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Subspace Clustering via Good Neighbors
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Abstract—Finding the informative subspaces of high-dimensional datasets is at the core of numerous applications in computer vision,
where spectral-based subspace clustering is arguably the most widely studied method due to its strong empirical performance. Such
algorithms first compute the affinity matrix to construct a self-representation for each sample using other samples as a dictionary.
Sparsity and connectivity of the self-representation play important roles in effective subspace clustering. However, simultaneous
optimization of both factors is difficult due to their conflicting nature, and most existing methods are designed to address only one
factor. In this paper, we propose a post-processing technique to optimize both sparsity and connectivity by finding good neighbors.
Good neighbors induce key connections among samples within a subspace and not only have large affinity coefficients but are also
strongly connected to each other. We reassign the coefficients of the good neighbors and eliminate other entries to generate a new
coefficient matrix. We show that the few good neighbors can effectively recover the subspace, and the proposed post-processing step of
finding good neighbors can be complementary to most existing subspace clustering algorithms. Experiments on five benchmark datasets
show that the proposed algorithm performs favorably against the state-of-the-art methods with negligible additional computation cost.

Index Terms—Spectral-based subspace clustering, post-processing, good neighbors, sparsity, graph connectivity.
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1 INTRODUCTION

ODELING high-dimensional data is a critical issue in
M computer vision [1]-[4]. High-dimensional data is usually
distributed in multiple low-dimensional subspaces, and numerous
subspace clustering methods [5] based on iterative optimization,
algebraic operators, statistical analysis and spectral clustering [6]
have been developed. This paper proposes a post-processing
technique that refines the recent spectral-based subspace clustering
(SBSC) methods.

Traditional SBSC algorithms aim to disentangle a specified
number of low-dimensional subspaces of the data space. They
first calculate the similarity among all instances and then conduct
spectral clustering on the affinity graph [6]. The key step of SBSC
methods is to compute the coefficient matrix Z by solving the
following self-representation optimization problem:

mZin L(XZ,X)+ M| Z|¢ st diag(Z) =0. (D
where X denotes the dataset, and A is the trade-off parameter.
Here, the first term reconstructs each sample from other sam-
ples, whereas the second term introduces regularization of the
coefficient matrix. Different &’s (including £y, ¢1, {2, £~ or the
nuclear norm) lead to different properties of the reconstruction,
such as sparsity (subspace-preserving) and connectivity [6]-[8].
Such a coefficient matrix can be interpreted as a “similarity
matrix”, where each entry reflects the similarity of two samples.
Therefore, a block-diagonal structure [9] is expected so that the
intra-subspace samples are densely connected in the affinity graph
and the inter-subspace samples are disconnected.

However, it is hard to achieve both benefits within a single
model. {5 or nuclear norm-based regularization leads to a dense
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coefficient matrix [10]. Although the connectivity within sub-
spaces is guaranteed, the coefficients of the inter-subspaces are
usually non-zero. Thus, the subspace-preserving property, i.e., no
connections among inter-subspace samples, is not satisfied [11]. In
contrast, the £y and ¢; norms lead to a sparse reconstruction [10].
While a sparse construction enforces the subspace-preserving
property of a data matrix, the connectivity within each subspace
cannot be guaranteed [12]. To optimize both properties, several
recent algorithms use a mixed norm for the regularization term
in (1), e.g., trace Lasso [11] and elastic net [10], to interpolate be-
tween the £1 and /5 norms adaptively. Nevertheless, these schemes
do not perform consistently well on different applications.

To achieve a better trade-off between the sparsity and con-
nectivity constraints than that in previous work, we propose a
post-processing technique for the coefficient matrix derived from
recent state-of-the-art methods [5], [10], [13]-[16]. We prune
the weak connections in the self-representation system based on
robust heuristics, which substantially increases the sparsity while
preserving the connectivity. Peng et al. [17] show that represen-
tations based on linear projections with different regularizations
(e.g., {1, 2, {~ and nuclear norms) preserve the property of
intra-subspace projection dominance (IPD), i.e., the coefficients
for the intra-subspace points are larger than those for inter-
subspace points. However, simply preserving larger coefficients of
Z does not guarantee the connectivity of each subspace [12], [18].
Therefore, in this paper, we propose using the good neighbors
with key connections to guarantee the latent connectivity with as
few connections as possible. Here, a good neighbor is a neighbor
(with high similarity) with several common neighbors inside the
local neighborhood.

