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Abstract

Convexity estimators are commonly used in the analysis of shape. In this paper we
define and evaluate a new convexity measure for planar regions bounded by polygons.
The new convexity measure can be understood as a “boundary based” measure and
in accordance with this it is more sensitive to measured boundary defects than the so
called “area based” convexity measures. When compared with the convexity measure
defined as the ratio between the Euclidean perimeter of convex hull of the measured
shape and the Euclidean perimeter of the measured shape then the new convexity
measure also shows some advantages – particularly for shapes with holes.

The new convexity measure has the following desirable properties:

– the estimated convexity is always a number from (0, 1];

– the estimated convexity is 1 if and only if the measured shape is convex;

– there are shapes whose estimated convexity is arbitrary close to 0;

– the new convexity measure is invariant under similarity transformations;

– there is a simple and fast procedure for computing the new convexity measure.

Keywords: Shape, polygons, convexity, measurement.

1 Introduction

Shape is a crucial component in many areas of scientific analysis [4, 6], with examples includ-
ing geomorphology [15], powder particle characterisation [10], and biology [2]. This paper is
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concerned with the measurement of the convexity of polygons, which can be considered as one
of the basic descriptors of shape [20] (alongside others such as compactness, circularity, and
rectangularity) and has received some attention over the years [3, 21]. A convexity measure
can be used for a variety of applications, for instance shape decomposition [11, 18] which in
turn can be used to compute shape similarity and has been applied to object indexing [12].

In general, a planar shape S is said to be convex if it has the following property: If points
A and B belong to S then all points from the line segment [AB] belong to S as well. The
smallest convex set which includes a shape S is called the convex hull of S and it is denoted
as CH(S) (see Fig. 1). The previous two definitions suggest the following two possibilities

CH(P) P

Figure 1: Non convex polygon P and its convex hull CH(P ) (dashed line).

for convexity measurements of planar shapes.

Definition 1 For a given planar shape S its convexity measure C1(S) is defined to be the
probability that for randomly chosen points A and B from S all points from the line segment
[AB] also belong to S, under the assumption that A and B are chosen uniformly.

Definition 2 For a given planar shape S, its convexity measure C2(S) is defined to be

C2(S) =
Area(S)

Area(CH(S))
.

Both convexity measures defined above have the following desirable properties:

i) the convexity measure is a number from (0, 1];

ii) the convexity measure of a given shape equals 1 if and only if this shape is convex;

iii) there are shapes whose convexity measure is arbitrary close to 0;
(i.e., there is no a gap between 0 and the minimal possible convexity measured);

iv) the convexity measure of a shape is invariant under similarity transformations of this
shape.
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But there is also some “bad” properties of the above definitions. The main objection to
the Definition 1 is that C1(S) is difficult to compute, even if S is a polygon. In practice,
the convexity measure given by Definition 2 is the one that is mostly used, and appears in
textbooks [20]. C2(S) is easy and efficient to compute and is very robust with respect to
noise. Its “discrete version” where the real objects are presented as finite sets of points and
the area of object is simply estimated by using the number of points which fall into it is also
widely used in practical applications.

On the other hand, the convexity measurement given by Definition 2 does not detect huge
defects on boundaries of shapes which have a relatively small impact on the shape areas.
Two simple examples are given in Fig. 2. Setting t = 1 − h, then for small enough values
of h the polygons P (h) and T (1− h, h) have the same perimeter and almost the same area.
Nevertheless, this leads to the following inconsistent relation between convexity estimates

lim
h→0

C2(P (h)) = 1 > lim
h→0

C2(T (1− h, h)) =
2

3
.

The anomaly lim
h→0

C2(P (h)) = 1 can be avoided by a modification of Definition 2 as follows.

Definition 3 Let a planar set S be given. Let MCS(S) denote a convex subset of S with
the maximum possible area. Then, the convexity measure C ′

2 of S is defined as

C ′
2(S) =

Area(MCS(S))

Area(S)
.

The previous measure also satisfies i), ii), iii), and iv) and gives the reasonable estimate

lim
h→0

C ′
2(P (h)) =

1

2
. On the other hand lim

h→0
C ′
2(T (1 − h, h)) = 1 is a bad estimate, and what

is more important the computation of Area(MCS(S)) is very difficult.
The previously mentioned possibilities for convexity measurement can be understood as

“area based” measures, and consequently, they are expected to be robust with respect to
boundary defects (caused by noise for example). On the other hand, if a convexity measure
is based on the shape boundary, then it is likely to be more sensitive to the boundary
properties than the measures C1 and C2. Such a sensitivity can be a very useful property
of the measurement – see again Fig. 2 for an example. The following boundary based
convexity measure computed as the ratio of the Euclidean perimeter of a given shape S and
the Euclidean perimeter of the convex hull of S seems to be a natural solution.

Definition 4 For a given planar shape S, its convexity measure C3(S) is defined to be

C3(S) =
Per2(CH(S))

Per2(S)

where Per2(CH(S)) and Per2(S) are the Euclidean perimeters of the boundaries of CH(S)
and S, respectively.

