
to appear in European Symp. on Satellite Remote Sensing, 1994Parcel-based change detectionPaul L. RosinInstitute for Remote Sensing ApplicationsJoint Research Centre, I-21020 Ispra (VA), Italyemail: paul.rosin@jrc.itABSTRACTVarious methods for automatic change detection in multi-temporal LANDSAT-TM images are described. Incontrast to most previous work in change detection, which has operated at a pixel level, we operate at a parcellevel (within a minimum size of 25 Ha). This makes it easier to employ structural measures (e.g. based on edges,corners, and texture) as well as correlation methods since these approaches cannot be calculated at each pixelindependently. A neural network is trained to combine the di�erent change measures in an appropriate manner.1 INTRODUCTIONOne of the major applications of remotely-sensed data is change detection, due to the repetitive and frequentcoverage, and low cost compared to traditional methods such as ground survey and analysis of aerial photographs.Change detection is used to aid planning and management of land resources,2 and has been employed in manyapplications such as the monitoring of deserti�cation,20 forest defoliation,15 and urban development.8,12,26This paper describes methods for change detection to enable the automation (or at least semi-automation) ofthe revision of land cover maps that have been previously generated manually by photo-interpreters for theCORINE programme of the European Commission.25 Such a large scale project (involving approximately2.25 Mha) is slow and costly. Hence automated updating of the maps would be bene�cial for both economicand e�ciency reasons. Furthermore, manual revision is prone to subjectivity which can lead to widely varyingestimates of land cover change statistics. Automation provides a means for reproducability and consistency ofresults over the complete data set.Although there has been considerable research into automatic techniques for change detection they have tendedto be at the individual pixel level.23 Since the CORINE land cover maps only contain land cover parcels with aminimum size of 25 ha we wish to perform change detection at the parcel level. There is considerable di�erencebetween parcel and pixel based change detection. The higher spatial and spectral resolution of Landsat TM datacompared to MSS data increases class heterogeneity which is problematic both for per{pixel classi�ers13 andchange detection. The variations occurring at individual pixels will be smoothed out over the parcel, potentiallymaking parcel analysis more reliable. On the other hand, parcel analysis is less sensitive to local changes muchsmaller than the parcel size. For instance, depending on the change measure used, if half the parcel changessigni�cantly this can produce a similar overall change value as if the total parcel had changed slightly. Thereforeit may be necessary to keep some account of the variation in the change measure within the parcel.1



2 DIFFICULTIES IN CHANGE DETECTIONWhen analysing image sequences there are many factors that can produce temporal variations that can bepotentially confused with signi�cant changes (due to land cover change). Examples of sources of spurious changeare di�erences in atmospheric conditions, sun angle, season, ground moisture, and sensor calibration, and themisregistration of the images. Many methods have been developed for change detection, some of which attemptto overcome the above problems. However, it is not clear which is the best since di�erent comparisons producecon
icting results.23 Indeed, the most common method of change detection is still the simple di�erencing ofindividual pixel spectral values, which in many cases works almost as well as more complex methods.23 However,one of the problems with directly di�erencing spectral values is that the resulting di�erence does not take intoaccount the location of the spectral values in feature space. Thus a large change in spectral value may not signifyland cover change if both the new and old spectral values are within range of the class's spectral signature.Methods that �rst transform the image such as vegetation indexes or texture measures overcome this problemto some extent, but are liable to their own problems. Alternatively, an obvious approach that directly takes thelocation of class signatures in feature space into account would be to �rst classify both images and then 
agas areas of change those pixels whose classi�cation changes between dates. In practise this approach performsrelatively poorly since it is sensitive to errors in the classi�cation process - an error in the classi�cation of eitherimage is likely to produce an error in the estimated change.17,23Rather than attempt to �nd a general change measure that is universally applicable, it is more practical tocombine several di�erent change measures so that the limitations of each are o�set by the others' strengths. Forinstance, when attempting to detect rural to urban land cover changes, it was found that combining spectral andtextural information was bene�cial.8,12 Each measure in itself was ambiguous; for instance some �elds exhibiteda similar coarse texture to urban land cover, while direct classi�cation of urban land cover proved problematicdue to its spectral homogeneity. Combining both types of information produced a higher accuracy than eitherone on its own. A similar improvement in detecting change in vegetation cover by combining albedo and texturewas noted by Frank.72.1 Image RegistrationIn his survey on change detection Singh23 noted that one of the limitations of most current techniques forchange detection is that they require precise registration between the images being compared. Since it is oftendi�cult to obtain the necessary accuracy in registration, the change detection methods are liable to produceerrors, particularly in areas of rapid change such as edges.We solve this problem by allowing for some pre-speci�ed amount of spatial variation between the images. Theimages are searched within this neighbourhood for the best match. This variation between the images A and Bcan be constrained to an X and Y translation, so that the average pixel di�erence Dk within region Rk isDk = 1jRkj min(i;j)2W X(x;y)2Rk jAx;y � Bx+i;y+j jwhere Ax;y is the pixel value of image A at (x; y), jRkj is the size (number of pixels) of Rk, and W is theneighbourhood of allowable spatial variation (e.g. W = f0;�1g speci�es a 3 � 3 window). Alternatively, sinceother more general deformations may be present between images, each pixel is allowed to move independently ofits neighbouring pixels. Although the resulting estimated spatial o�sets are unlikely to be realistic, this methodis only intended as a simple approximation to solving the image misregistration. With this alternative de�nitionthe average pixel di�erence within Rk becomesDk = 1jRkj X(x;y)2Rk min(i;j)2W jAx;y � Bx+i;y+j j