Accordingly, in this paper, we propose to find good neighbors
based on the coefficient matrix derived from recent SBSC meth-
ods. Figure 1 shows the main steps of the proposed approach for
finding good neighbors in the subspace clustering (FGNSC). We
first generate the initial coefficient matrix by means of an off-
the-shelf grouping algorithm that preserves the invariance of the
projection. That is, when two data points are close, the computed
similarity is strong. Next, we find good neighbors for each sample
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Fig. 1. Main steps of the proposed FGNSC algorithm. We first organize the data matrix X from input image dataset I. Then, we compute the
initial coefficient matrix Z from X according to (1). Using Algorithm 1 with Z, we obtain the matrix of good neighbors A/. Then, Z* is computed
by assigning new coefficients to the good neighbors and eliminating the other values. Here, Z* maintains both the sparsity and connectivity, as it
preserves few non-zero elements with strong connections. Lastly, we apply the classic spectral clustering for the final segmentation result £. (a)
Calculating (1). (b) Finding good neighbors, as shown in Algorithm 1. (c) Generating Z* by computing (7). (d) Conducting spectral clustering.

that induce the key connections within the subspace. Given the
collection of good neighbors, we update the coefficient matrix by
updating all the connections among good neighbors and pruning
all other connections. In this manner, we obtain a new sparse
and subspace-preserving coefficient matrix and theoretically prove
that the newly constructed graph has satisfactory connectivity.
Similar to the existing methods [6], [19], the spectral clustering
algorithm [20] is used for segmentation in the final step.

The contributions of this paper are summarized as follows: 1)
We find good neighbors for each sample and define a novel metric
for evaluation. We theoretically prove the subspace-preserving
property and the connectivity of the updated graph. 2) Based
on the good neighbors, we propose FGNSC, which is a post-
processing technique that can be integrated with recent subspace
clustering methods. 3) Extensive experimental results on five
benchmarks demonstrate that the FGNSC algorithm performs
favorably compared to the state-of-the-art methods.

2 RELATED WORK

Data clustering, especially SBSC, has been extensively studied
in past decades [21]-[27]. The main characteristic among SBSC
algorithms [28], [29] is the self-representation optimization, which
learns the coefficient matrix with different properties, i.e., sparsity
and connectivity, based on different regularizations. While some
schemes exploit sparsity by applying ¢; or £y minimization [30],
[31] in (1), others produce strong connectivity with a dense
coefficient matrix using £o or nuclear regularization [7]. Closely
related to this work are the methods that aim to bridge the
gap between both properties [10], [11], [18] using mixed norms.
Recently, various post-processing methods [17], [32] are proposed
to further enhance the sparsity, but do not guarantee connectivity.

Sparsity. £y and ¢;-based subspace clustering methods aim to
compute a sparse and subspace-preserving representation for each
data sample. Elhamifar and Vidal [5] propose the sparse rep-
resentation by incorporating the ¢; norm in (1). The generated
coefficient matrix recovers the subspace-preserving property but
may not satisfy graph connectivity if the dimension of the sub-
space is greater than three [12]. Yang et al. [8] present a sparse
clustering method with a regularizer based on the ¢y norm by
using the proximal gradient descent method. Numerous alternative
methods have been proposed for ¢y minimization while avoid-
ing difficulties due to non-convexity, e.g., orthogonal matching
pursuit [33] and nearest subspace neighbor [31]. The scalable
sparse subspace clustering by orthogonal matching pursuit (SSC-
OMP) method [15] heuristically determines a given number of

positions in the coefficient matrix that should be non-zero and then
calculates the entry based on self-representation among subsets.
However, this general pairwise relationship does not accurately
reflect the sample correlation, especially for data pairs in the
intersection of subspaces [34]. As a result, these positions may
be incorrectly assigned, and the connectivity within each subspace
cannot be guaranteed.

Connectivity. An excessively sparse coefficient matrix leads to
unsatisfactory clustering results if the non-zero elements do not
contain sufficient connections within each subspace [12]. There-
fore, numerous methods have been developed for preserving more
correlation information but with less sparsity [9], [35], [36].

Low-rank clustering methods [16], [37], [38] incorporate the
nuclear norm in (1) to generate a block-diagonal solution with
dense connections. However, the nuclear norm does not enforce
subset selection well when noise exists, and the generated co-
efficient matrix is too dense to be an efficient representation.
In [13], the least squares regression (LSR) method is used to
model highly correlated data by minimizing the Frobenius norm.
Furthermore, the smooth representation (SMR) [14] scheme fo-
cuses on the invariance of the projection from the data space to
the representations. As the LSR and SMR methods lack sparsity,
the dense coefficient matrix retains the connections of the inter-
clusters, which affects the clustering results.

Bridging the Gap. Both sparsity and connectivity play important
roles in spectral clustering. Therefore, several methods have been
developed to address both issues in a single model [18], [39]-
[41]. You et al. [10] have recently proposed to balance the
subspace-preserving and connectivity properties using elastic net
regularization. Both a theoretical justification and a geometric
interpretation of the trade-off between subspace-preservation and
connectivity are presented [10]. Similarly, the correlation adaptive
subspace segmentation method proposed by Lu et al. [11] takes
data correlation into account by using the mixed norm of trace
Lasso, which adaptively interpolates between the #1 norm and the
{5 norm of Z. Nevertheless, the structure of the data correlations
depends on the data matrix, and trace Lasso is not effective for
model selection.