By the last definition we have the more acceptable situation lim
h→0

C3(P (h)) =
2

3
and

lim
h→0

C3(T (1− h, h)) =
3 +

√
5

6
≈ 0.87.
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Figure 2: C1(P (h)) → 1
2
as h → 0 is reasonable, but C2(P (h)) → 1 as h → 0 is not.

C1(T (t, h)) → 1 as h·t → 0 is poor for a big t, while it could be acceptable that C2(T (t, h)) →
2

2+t
with any fixed t and h → 0.

While convexity measures C1, C2, C ′
2, and C3 follow directly from the definition of convex

shapes in literature there already exist measures which are not such direct consequences of
the definition.

For instance, Stern [21] proposed an area based convexity measure. In an attempt to
incorporate the entire topology of the polygon into the measure he considered the set of all
mutually visible pairs of points contained in the polygon. To define the measure for a given
polygon P a probability density function is defined as

f(x, y) =
Area(V ((x, y), P ))

∫

(x,y)∈P

∫

Area(V ((x, y), P )) dy dx

where V ((x, y), P ) is the set of points (x̃, ỹ) such that the line segment [(x, y), (x̃, ỹ)] is
completely included in P . The polygonal entropy of P is defined as

E(P ) = −
∫

(x,y)∈P

∫

f(x, y) ln f(x, y) dx dy.

Finally, the convexity measure is defined as the ratio

E(P )

lnArea(P )

or as an arbitrary normalization of it.
Although the above convexity measure is theoretically appealing, in practice its main

disadvantage is the computational burden required in its determination. An approximate
(but faster) estimation of the proposed convexity measure was also described.

In [3] Boxer described two ways for measuring the deviation of a given n-gon from con-
vexity, and gave O(n) algorithms for their computation. Both measures are boundary based.
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Roughly speaking, they estimate polygonal convexity by using the distances of the vertices
of the measured polygon from the convex hull of this polygon. The first measure is called a
simple index of non-convexity, and is formally defined in the following way:
Let P be an n-gon whose vertices in circular order areA0, A1, . . . An = A0, and letAi1 , Ai2 , . . . ,
Aik be vertices of CH(P ), where 0 ≤ i0 < ii < . . . < ik ≤ n. The simple index of non-
convexity of P is then defined to be

v(P ) = max
0≤j<k

{

max
ij≤i<ij+1

{d((x1, x2), [AijAij+1
]) | (x1, x2) ∈ [AiAi+1]}

}

where d((x1, x2), [AijAij+1
]) = min{

√

(x1 − x)2 + (y1 − y)2 | (x, y) ∈ [AijAij+1
]}, as usual. It

is obvious that v(P ) = 0 if and only if P is convex. The second measure is called the total
index of non-convexity and it is a slight modification of the previous one, replacing the outer
maximum operation by a summation.

In this paper we define a new easily computable convexity measure for polygons which
is also computed from the boundaries of measured shapes. It satisfies the requirements i),
ii), iii), and iv), but has some advantages with respect to the previous convexity measure –
particularly in measuring shapes with holes. In Sections 5 and 6 the new measure C(S) will
be compared against the above measures C2(S) (in order to illustrate the difference between
a boundary based measure and an area based measure) and C3(S) (in order to illustrate
possible differences between two boundary based measures).

2 Definitions and Denotations

Throughout the paper it will be assumed that all considered shapes are planar bounded
compact sets with a non empty interior. A polygon means a compact planar area bounded by
a simple polygonal line (which also belongs to the polygon because compactness is assumed).
In the subsection 5.4 polygons with holes are considered. A polygon with holes is obtained
as a set difference of a given polygon and polygons (one or more) which are subsets of it.

We will use the following denotations. For a given n-gon P having vertices denoted by
A0, A1, . . . , An = A0, its edges will be denoted ei = [Ai−1, Ai] for i = 1, 2, . . . , n.

The Euclidean length of the straight line segment e = [(x1, y1), (x2, y2)] is l2(e) =
√

(x1 − x2)2 + (y1 − y2)2, while the length of e according to the l1 metric is l1(e) = |x1 −
x2|+ |y1 − y2|, i.e., l1(e) equals the sum of the projections of e onto the coordinate axes.

Per2(P ) will denote the Euclidean perimeter of P , while Per1(P ) will denote the perime-
ter of P in the sense of the l1 metric. So,

Per2(P ) =
∑

ei is an edge of P

l2(ei) and Per1(P ) =
∑

ei is an edge of P

l1(ei).

Since isometric polygons do not necessarily have the same perimeter under the l1 metric,
we shall use Per1(P, α) for the l1 perimeter of the polygon which is obtained by rotating P
by the angle α with the origin as the center of rotation. If the same rotation is applied to
the edge e, the l1 perimeter of the obtained edge will be denoted as l1(e, α).
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If the oriented angle between the positively oriented x-axis and the vector
−−−−→
Ai−1Ai is

denoted by φi (i = 1, 2, . . . n), then obviously l1(ei) = l2(ei) · (| cosφi| + | sinφi|), while
l1(ei, α) = l2(ei) · (| cos(φi + α)|+ | sin(φi + α)|).

