .810 .811 .825 .825 .831 1.00

C0.5 − C0.0
.000 .050 .110 .168 .207 .351 .356 .386 .391 .423 .569 .603 .686 .714

Figure 7: A variety of shapes ranked into ascending order by several convexity measures.

0.076 0.111 0.158 0.255 0.278 0.298 0.317 0.368
desmids ordered by C0.0

0.620 0.663 0.752 0.851 0.931 0.941 0.955 0.961
desmids ordered by C0.5

Figure 8: A sample of the 43 desmids (taxon Micrasterias) ordered by the new convexity

measures. Although C0.0 is very sensitive to minor boundary fluctuations, C0.5 is relatively

insensitive.
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0.099 0.127 0.187 0.293 0.323 0.333 0.337 0.412
desmids ordered by C0.0 with polygonal approximation threshold set to 10

0.155 0.196 0.233 0.402 0.400 0.459 0.529 0.649
desmids ordered by C0.0 with polygonal approximation threshold set to 40

Figure 9: The effect of making coarser polygonal approximations is to eliminate many of the

shapes’ concavities, increasing the measured C0.0 values. At the high threshold used in the

second row the polygonal approximation becomes very crude, as shown by the overlay of the

true outline.
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0.076 0.111 0.158 0.255 0.278 0.298 0.317 0.368
C0.0 after applying Ramer’s polygonal approximation algorithm [16]

0.083 0.116 0.168 0.298 0.299 0.338 0.339 0.435
C0.0 after applying Deveau’s polygonal approximation algorithm [4]

0.086 0.110 0.164 0.286 0.309 0.322 0.327 0.421
C0.0 after applying Rosenfeld’s polygonal approximation algorithm [18]

0.083 0.117 0.168 0.283 0.296 0.323 0.338 0.421
C0.0 after applying Williams’ polygonal approximation algorithm [26]

Figure 10: The desmid outlines are preprocessed by different polygonal approximation algo-

rithms before ordering by C0.0.
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