Post-Processing. The L2-graph method proposed by Peng et
al. [17] preserves the given number of top values of each column
in the coefficient matrix according to the intra-subspace projec-
tion dominance. Although the sparsity and subspace-preserving
properties can be guaranteed, some samples may be assigned to
other subspaces due to the lack of connections. Pan et al. [42]
propose to robustify the shape interaction matrix (RSIM) using
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a normalization operation based on singular vectors. Similarly,
the reweighted sparse subspace clustering (RSSC) method [32]
approximates the £y norm minimization problem by using the ¢,
norm and iteratively reducing the penalty on large coefficients.
Although the RSSC method improves the sparsity by relaxing
the £y norm, intra-subspace samples may not be connected in the
affinity graph. In this paper, we preserve the connections over
good neighbors, which not only retain high correlations but also
induce key connections among samples within each subspace. The
proposed algorithm optimizes the latent connectivity among each
subspace while satisfying the subspace-preserving property.

3 PROPOSED ALGORITHM

Subspace clustering assumes the self-representation property, i.e.,
each sample can be reconstructed by a linear combination of other
points in the dataset [43]. As a result, x; can be represented as
x; = Xz;,s.t.,2z; = 0, where the data matrix X is considered
to be a self-representative dictionary, and z; = [214, 22i, - * , 2N
contains the coefficients of the reconstruction. The goal of the self-
representation system is to represent each sample using only the
intra-subspace samples.

However, given an arbitrary subspace &, the number of sam-
ples (ns) is always larger than the intrinsic dimension (dg) of the
subspace. Therefore, to reconstruct each sample, the model must
select ds samples from ng candidates, which is not unique in
general [43]. Meanwhile, the samples can be distributed near the
intersection of multiple subspaces in real applications, which may
introduce redundant or incorrect connections.

In this paper, we propose a post-processing technique to
optimize both the sparsity (subspace-preserving property) and
the connectivity of the self-representation system. Please find a
summary of all the notations in the supplementary material.

Definition 1. (Subspace-Preserving Property) The coefficient
matrix Z derived from (1) satisfies the subspace-preserving prop-
erty if and only if z;; = 0 for all x; € 8 and x; ¢ S, where S
denotes an arbitrary subspace.

Definition 2. (Connectivity) A graph G = (V, E) is connected
if we have:

l

1””‘”’1'1 X H lviﬂ_”’iul x1
i=1

V’Ui ,Uj e (2)

'vil v = 1

where i € R'=2 contains the indices of the samples that lie on the
path between v; and v, | denotes the length (number of samples)
of the path, 1 is an indicator function and < indicates that the
two vertexes are connected [44].

Note if we have | = 2, the graph G is fully connected.
The connectivity property among a set of intra-subspace samples
ensures a connected component in the affinity graph G [12].

Problem 1. (Pruning Erroneous Connections) Assume that
the coefficient matrix Z satisfies the intra-subspace projection
dominance property [17]. The goal of the pruning process is
to preserve the fewest connections in the affinity graph while
satisfying both properties in Definition 1 and 2.

3.1

Peng et al. [17] have proved the intra-subspace projection domi-
nance property of the self-representation in (1) for £ = 1,2, 00,

Good Neighbors

3

etc., which indicates that the coefficients over intra-subspace
samples are likely to be larger than those over inter-subspace
samples. However, Z may not be symmetric. Specifically, x; may
not necessarily choose @; in its sparse representation, even if x; is
represented by a linear combination of points including x; [43].
Therefore, we introduce the symmetric nonnegative affinity matrix
W as

3

to guarantee that the nodes x; and x; are symmetrically con-
nected. Similarly to [17], [28], we first collect the samples with
the top 7 coefficients in w; for a;, where the parameter 7 is empir-
ically determined from the experiments discussed in Section 4.2.

1
W =2(2+2|"),

Definition 3. (n-neighbors) For each sample x;, its n-neighbors
(constructing the set Ny(x;) € RY*") are defined as follows:

n
Ny(@:) = {x;}]_; = argmax y _ wi]. @
J j:1

The definition of 7)-neighbors is similar to the work [45],
which preserves the max v entries in w; (v < 1 < ngs, where
n is the number of samples in subspace S). Since a larger
w;; usually reflects a higher similarity between x; and x; and
d < 7y < ng, such a pruning process guarantees the sparsity and
subspace-preserving properties of the self-representation. How-
ever, it does not consider the connectivity property, where intra-
subspace samples may not form a connected component in the
affinity graph [10]. Simply considering the max -« edges for each
sample may fail to handle the noise corrupted data where wrong
connections are preserved since the max edges are sensitive to
noise and outliers. Therefore, the model in [45] may over-segment
the samples.

To achieve both the sparsity and connectivity properties, in this
paper, we define the good neighbors of each sample that induce the
key latent connections in a graph. For each sample, we preserve
7 good neighbors from the n-neighbors (1 > -y) rather than the v
largest entries of w;, where the connectivity within each subspace
is enhanced (see Section 3.4).

Definition 4. (Good Neighbor) Given the n-neighbors of x;,
ie, N, (x;), x; is a good neighbor of x; if there are |1 samples
{zj, 1L, C N,(x;) that satisfy:

7
[11een, @, =1 5)
=1

where |1 < 1 and © € R¥ is the set of indices.