The line determined by points A and B will be denoted as l(A,B).
The minimal rectangle with edges parallel to the coordinate axes which includes a polygon

P will be denoted by R(P ).
If a polygon P is rotated by an angle α around the origin then R(P, α) denotes the

minimal rectangle with edges parallel to coordinate axes which includes the rotated poly-
gon. Even though Per1(R(P, α)) = Per2(R(P, α)) we will use Per2(R(P, α)) rather than
Per1(R(P, α)).

3 A New Convexity Measure

In this section we define a new convexity measure for polygons. First, we give a simple
lemma and after that we proceed with a theorem which gives a useful characterisation of
convex polygons (for another implications of it see [1]).

Lemma 1 The inequality
Per2(R(P )) ≤ Per1(P )

holds for any polygon P .

Proof. Let A,B,C, and D be four vertices belonging to pairwise different edges of R(P )
(some of them may coincide). Let Q be the 4-gon with vertices A,B,C, and D. Then
Per2(R(P )) = Per1(R(P )) = Per1(Q) ≤ Per1(P ) finishes the proof. [[]]

Theorem 1 A given polygon P is convex if and only for any choice of the coordinate system
the l1 perimeter of P equals the perimeter of the minimal rectangle whose edges are parallel
to the coordinate axes and which includes P , i.e.,

Per2(R(P, α)) = Per1(P, α) for any α ∈ [0, 2π].

Proof. If a given polygon P is convex then the projections of the edges of P onto the x
and y axes exactly cover the boundary of the minimal rectangle whose edges are parallel
to the coordinate axes (see Fig. 3). Since the sum of such projections equals both the
l1 perimeter of the polygon P and the Euclidean perimeter of R(P ) the convexity of P
implies Per1(P ) = Per2(R(P )) independently of the choice of the coordinate system, or
equivalently, Per1(P, α) = Per2(R(P, α)) for any α ∈ [0, 2π].

On the other hand, if P is not convex, then there exist points A and B from the interior
of P such that the line segment [AB] is not completely contained in P . If the line determined
by A and B is chosen to be one of coordinate axes, say u, then the projections of edges of P
onto coordinate axis v (perpendicular to u) must overlap (see Fig. 4). In other words, the
strict inequality Per1(P ) > Per2(R(P )) holds. This completes the proof. [[]]

Theorem 1 gives a useful characterisation for convex polygons and gives the basic idea for
the polygon convexity measurement described in this paper. In the first stage, the inequality
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Figure 3: If a given polygon P is convex then Per1(P ) = Per2(R(P )).
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Figure 4: If x and y are chosen to be the coordinate axes then
Per2(Rxy(P ))

Per1(P )
= 1. Since P

is not convex there is another choice of the coordinate axes, say u and v, such that the strict

inequality
Per2(Ruv(P ))

Per1(P )
< 1 holds.

Per1(P ) ≥ Per2(R(P )) (see Lemma 1) suggests that the fraction
Per2(R(P ))

Per1(P )
can be used

as a convexity measure for polygons since it is a number from (0, 1], it is defined for any
polygon P , it can be calculated easily, and for any convex polygon it equals 1. But, on the
other hand, this ratio can depend strongly of the choice of the coordinate system (see Fig.
9 (c) and Fig. 10 (c)) – which is not a desirable property. Also, this ratio can be equal to 1
for non-convex polygons (see Fig. 4 for an example) which is not acceptable for a convexity
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measure. These problems can be avoided by considering min
α∈[0,2π]

Per2(R(P, α))

Per1(P, α)
instead of

Per2(R(P ))

Per1(P )
.

Now we can define a new convexity measure for polygons which satisfies i), ii), iii), and
iv).

Definition 5 For a given polygon P its convexity C(P ) is defined as:

C(P ) = min
α∈[0,2π]

Per2(R(P, α))

Per1(P, α)
.

The following theorem summarises the desirable properties of the polygon convexity measure
proposed here.

Theorem 2 For any polygon P we have:

i) C(P ) is well defined and C(P ) ∈ (0, 1];

ii) C(P ) = 1 if and only if P is convex;

iii) inf
P∈Π

(C(P )) = 0, where Π denotes the set of all polygons;

iv) C(P ) is invariant under similarity transformations.

Proof. Since
Per2(R(P, α))

Per1(P, α)
is a continuous function on α (for more details see Section 4) it

must reach its minimum on a closed interval [0, 2π]. So, C(P ) is well defined. Since C(P ) > 0
is trivial and because C(P ) ≤ 1 follows from Lemma 1, item i) is proved.
Item ii) is a direct consequence of Theorem 1.
To prove item iii) consider the polygon Pn from Fig. 5. Trivially,

Per2(R(Pn, α)) ≤ 4 · diameter of(Pn) = 4 ·
√
2 · n, for any α ∈ [0, 2π].

On the other hand,

Per1(Pn, α) ≥ Per1(Pn, 0) = 2 · n+ 2 · n · (n− 1) + 2 = 2 · n2 + 2,

and finally,

0 ≤ lim
n→∞

C(Pn) ≤ lim
n→∞

4 ·
√
2 · n

2 · n2 + 2
= 0

proves inf
P∈Π

(C(P )) = 0.

In order to prove iv) note that C(P ) is invariant under all isometric transformations – which

follows from the definition. Also,
Per1(R(P, α))

Per1(P, α)
and consequently C(P ) are invariants under

any transformation of the form (x, y) → (λ · x, λ · y) for any choice of λ 6= 0, P , and α. That
completes the proof. [[]]
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Figure 5: For a big enough n the convexity measure C(Pn) of the polygon Pn is arbitrary
close to 0.

4 Computation of C(P )

It is obvious that for a given polygon P its new convexity measure

C(P ) = min
α∈[0,2π]

Per2(R(P, α))

Per1(P, α)

can be computed numerically to an arbitrary precision (of course, a higher precision requires
a higher time complexity). On the other hand, although computation of C(P ) is a nonlinear
optimization problem, it turns out that the exact value of C(P ) can be computed in O(n2)
time, if P is an n-gon.

In the rest of this section we describe how to compute (effectively and efficiently) the
exact value of C(P ). We need some additional investigation of the functions Per1(P, α)
and Per2(R(P, α)) which depend only on α if P is fixed. They will be analysed separately
in the next two subsections. A simple procedure for C(P ) computation comes as a direct
consequence of such an analysis.

4.1 Analysis of Per1(P, α)

Let an edge ei (1 ≤ i ≤ n) of a given n-gon P be given. Trivially,

l1(ei, α) = l2(ei)·(| cos(φi+α)|+| sin(φi+α)|) = a(α)·l2(ei)·cos(φi+α)+b(α)·l2(ei)·sin(φi+α)

where a(α) and b(α) take +1 or −1 depending on α. Consequently, there is an integer
k ≤ 4 · n and a sequence 0 ≤ α1 < α2 < . . . < αk ≤ 2π such that

Per1(P, α) =
n
∑

i=1

aj,i · l2(ei) · cos(φi + α) + bj,i · l2(ei) · sin(φi + α) if α ∈ [αj, αj+1] (1)
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where αk+1 = α1 + 2π and {aj,i, bj,i | 1 ≤ j ≤ k, 1 ≤ i ≤ n} ⊂ {+1,−1}. Since
l2(ei) and φi are constants we can conclude (from (1)) that there are some numbers cj and
dj, (j = 1, 2, . . . , k) such that

Per1(P, α) = cj · cosα + dj · sinα for α ∈ [αj, αj+1], j = 1, 2, . . . , k (2)

(αk+1 = 2 · π + α1). Obviously,

cj =
n
∑

i=1

l2(i) · (aj,i · cosφi + bj,i · sinφj) and dj =
n
∑

i=1

l2(ei) · (−aj,i · sinφi + bj,i · cosφj),

for j = 1, 2, . . . , k.

Note 1 For any angle αp ∈ {α1, α2, . . . , αk} ⊂ [0, 2π] there is an edge eq, 1 ≤ q ≤ n such
that after the rotation for the angle αp the edge eq becomes parallel to one of coordinate axes.
Some of the angles {α1, α2, . . . , αk} can be coincident.

Two examples displayed on Fig. 9 (b) and Fig. 10 (b) illustrate that Per2(P, α) behaves as
described by (2).

4.2 Analysis of Per2(R(P, α))

The construction of optimal rectangles which include a polygon P is already well studied in
the literature – and various approaches exist [9, 13]. A related problem is the determination
of the diameter of a given polygon P , and a very simple algorithm was presented in [16].
The diameter of P is defined to be the greatest distance between parallel lines of support of
P . A line L is a line of support of P if the interior of P lies completely to one side of L.
A pair of vertices is an antipodal pair if it admits parallel lines of support. Preparata and
Shamos’ algorithm generates all antipodal pairs by a procedure which resembles rotating
a pair of dynamically adjustable parallel support lines once around the polygon P . This
idea is generalised in [22] where two orthogonal pairs of line supports (called orthogonal
calipers) are formed around the polygon solving several geometric problems. What is im-
portant for us is that the same procedure can be used here in order to obtain the intervals
[βi, βi+1], i = 1, 2, . . . ,m for which four vertices of P (more precisely, four vertices of CH(P )
since Per2(R(P, α)) = Per2(R(CH(P ), α))) forming two pairs of antipodal points belonging
to the boundary of R(P, α) remain the same for α ∈ [βi, βi+1]. That further implies that
Per2(R(P, α)) is of the form

Per2(R(P, α)) = gi · cosα + fi · sinα for α ∈ [βi, βi+1], i = 1, 2, . . . ,m, (3)

and βm+1 = 2 · π + β1.
We refer to Fig. 6 for an illustration. Let δ1 be the angle between the positively oriented

x-axis and the edge [AB]. Also, let δ2 = min{6 (JBC), 6 (KDE), 6 (GFL), 6 (HGI)} (in a
situation as in Fig. 6, δ2 = 6 (KDE)).