Basically, a good neighbor is defined as a neighbor with at
least 4+ common neighbors inside the local neighborhood. It is
considered as a maximally sparse and connected neighborhood
relationship where the sparsity (subspace-preserving property) and
connectivity are analyzed in Section 3.3 and Section 3.4, respec-
tively. The exploration of good neighbors provides complementary
information when handling the noise corrupted data, which gen-
erates a more robust self-representation with both sparsity and
connectivity properties.

In the remainder of this paper, we use N' € RN to
determine the collection of good neighbors, where N is the
number of data samples. v and p are used to control the sparsity
and connectivity, respectively. If there are fewer than -y candidates
that satisfy the condition in (5), we consider the candidates with
the largest coefficients as the relaxed good neighbors.
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Algorithm 1 : FGN

Input: Z = [z1,--- , zN] SV 1,

1: Compute the affinity matrix W by (3);

2: Initialize N € RY*V with zeros;

3: fori=1: N do

4: Compute the 7-neighbors N, (x;) = {x}, }/_; by (4);

c RNXN

5: m =1,

6: fori=1:ndo

7: Compute s;; for x;, € N, (x;) using (6);
8: if s;; > p & m < -y then

9: Nl = Ni Ux;,;

10: m=m+1;

11: end if

12: end for

13: if m < ~y then

14: N =N;U{&},_, where {Z},_,, have the largest
~ — m similarity in N, (x;).

15: end if

16: end for

Output: Good neighbor matrix N .

Algorithm 2 : FGNSC
Input: X = [z, - ,xzy] € RPN K 0, v, p.
1: Generate Z € RN*¥ via (1).
2: Compute the good neighbor matrix N Using Algorithm 1.
3: fort=1: N do
4: Compute z7; in Z* using (7).
5
6

: end for
: Let W* = £(|Z*| +|Z*|") and compute the segmentation
from W* by spectral clustering [20].
Output: Labels of samples £ € R,

3.2 Finding Good Neighbors for Subspace Clustering

Based on the good neighbor matrix A/ derived from Definition 4,
we propose the FGNSC method for clustering. The main steps for
finding good neighbors (FGN) are summarized in Algorithm 1.
Given the collection of IV data samples {a; } Y, that lie in a union
of K subspaces, the FGN method first computes the coefficient
matrix Z via an off-the-shelf optimization function in (1). Then,
a symmetric nonnegative affinity matrix W is obtained via (3).

For each sample «;, i € [1,2,---, N], we aim to find its
~ good neighbors that satisfy Definition 4. We first generate its
n-neighbors N, (z;) € R" by (4), where we set 7 > +y for the
pruning process. The samples in IV, (x;) are the candidates for
the v good neighbors of ;.

To determine whether ; € N, («;) is a good neighbor of
x;, we design a greedy scoring scheme by traversing N, (x;) as
a relaxation of (5), which is NP-hard. We instantiate the process
by setting ;© = 1 and requiring that the path between x; and one
of its good neighbors must contain one different neighbor of x;.
Given ¢; € N,(xz;) and N, (x;) = {z;, }.1_;, we compute
the connection score s;; between x; and x; using the following
equation:

n
517 = ) LaieN,(@s,)- (©)
m=1

We consider x; to be a good neighbor of x; whenever s;; > L,
where p is the required common neighbors for a good neighbor.

4

Then, each row of AV is obtained by finding the first v candidates
from the corresponding 7-neighbors that satisfy the aforemen-
tioned requirement.

Spectral clustering may wrongly focus on keeping the stronger
connections in a graph [43], [46]. Therefore, based on the good
neighbor matrix generated from Algorithm 1, we normalize the
self-representation system where 0 < z;j < 1 and the sum of
each row equals 1. Specifically, we calculate a new coefficient
matrix Z* where each entry z; is computed by:

e ) (wig)/ (Zj wz‘j)’ ite; € Ni;

“ 0, if x; ¢ Ni.
Here, w;; is the ¢j—th entry of W, and W is the affinity matrix
computed by (3).

We then infer the subspace structure using the sparse repre-
sentations in Z*. Specifically, we first compute the new affinity
matrix by W* = 1(|Z*| + |Z*|"). Therefore, each node x;
connects itself to one of its good neighbors x; € N; with weight
%(\zfj\ + |2};1). We construct a new affinity graph according to
W *. Subsequently, the normalized cut method [20] is applied to
the graph in a way similar to that in [9], [36], [47] to generate the
final segmentation results. The main procedures of FGNSC are
summarized in Figure 1 and Algorithm 2.

The proposed FGNSC algorithm is a general post-processing
module that can be complementary to other spectral-based cluster-
ing algorithms, especially those developed based on dense coef-
ficient matrices. The FGNSC algorithm transforms the coefficient
matrix Z into a sparser matrix Z* with subspace-preserving
property, while simultanously preserving the connectivity within
each subspace based on the good neighbors of each sample. As a
result, Z* is more robust to noise, outliers or samples lying on the
intersection between two subspaces, which simultaneously prunes
erroneous connections and avoids over-segmentation.