If the line l(I, J) is chosen to be a support line then B,F and D,G are the antipodal pairs
which determine two orthogonal pairs of line supports: l(I, J), l(L,K) and l(J,K), l(I, L).
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Figure 6: An illustration that Per2(R(P, α)) is of the form described by (3).

If the support line l(I, J) is rotated into a new position around the vertex B the pairs B,F
and D,G remain antipodal until the rotation γ angle varies from 0 to δ2 (see Fig. 6).

For γ ∈ [0, δ2] the width of the minimal rectangle which includes P varies from l2([FF ′])
to l2([FF ′′]), more precisely this width is

l2([FF ′])·cos(φ+γ) = (l2([FF ′])·cosφ)·cos γ + ((−1)·l2([FF ′])·sinφ)·sin γ for γ ∈ [0, δ2].

Since l2([FF ′]) and φ are constants which do not depend on γ, and by noticing that an
analogous expression can be derived for the height of such a minimal rectangle we have
proved that Per2(R(P, α)) can be expressed as in (3).

Two examples displayed in Fig. 9(a) and Fig. 10(a) illustrate that Per1(R(P, α)) behaves
as described by (3).

Note 2 For any angle βi ∈ {β1, β2, . . . , βm} ⊂ [0, 2π] there is an edge ei, 1 ≤ i ≤ m of
CH(P ) such that after the rotation for the angle βi the edge ei becomes parallel to one of
coordinate axes.

4.3 A procedure for C(P ) Computation

By using results from the previous two sub-sections, we can prove a useful theorem which

shows that C(P ) can be computed by comparing the values of
Per2(R(P, γ))

Per1(P, γ)
when γ belongs

to a finite number point set consisting of no more than 5 · n points, where n is the number
of vertices of P .
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Theorem 3 The convexity measure C(P ) of a given given n-gon P can be computed as

C(P ) = min

{

Per2(R(P, γi))

Per1(P, γi)
| i = 1, 2, . . . , l

}

,

where {γ1, γ2, . . . , γl} is the set union of the sets {αj | i = 1, 2, . . . , k} and {βi | i =
1, 2, . . . ,m} which are defined in (2) and (3).

Proof. Let γ1 < γ2 < . . . < γl be the ordered sequence of angles from the set union {αj | i =
1, 2, . . . , k} ∪ {βi | i = 1, 2, . . . ,m} (obviously l ≤ k+m ≤ 5 · n), where αj (1 ≤ j ≤ k) and
βi (1 ≤ i ≤ m) are determined as in (2) and (3), respectively. Further, from (2) and (3)

Per2(R(P, γ))

Per1(P, γ)
=

g̃i · cos γ + f̃i · sin γ
c̃i · cos γ + d̃i · sin γ

for some constants c̃i, d̃i, g̃i, f̃i for γ ∈ [γi, γi+1] and for i = 1, 2, . . . , l.
The first derivative

(

g̃i · cos γ + f̃i · sin γ
c̃i · cos γ + d̃i · sin γ

)′

=
f̃i · c̃i − g̃i · d̃i

(c̃i · cos γ + d̃k · sin γ)2

together with Per1(P, γ) = c̃i · cos γ + d̃i · sin γ > 0 shows that
Per2(R(P, γ))

Per1(P, γ)
does not

have any local extrema inside all intervals (γi, γi+1) where i = 1, 2, . . . l, and consequently it
reaches its minimum at one of the points from {γi | i = 1, 2, . . . , l}. [[]]

The previous theorem shows that there is a trivial procedure for computing the new
convexity measure of a given n-gon in an O(n2) time. Namely, it is enough to take the
minimum among a finite number of values

Per2(R(P, γ1))

Per1(P, γ1)
,

Per2(R(P, γ2))

Per1(P, γ2)
, . . . ,

Per2(R(P, γl))

Per1(P, γl)
.

Also, we note that this minimum can be obtained if the ratio
Per2(R(P ))

Per1(P )
is computed for

all choices of coordinate system such that one of coordinate axes is parallel to one of edges
of the polygon P or one of the edges of CH(P ). The examples from Fig. 9(c) and Fig.

10(c) verify the proven statement that
Per2(R(P, α))

Per2(P, α)
has no local extrema on the defined

intervals (γi, γi+1), for 1 ≤ i ≤ l.

5 Further Analysis, Comparison and Examples

This section contains several examples with synthetic data in order to illustrate applicability
of the new convexity measure. It is divided into four subsections. The first two subsections
are related to the initial examples: P (h) and T (t, h) from Fig. 2. The third subsection
shows an example when the new measure gives no acceptable results. The fourth subsection
compares the boundary based convexity measures C and C3. Situations where the new
measure C is advantageous over C3 are pointed out.
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5.1 The Graph of C(P (h))

The polygon P (h) is defined in Fig. 2, while its measured convexity C(P (h)) as a function of
h is given on Fig. 7. It is easy to check that the minimal measured convexity is obtained in

the limit case h = 0 when lim
h→0

C(P (h)) =
2

3
holds. Starting from h = 0 the function C(P (h))

monotonically increases from 2
3
and reaches the maximum C(P (h)) = 1 for h = 1 when P (1)

coincides with a square.

0.2 0.4 0.6 0.8 1
X

0.2

0.4

0.6

0.8

1

Y

Figure 7: The measured convexity C(P (h)) monotonically increases from 2
3
to 1, as h varies

from 0 to 1.

5.2 Convexity Measure of T (t, h)

Taking now T (t, h) from Fig. 2, the measured convexity C(T (t, h)) depends on two variables.
Let us consider the case when h is arbitrary small. Then, we can define the function C(T (t, 0))
as

C(T (t, 0)) = lim
h→0

C(T (t, h)

whose graph is given in Fig. 8. Obviously, C(T (t, 0)) is not a monotonic function. More
specifically, if t varies from 0 to 0.5 then C(T (t, 0)) monotonically decreases from the maxi-
mum value 1 (when T (0, 0) coincides with a square) to the minimum value 0.8 reached for
t = 0.5, i.e., C(T (0.5, 0)) = min

t∈[0,∞)
C(T (t, 0)) = 0.8. The measured convexity C(T (t, 0)) mono-

tonically increases on the interval t ∈ (1
2
,∞). On this interval C(T (t, 0)) does not reaches

the maximum, but for a large enough t the function C(T (t, 0)) is arbitrarily close to 1, or
more precisely

lim
t→∞

C(T (t, 0)) = 1.

The last equality can be seen as desirable. Fig. 9 and Fig. 10 illustrate the results of the
subsections 4.1, 4.2, and 4.3. For two chosen values t = 0.35 and t = 0.5 they display the
graphs of the three functions whose form was studied there.

5.3 An Example of Unsatisfactory Measurement

We showed in Section 1 that area based methods such as C2(P ) are not sensitive to huge
defects on the shape’s boundary if they have little impact on the area. While the proposed

13
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Figure 8: The measured convexity C(T (t, 0)).
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(a) Per2(R(T (0.35, 0), α)
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(b) Per1(T (0.35, 0), α)
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(c) Per2(R(T (0.35,0),α)
Per2(T (0.35,0),α)

Figure 9: Graphs showing the behaviour of Per2(R(T (t, h), α)), Per1(T (t, h), α), and
Per2(R(T (t,h),α))
Per1(T (t,h),α)

, when α varies from 0 to 2π with fixed t = 0.35 and h → 0.

method C(P ) rectifies this anomaly there are of course situations when it produces poor
results, as shown in Fig. 11.

Since

min
α∈[0,2π]

Per2(R(Pn,m, α)) = 2 · (n+m) and max
α∈[0,2π]

Per1(Pn,m, α) = 4 · (n+m)− 4

and because a lower bound (derived as follows)

C(Pn,m) = min
α∈[0,2π]

Per2(R(P, α))

Per1(Pn,m, α)
≤ n+m

2 · (n+m)− 2

is reached for α = 0, it can be concluded that

lim
(m+n)→∞

C(Pn,m) =
1

2
.

The previous equality could be acceptable for m = 2 or m = 3 and n → ∞, but it is
reasonable to expect that the convexity of such a shape for large m and n should be close
to 1 – as it is estimated by C1(Pn,m), C2(Pn,m), and C ′

2(Pn,m). Note that C3(Pn,m) =
1√
2
.
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(c) Per2(R(T (0.5,0),α)
Per2(T (0.5,0),α)

Figure 10: Graphs showing the behaviour of Per2(R(T (t, h), α)), Per1(T (t, h), α), and
Per2(R(T (t,h),α))
Per1(T (t,h),α)

, when α varies from 0 to 2π with fixed t = 0.5 and h → 0.
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Figure 11: Pn,m has the measured convexity C(Pn,m) =
m+n

2·n+2·m−2
.

5.4 Comparison Between Boundary Based Measurements

In this subsection we compare C(P ) and C3(P ) which are both boundary based convexity
measures. As mentioned they are expected to be more sensitive to large boundary defects
than the area based measures.

With two examples we will illustrate that the new measure C(P ) is more sensitive than
C3(P ). By the way, such an estimate follows from the definitions as well. Namely, Definition
4 says that all shapes with the same convex hull and the same Euclidean perimeter have
the same measured convexity. It implies, as an example, that the measured convexity of
polygons Q(t, h → 0) and G(α, h → 0) does not depend on t and α respectively. That is,

C3(Q(t, h → 0)) =
2

3
for any t ∈ (0, 1) and C3(G(α, h → 0)) =

2

3
for any α ∈ (0,

π

2
).