)

3.3 Subspace-Preserving Property

The intrinsic requirement for the success of the SBSC methods
is that the optimization process recovers a linear representation
of each sample [43]. Specifically, the non-zero entries of the
representation z; should be related only to the intra-subspace
samples of x;.

Definition 5. (Intra-subspace projection dominance, IPD [17])
The IPD property of a coefficient matrix Z indicates that for all
ZTp, g € Sandxy, & S, we have z,q >2pk.

In other words, the coefficients among intra-subspace samples
are always larger than those among inter-cluster samples. Peng et
al. [17] have proved the IPD property of the coefficient matrix
Z derived by the £, {5 or nuclear norm-based linear projections,
where any noise or outliers are regarded as inter-subspace samples
when representing . Based on their results, we have the following
proposition with the same assumptions.

Proposition 1. The Z* derived from the proposed FGNSC satis-
fies the subspace-preserving property, as defined in Definition 1.

Note that the subspace-preserving property holds for the set of
n-neighbors which is a superset of the proposed good neighbors,
please find the detailed proof in the supplementary material.
As a result, the coefficient matrix Z* derived by the proposed
FGNSC algorithm satisfies the subspace-preserving property when
combined with most existing linear representation schemes.
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3.4 Connectivity

Conventional subspace clustering methods ensure the connectivity
of each subspace by preserving compact connections in the recon-
struction [10], [18], [48]. However, a dense graph may also contain
incorrect connections between the inter-subspace samples. In this
paper, we construct a connected graph satisfying Definition 2 for
each subspace with the least edges, where each edge induces
multiple latent connections among intra-subspace samples. In
addition, the pruning of edges between samples where x; ¢ N
also eliminates the erroneous connections among inter-subspace
samples.

Note the proposed method achieves a trade-off between the
sparsity and connectivity properties of the self-representation
except for the following two extreme and rare cases, i.e., 1) All
the N x~ good neighbors of A/ cannot be found; 2) The model
requires max(y, ) = n — 1 where all samples are compactly
connected. For the first case where each sample cannot find
any good neighbors, we choose an equal number of n-neighbors
derived by (4) for relaxation. As a result, the model is relaxed
to the sparsity-based one. For the second case, all entries of
Z* derived from (7) are non-zero. The model is thus relaxed to
the approaches aiming to enhance the connectivity using dense
connections.

To sum up, the new self-representation Z* reflects a balance
between the inter-subspace separation and the intra-subspace con-
nectivity. Since the subsequent steps of spectral clustering segment
the graph by correcting the erroneous connections in the affinity
graph [21], [46], which relies on both properties, the proposed
algorithm is expected to improve the clustering performance.

4 EXPERIMENTAL RESULTS

41 Setup

Evaluated methods. We compare the proposed FGNSC algo-
rithm with the state-of-the-art subspace clustering methods in-
cluding SSC (with the ADMM solver) [5], [43], spatSC [35], L2-
Graph [17], LSR [13], SMR [14], SSC-OMP [15], ORGEN [10],
RSSC [32], NSN [31], iPursuit [28] and RSIM [42]. We tune the
parameters for these methods to achieve the best results.

Datasets. We conduct the experiments on the extended Yale
B (EYaleB [49]), COIL-20 [50], MNIST [51], USPS [52] and
AR [53] datasets. The images are resized to p X q pixels to form
the data vectors @; € RP?, and concatenated together to form X.
Please refer to the supplementary material for more details.

Metrics. We evaluate all the methods using two widely used
metrics in clustering: clustering accuracy (ACC) and normalized
mutual information (NMI). In addition, we define the error rate NV,
of the good neighbors. Let g; be the set of intra-subspace samples
of x; in the ground-truth, and let 1;; be the j-th good neighbor
of ¢; (j € [1: 7], where 7y denotes the number of good neighbors
for each sample). We define NV, as

N
21',:1 Z;'/=1 ]'nij €g:
N X~

Ne=1- . ®)

where 1 is an indicator function. A smaller value of A, indicates
better performance.

5
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Fig. 2. Clustering performance with different v on the extended Yale B
dataset of 8 classes.

4.2 Parameters

For computational efficiency, we set ;4 = 1 in the rest of this
paper since the connections between samples become weaker as
the path length increases, which means that x; is considered to be
a good neighbor of x; if x; and x; have one common neighbor
(or equally, s;; > 1).

To optimize the connectivity of each subspace, we evaluate
the effect of v on a subset of 8 subjects from the extended Yale B
dataset. For each experiment, we assign the value of v € [3 : 12]
and obtain the curves, as shown in Figure 2. For v = [1,2],
ACC= [0.3073,0.8281] and NMI= [0.1148,0.7528], respec-
tively, which we omit from the figure for clarity.

The curves in Figure 2 indicate that the FGNSC algorithm
does not perform well with y={3,4}. When + is increased, the
FGNSC algorithm achieves better performance until reaching peak
performance at y=8. Therefore, we use y=8 and p=1 for the
rest of the experiments. Accordingly, we set 7 = 20 for (4) in
consideration of the balance between the computational efficiency
and the effectiveness for selecting v good neighbors.

4.3 Matrix of Good Neighbors

The coefficient matrices derived by the SSC-OMP [15] and
iPursuit [28] methods are computed based on the correlation of
neighboring data points in the data space. In this section, we
analyze the effects of A by comparing the SSC-OMP, iPursuit
and FGNSC methods.

We select images of N, subjects from the extended Yale B
dataset with N, € {3,5,8,10, 15,20, 25,30, 35,38} and v =
8 for all three methods. Table 1 shows the experimental results.
Overall, the FGNSC algorithm achieves an accuracy of more than
94% on all subsets, with an error AV, of less than 9%. By contrast,
SSC-OMP does not perform well. It achieves a clustering accuracy
of less than 60% on the set of 38 subjects with an error rate of
the neighbor matrix of 39.84%. The NMI scores show similar
performance with other metrics.

4.4 Affinity Matrix

We evaluate six clustering methods in terms of the affinity matrix.
Figure 3 shows the affinity matrices derived by the evaluated
methods. We conduct the experiments on the first three digits of
MNIST for a clear presentation. For each digit, we choose the first
300 images to construct the subset. Figure 3(f) shows the affinity
matrix derived by the FGNSC algorithm. This affinity matrix
is generated from the original coefficient matrix in Figure 3(b),
which is computed by the SMR [14] method. Note that the affinity
matrix in Figure 3(f) has better sparsity and the block-diagonal
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TABLE 1
Clustering results by the SSC-OMP, iPursuit and FGNSC methods on subsets of the extended Yale B dataset using NV, and ACC. Each column
shows the results on subsets with different numbers of subspaces. The FGNSC method achieves higher accuracy with lower N. on all subsets.

Metrics Methods 3 5 8 10 15 20 25 30 35 38
SSC-OMP [15] 20.09 25.73 23.44 31.23 30.46 37.12 38.74 37.32 41.30 39.84

Ne | iPursuit [28] 9.10 10.63 10.70 10.42 11.04 11.76 11.80 12.10 12.52 12.82
FGNSC 3.29 4.89 6.04 6.61 7.28 7.65 8.03 8.21 8.44 8.52
SSC-OMP [15] 94.32 85.03 78.41 72.22 71.29 59.13 54.74 61.62 51.84 57.44

ACC 1 iPursuit [28] 97.19 96.19 95.98 95.03 95.47 93.41 92.77 91.55 91.62 83.68
FGNSC 99.34 98.61 97.86 97.44 96.60 96.09 95.72 95.45 95.41 94.24

(®)
Fig. 3. Affinity matrix W derived by six methods on the first three digits of the MNIST dataset. (a) Affinity matrix by LSR [13] with an accuracy of
64.89%. (b) Affinity matrix by SMR [14] with an accuracy of 83.11%. (c) Affinity matrix by SSC-OMP [15], which is sufficiently sparse enough but
does not have the block-diagonal property. (d) Affinity matrix by ORGEN [10] with an accuracy of 53.22% and an NMI of 0.4912. (e) A variant of (b)
that simply preserves the top v entries for each column, resulting in an accuracy of 81.33% and an NMI of 0.4835. (f) Affinity matrix by FGNSC with
an accuracy of 98.11% and an NMI of 0.9140.

() ©

property, both of which are important for spectral clustering,
leading to an accuracy of 98.11% and an NMI of 0.9140. In
Figure 3(e), we preserve the top ~ entries for each column
of the affinity matrix in Figure 3(b) to compare the FGNSC
algorithm with the L2-Graph in [17]. More erroneous connections
are introduced in Figure 3(e) than in Figure 3(f) since several
digits may lie at the intersection of the subspaces, and incorrect
combinations for the representations may be generated.

4.5 Comparison to the State-of-the-Art Methods

Table 2 shows the run-time of the FGNSC algorithm and other
methods using subsets from the extended Yale B dataset on a
machine with a 2.93GHz CPU and 32 GB RAM. Table 3 shows
the clustering results in terms of the average ACC and NMI.
Overall, the proposed FGNSC consistently performs favorably
compared to the state-of-the-art methods on five benchmarks.

On the extended Yale B dataset, the FGNSC algorithm per-
forms well in terms of ACC and NMI. The ACC of the FGNSC
algorithm is more than 94%, and the NMI is more than 0.9 on
all subsets. The SMR method achieves an accuracy of 96% with
N, = 8, but the performance declines as the dataset increases
in size. The main reason for the performance degradation is that
the coefficient matrix Z derived by the SMR method has many
redundant connections, so the spectral clustering performs poorly.
The iPursuit method also achieves an NMI of more than 0.9 on
all subsets; however, it requires more than 400 seconds on the
whole dataset. The FGNSC algorithm takes 90 seconds to process
the entire extended Yale B dataset with 38 classes, but most of
the run-time is spent computing the initial Z matrix by the SMR
method, which uses 75 seconds.