However, the C measure can differentiate between shapes with the same convex hull and
Euclidean perimeter. Referring again to Fig. 12, it can be easily derived that C(Q(t, h →
0)) = 2

3
independently of t, but if C is applied to the polygon G(α, h → 0) then C(G(α, h →
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Figure 12: (a) C(Q(t, h)) = C3(Q(t, h)) = 2/3 for any t ∈ (0, 1) if h → 0. (b) C(G(α, t))
strongly depends on α, while C3(Q(t, h)) = 2/3 for all ∈ (0, 1) and h → 0; (c) The graph of
C(G(α, h)) when h → 0.

0)) strongly depends on α. The graph of C(G(α, h → 0)) when α ∈ (0, π/2) is given in Fig.
12(c).

Note that the new convexity measure can be applied to shapes whose boundaries consist
of several polygonal lines (see Fig. 13), i.e., to the shapes which are unions or set differences
of polygonal areas. From the viewpoint of practical applications it means that it is possible
to measure the convexity of shapes with holes. The perimeter of such shapes is defined to
be the sum of the length of all boundary lines.
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Figure 13: The estimate C(Sα) < C(S0) (if α 6= 0) is more appropriate than the equality
C3(Sα) = C3(S0) which holds for any α. The right figure displays the graph of C(Sα) for
α ∈ [0, 2π].

Let T1 and T2 be two isometric polygonal subsets of a given polygon P . Then the set
differences P \ T1 and P \ T2 have the same convexity measured by C3, i.e., C3(P \ T1) =
C3(P \ T2), for all isometric (moreover isoperimetric) T1 ⊂ P and T2 ⊂ P . But C(P \ T1) =
C(P \T2) is not guaranteed. Consider the example from Fig. 13. The boundary of the shape
Sα consists of two squares. The first one has the vertices (1, 1), (6, 1), (6, 6), and (1, 6) while
the second one is obtained by the rotating the square with vertices (2, 2), (5, 2), (5, 5), and
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(2, 5) for an angle α around the point A = (3.5, 3.5). The equality C3(Sα) = 5/8 holds for
any choice of α but the new convexity measure gives different values for non-isometric Sα

and Sβ. Moreover, C(Sα) reaches its maximum for α = k · π
2
, with k = 0, 1, 2, 3, its minimum

is at α =
π

4
+ k · π

2
, with k = 0, 1, 2, 3, which seems to be natural and which is in accordance

with the measure C ′
2.

6 Experimental Results

We start with a qualitative comparison between the two measures C and C2. Figs. 14 and 15
show 35 shapes ordered into decreasing convexity by the measures. To reduce the sensitivity
of C to noise, minor fluctuations have been removed by first simplifying the boundary using
Ramer’s [17] polygonal approximation algorithm. A threshold of maximum deviation equal
to three is used in all cases and the widths of the shapes are between 100–300 pixels.

First off, by manual inspection the results demonstrate that the new convexity measure
produces sensible results. Although a comparison of the rankings from C and C2 reveals many
similarities (as expected) some differences are also evident. It can be seen that C is stricter
than C2 regarding shapes that are roughly convex apart for relatively narrow indentations.
For example, the third, fifth, and seventh shapes in the first row in Figs. 15 score highly
according to C2 and lower according to C. Also evident, the more the shape is fragmented
by the intrusions the lower its score. In contrast, protrusions are penalised rather less by
C than C2, as shown by examples such as the tennis racket (third shape in the first row)
and the “L” shape (eighth shape in the first row) in Fig. 14. Shapes containing substantial
indentations and protrusions such as the music example (third last shape in the last row in
Fig. 14) are rated low by both measures.

For a second, quantitative test we perform classification of diatoms, which are unicellu-
lar algae found in water, and have applications in forensics, geology, ecological monitoring
etc. [5]. The mixed genera set from the ADIAC project was used, consisting of 808 contours
covering 38 taxa. The contours vary in size, containing between 134–1277 pixels. All are
processed as before by finding their polygonal approximations with a maximum deviation
of three pixels. Figure 16 shows an evenly sampled selection after ranking by decreasing
convexity according to C. Unlike C2 the measure C can also be applied to take interior detail
into account. In figure 17 the original images are shown in the first row, and below are the
boundaries combined with internal structure obtained by edge detection. Again, the shapes
are ranked by C, and a very different ordering is obtained compared to figure 16. Notion-
ally the internal structures are like infinitely thin cuts into the shape’s interior, and so the
diatoms with denser internal detail are assigned lower convexity values.

Next, classification of the diatoms into the 38 taxa was performed using Murthy et al.’s
oblique decision trees (OC1) [14] and 100-fold cross-validation. The first row of values in
table 1 shows the accuracies using C, C2 and C3 applied separately to the outer contour.
Classification was also carried out using C applied to the combined boundaries and internal
contours (as shown in figure 17) and also using the pair of C values obtained from just the
boundary data and also the combined data. Although for this classification task C has less
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1.0000 0.9757 0.9112 0.9057 0.9043 0.8648 0.8601 0.8516 0.8475

0.8036 0.7894 0.7488
0.7388

0.7218 0.6989 0.6893 0.6786 0.6729

0.6424 0.6312 0.6259 0.6074 0.5925 0.5778 0.5617 0.5503 0.5422

0.5070 0.4997 0.4692 0.4672 0.4053 0.3908 0.2752 0.2343

Figure 14: Shapes ranked by the C measure.

1.0000 0.9794 0.9725 0.9695 0.9376 0.8974 0.8836 0.8360 0.8324

0.8132
0.8107 0.7936 0.7854 0.7814

0.7805
0.7639 0.7574 0.7341

0.7308 0.7118 0.7028 0.6780 0.6730 0.6701 0.6679 0.6463 0.6283

0.5588 0.5561 0.5450 0.5191 0.5176 0.5076 0.4031 0.3288

Figure 15: Shapes ranked by the measure C2.
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Figure 16: Diatoms ranked in decreasing convexity by C applied to their boundaries.

Figure 17: Diatoms ranked in decreasing convexity by C applied to both their boundaries
and their internal contours. The top shows the original images, the bottom row shows the
input to C.

discriminating power than C2 when applied to the boundaries, its application to the interior
provides an independent set of shape measurements that enables the combination of the two
values to substantially improve the classification accuracy. The second row lists the results
obtained when an additional set of standard and recent shape measures1 was used by the
classifier along with convexity. Again an increase in accuracy is achieved using C applied
both internally and externally.2

As seen in figure 16 the diatoms have fairly smooth boundaries. To demonstrate the
sensitivity and effectiveness of C to indentations it is applied in the last example to desmids,
another type of algae. They are not as flat as diatoms, making fully in-focus images prob-
lematic, and so drawings are still extensively used by biologists for classification. As a small
scale classification task we have taken the drawings of the Micrasterias taxon from West

1The additional shape measures used were: circularity, ellipticity, rectangularity, triangularity [19] aspect
ratio, compactness, convexity, eccentricity, the first four rotation, translation, and scale moment invariants,
four rotation, translation, and scale moment invariants [20], the first three affine moment invariants [8].

2Fischer and Bunke [7] reported better accuracies than ours (in excess of 90%). However, they used diatom
specific boundary features (e.g. 10 descriptors for valve endings) and internal textural details (to capture
the diatom’s “ornamentation”). Moreover, by applying bagging they further increased the performance of
the decision tree classifiers.
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C(S) intr &
C2(S) bdry C3(S) bdry C(S) bdry C(S) intr C(S) bdry

Alone 17.82 12.50 13.99 21.78 43.69
Other Features 77.72 78.59 76.11 79.58 81.81

Table 1: Classification accuracies for 808 diatoms using the OC1 decision tree and 100-fold
cross validation. Measures were applied to the shape boundary (bdry) and interior (intr).

and West’s [23] comprehensive flora, and selected all nine species containing at least four
drawings. The data set is limited to 43 sample outlines, each containing 1000–10000 pixels,
with 4–7 drawings for each species. Although high resolution images were used, the narrow
indentations were still sometimes truncated during boundary extraction, complicating the
recognition task; an example of each species is shown in figure 18.

Classification into the nine species was carried out using OC1 as above, except that
leave-one-out testing was performed due to the small data set. As can be seen in table 2
the single convexity measures are not sufficient for discrimination. Combining pairs of con-
vexity measures brings a significant improvement, and emphasises that the area-based and
perimeter-based measures provide complementary information. Using C2(S) and C(S) to-
gether provided the best result with 55.81% accuracy. Incorporating C3(S) as well provided
a relatively small gain: combining the three measures achieved 58.40% accuracy. Of course,
in order to gain higher accuracies a larger training set and a larger set of shape measures
would be necessary.

C2(S) C3(S) C(S)
C2(S) 37.21 48.84 55.81
C3(S) – 25.58 16.28
C(S) – – 18.60

Table 2: Classification accuracies for 43 desmids using the OC1 decision tree and leave-one-
out cross validation.

Figure 18: Examples of Micrasterias desmid boundaries.

7 Concluding Remarks

In this paper a new convexity measure has been proposed for describing shapes. In contrast
to the most common approach (the ratio of the area of the shape to the area of its convex
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hull) it is based on the shape’s boundary perimeter rather than its area. Theoretical and
experimental analysis shows that it performs well. Compared to area based approaches it is
more sensitive to deep indentations into shapes, especially if they are thin (i.e. of negligible
area).

Moreover, compared to the boundary based convexity measure C3 it gives better results if
applied to shapes with holes or additional internal edges. Namely, while the relative position
of the holes or edges inside the shape has no effect on the convexity measured by C3 they have
an impact on the convexity measure proposed here. That provides a significant advantage
in shape representation.
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