The FGNSC method performs well on the COIL-20 dataset,
especially for N, = 5, with an average accuracy of more than
99% and an NMI of more than 0.98. For the COIL-20 dataset, the
intra-subspace samples are close (as a result of dense sampling
with clean backgrounds), while the inter-subspace samples are
distinct (as a result of diverse object classes). This structure of
the dataset benefits the proposed post-processing technique.

(d (e) ®

The FGNSC algorithm performs well on the MNIST dataset,
especially on the subset with three digits. However, the average
accuracy decreases to 75% for the whole dataset when N, = 10.
This decrease can be attributed to the fact that some handwritten
digits are similar (e.g., 3 and 8; 1 and 7). We note that the SSC-
OMP scheme performs worse, with the accuracy dropping from
97.64% (N, = 3) to 53.30% (N, = 10).

On the USPS dataset, the FGNSC algorithm exhibits a similar
performance trend to that on the MNIST set. The ORGEN scheme
performs better than the FGNSC method on the USPS dataset,
mainly because the performance of the SMR method is poor in
terms of the NMI (approximately 50% on all subset scales).

The accuracy of the ORGEN method is less than 26% on the
AR dataset, whereas the FGNSC algorithm achieves an accuracy
of more than 84%. The AR dataset is difficult to cluster because it
contains real-world face images. While the background is simple,
the face images are not aligned well. Most clustering algorithms
based on sparsity, e.g., SSC-OMP and SSC, do not perform well,
as the connections between samples are not extracted properly.
Overall, good neighbors can effectively be generated by the
FGNSC algorithm because the subspace structure can be accu-
rately reconstructed. This is also the main reason why the FGNSC
method performs well on all the evaluated datasets.

4.6 Combination with Other Subspace Models

In this section, we combine the proposed FGN method with
other subspace clustering methods, i.e., LSR [13], OSC [19],
spatSC [35] and LRR [16], rather than SMR [14]. In each ex-
periment, we first compute the initialized coefficient matrix Z by
each subspace scheme. The FGN method is then used to generate
Z*. Finally, spectral clustering is performed on both Z and Z*.
Table 4 shows the clustering results for all the evaluated methods.

The proposed post-processing module substantially enhances
the performance of the evaluated subspace clustering algorithms
with different representation terms. For instance, low rank rep-
resentation (LRR) [16]) minimizes the nuclear norm ||Z]|. to
generate a dense coefficient matrix Z, which results in an accuracy
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TABLE 2
Run-time in seconds (s) on the subsets of the extended Yale B database. On the entire extended Yale B dataset with 38 subjects, the FGNSC
algorithm takes 90 seconds, most of which is spent computing the initial coefficient matrix (75 seconds). The best and second best results are
shown in bold and underline, respectively.

# of ssc spatSC  L2-Graph  LSR SMR Ssc- ORGEN RSSC NSN iPursuit  RSIM  FGNSC
subjects  [5] [35] [17] [13] [14]  OMP[15] [10] 32] [31] 28] [42]
8 3830 0.20 0.08 0.98 0.64 036 0.99 6.92 0.45 12.87 0.79 0.70
15 11850 0.84 0.28 2.02 328 1.06 1.92 17.44 129 26.51 5.12 3.71
30 658.52 4.90 224 9.08 30.61 3.17 4.69 83.29 7.93 256.59 56.23 37.45
38 1239.90 8.66 576 1793 7524 4.88 7.17 14739 13.78 42235 12232 91.73
TABLE 3

Clustering results of the comparative methods on five datasets: extended Yale B [49], COIL-20 [50], MNIST [51], USPS [52] and AR [53], where
each result is an average of fifty trails. The best and second best results are shown in bold and underline, respectively.

Dataset Scale Metric SSC spatSC L2- LSR SMR SSC- ORGEN  RSSC NSN iPursuit RSIM FGNSC
[5] [35] Graph [17] [13] [14] OMP [15] [10] [32] [31] [28] [42]
3 ACC 59.61 20.84 27.53 73.46 96.43 78.41 66.78 73.42 89.43 95.98 96.03 97.86
NMI 0.5518 0.1179 0.1927 0.6332  0.9270 0.5873 0.6333 0.6550  0.8013 0.9254 0.9318 0.9511
15 ACC 48.46 19.62 20.55 58.88 92.15 71.29 58.61 62.98 84.56 95.47 91.93 96.60
EYale B NMI 0.5594 0.2590 0.2127 0.5447  0.8885 0.6372 0.6166 0.6137  0.7767 0.9202 0.8869 0.9284
30 ACC 36.71 18.02 16.73 58.62 89.48 61.62 54.53 58.31 78.66 91.55 86.32 95.45
NMI 0.5211 0.3704 0.2603 0.5855  0.8774 0.6243 0.6291 0.6104  0.7705 0.9163 0.8236 0.9186
38 ACC 32.52 20.23 20.81 58.26 87.91 57.44 53.66 57.81 77.55 83.68 79.29 94.24
: NMI 0.5466 0.3806 0.3692 0.5917  0.8559 0.6054 0.6388 0.6152  0.7711 0.9072 0.7734 0.9084
5 ACC 66.01 69.97 49.18 72.51 85.43 82.39 84.73 68.11 85.81 85.42 84.21 99.23
NMI 0.6688 0.7296 0.4903 0.6639  0.7225 0.4996 0.8854 0.6323  0.8452 0.8378 0.8542 0.9814
COIL-20 10 ACC 56.46 59.44 31.93 63.70 80.83 77.54 75.07 64.55 85.32 76.21 82.13 96.13
NMI 0.6233 0.7293 0.4175 0.6402  0.6993 0.6632 0.8588 0.6555  0.8905 0.7883 0.8016 0.9414
20 ACC 50.39 51.25 23.75 57.43 75.49 67.36 75.56 59.72 81.94 73.47 76.96 90.07
NMI 0.7051 0.7082 0.3511 0.6296  0.5949 0.6552 0.8822 0.6563  0.8734 0.7788 0.7685 0.8901
3 ACC 71.39 79.10 73.35 77.44 89.11 97.64 78.76 38.68 38.65 37.82 78.75 97.96
NMI 0.5475 0.5260 0.5190 0.5275  0.6671 0.8961 0.6622 0.0097  0.0092 0.0066 0.7266 0.9046
MNIST 7 ACC 19.70 57.13 29.65 62.00 78.09 71.13 68.92 19.29 19.54 18.94 72.31 85.88
NMI 0.5336 0.5045 0.2755 0.5326  0.5345 0.5647 0.6790 0.0125  0.0145 0.0117 0.6803 0.7551
10 ACC 40.16 41.83 30.50 57.80 68.87 53.30 61.50 15.30 15.50 14.50 69.30 75.40
NMI 0.4872 0.4631 0.2516 0.5197  0.5195 0.4823 0.6463 0.0212  0.0168 0.0138 0.6642 0.6629
3 ACC 65.81 84.49 48.05 81.05 85.64 92.74 89.86 57.50 58.62 57.95 73.42 94.12
NMI 0.4435 0.6129 0.2401 0.6377  0.5164 0.7676 0.8242 0.2594  0.3253 0.2659 0.6892 0.7953
USPS 7 ACC 18.60 50.57 47.14 62.58 76.90 59.01 65.06 31.09 31.17 30.23 63.07 80.13
NMI 0.5295 0.4486 0.4785 0.5219  0.5160 0.3857 0.6625 0.3067  0.3002 0.2609 0.5438 0.6927
10 ACC 32.34 44.73 37.37 60.40 68.83 47.33 63.57 23.15 24.40 23.30 59.02 75.37
NMI 0.4814 0.4693 0.4233 0.5096  0.5136 0.3272 0.6782 0.2721 0.2628 0.2540 0.5548 0.6390
30 ACC 3291 32.92 47.14 76.21 81.26 30.37 25.25 68.09 23.12 66.88 7175 87.24
NMI 0.5241 0.5504 0.6029 0.7913  0.6021 0.3759 0.4313 0.7598  0.3696 0.7336 0.7042 0.8566
60 ACC 25.58 32.70 27.35 75.19 80.63 25.21 23.09 71.63 21.78 67.44 72.57 86.04
AR NMI 0.5162 0.5976 0.4373 0.8068  0.5602 0.4161 0.4825 0.8128  0.4321 0.7769 0.6843 0.8601
90 ACC 23.87 30.41 23.43 72.53 80.39 23.52 21.81 71.56 20.29 67.46 68.04 84.22
NMI 0.5367 0.6173 0.4240 0.7983  0.5090 0.4404 0.5036 0.8278  0.4668 0.7891 0.6330 0.8522
100 ACC 25.54 29.19 25.58 74.15 79.85 23.12 20.88 76.31 20.08 65.88 62.94 83.31
NMI 0.5393 0.6394 0.4920 0.8145 04755 0.4434 0.5054 0.8554  0.4756 0.7880 0.5875 0.8493

of less than 60% and an NMI of 0.6331 on the extended Yale B
dataset with 38 subjects. When combined with the FGN module,
this algorithm achieves an ACC of 82.85% and an NMI of 0.8891.
As the proposed FGN method preserves only the key connections
and eliminates noisy connections, it performs well with different
representation schemes.

5 CONCLUSIONS

In this work, we propose a post-processing technique FGNSC
manipulating the self-representations of subspace clustering to
exploit both the sparsity and connectivity properties within each
subspace. We find good neighbors for each sample by utilizing
the correlation information contained in the initial affinity ma-
trix rather than the input data space. The relationship of good
neighbors requires not only direct connections derived by pairwise
correlations but also latent connections induced by other samples
on the connected path. We then reassign the coefficients of the
selected good neighbors and eliminate other values such that the

good neighbors have greater opportunity to be segmented into the
same cluster. While recent methods focus on balancing the sparsity
and connectivity via different norms, the proposed FGNSC simply
refines their solution. Extensive experimental results demonstrate
the effectiveness and efficiency of the proposed algorithm com-
pared to state-of-the-art methods.
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