3 CHANGE MEASURESIn section 2 we discussed some of the limitations of measures for change detection. Instead of restrictingattention to a single measure we shall use a combination of several. Some of these are standard measures oftenused in change detection (e.g. di�erence in vegetation index) whereas others are more novel (e.g. average mutualinformation).It is noteworthy that parcels enable various global measurements and comparison techniques to be appliedthat are not available or are inappropriate at a pixel level. For instance, whereas we will use the entropy ofa parcel as a means of assessing change, the entropy of a single pixel is �xed and therefore provides no usefulinformation. Likewise, the rank correlation between two single pixels is uninformative. Thus we can dividethe types of change measures into two categories: 1) global, such as the change in parcel entropy, and 2) localdi�erences of pixel values. The global measures are only applicable to parcels while the local ones are calculatedat each pixel independently and then some function of these local values (e.g. average) is taken over the parcel.Although many of the following measures could be applied to the full multi-band Landsat TM images, forcomputational convenience we have restricted most comparisons to the �rst principal component.3.1 Change in entropyOne of the texture measures calculated by Haralick9 using his gray-level co-occurence method is entropy.Entropy quanti�es the amount of information or uncertainty present in a data set. It can also be considered asre
ecting the complexity of the data and therefore should distinguish between textured and untextured areas.The gray-level co-occurence method requires a pre-set square window as well as (possibly multiple) pre-set o�setsand orientations between pixel pairs. Instead we shall calculate entropy directly from the pixel values within theregion so that the measure uses exactly those values within the region and avoids unnecessary parameters. Theentropy of region Rk in image A is calculated asHA(Rk) = NXi=1 pAi log �pAi �where there are N distinct pixel values within Rk in image A, and pAi is the proportion of the i'th pixel value inRk in image A. The absolute change in entropy in Rk between images A and B is then:�E(Rk) = jHA(Rk) �HB(Rk)j3.2 CorrelationA common method for assessing the similarity of two data sets is to determine the correlation between them.There are many di�erent methods for calculating correlation coe�cients. These typically vary in terms of thetype of correlation being tested (e.g. linear) as well as their robustness in the presense of noise. We will try severalof them. The �rst is the cross-correlation coe�cient which is commonly used in image processing for templatematching, and is de�ned a: r(Rk)m;n = P(x;y)2Rk Ax;yBx+m;y+nqP(x;y)2Rk A2x;yP(x;y)2Rk B2x+m;y+n



where (m;n) is the (X;Y ) o�set between the two images. Thus, a rigid translation of the regions of up to �wpixels can allowed by choosing the o�set which produces the best correlation:r(Rk)max = max wXm=�w wXn=�w r(Rk)m;n!An alternative method for calculating correlation is Spearman's rank correlation. It does not assume any apriori parametric model of the data or noise and compares the ranks of corresponding values relative to each dataset rather than their actual values. This can greatly improve the robustness of the technique since the correlationcoe�cient is independent of o�sets and scalings applied uniformly to either (or both) data set, as well as othermore complex transformations that preserve the ordering of the data sets. The consequent disadvantage of suchnon-parametric methods is their low e�ciency, i.e. the estimated correlation value has a relatively high variance.The Spearman's rank correlation is calculated as1� 6(D2 + T )n3 � nwhere n = jRkj is the size of the region, D2 is the summed squared di�erence in ranks, and T is a correctionfactor to take tied ranks into account. D2 = X(x;y)2Rk (Gx;y �Hx;y)2where Gx;y and Hx;y are the ranks of the pixel values at (x; y) in Rk in images A and B respectively, andT =Xj �j3 � j12 � tjwhere tj is the number of ties in the ranking involving j values.The standard version of the Spearman rank correlation assumes correct correspondence between the data sets,i.e. perfect image registration. We can augment the correlation method to include either of the two correctionsfor misregistration described in section 2.1. Thus, when allowing a rigid shift between images the rank correlationis calculated as D2 = min(i;j)2W 0@ X(x;y)2Rk (Gx;y �Hx+i;y+j)21Aand the unconstrained distortion asD2 = X(x;y)2Rk� min(i;j)2W (Gx;y �Hx+i;y+j)2�3.3 Average Mutual InformationAlthough the Spearman rank correlation is una�ected by many complex transformations it still expects theranks of corresponding values to be the same. Here we suggest a method for comparing two data sets that relaxeseven that expectation. The average mutual information (AMI) index quanti�es the similarity between two datasets based on the degree that one set of values predicts the other,1,6 so that change is inversely proportional tothe AMI. AMI = MXi=1 NXj=1 p (bi; aj) log�p (bi j aj)p (bi) �



where there are fai; i = 1 : : :Ng and fbi; i = 1 : : :Mg distinct pixel values in Rk in images A and B respectively;p (ai) and p (bi) are the proportion of pixel value ai in image A, and bi in image B. Thus, if the spectral valueswithin an area consistently change over time, this will produce a high AMI value, equivalent to no change. Anexample of such an event in which it might be desirable to consider spectral di�erences as suggesting non changeis a �eld imaged at di�erent seasons. Spectral di�erences would arise from phenological changes; the extremecase would be to compare a crop �eld before and after harvesting.However, a limitation of the technique is that it is based on nominal values. Since the spectral values arecontinuous (although quantised) this means that AMI ignores much of the available information. For instance,even if there are many mappings between the images of a pair of values such as 5 ! 138, if a similar mappinglike 5! 137 was infrequent it would register as a substantial change.3.4 Structural InformationA limitation of most classi�cation methods is that they analyse each pixel independently based on its spectralvalues, without incorporating any spatial information. A similar criticism can be applied to most methods forchange detection with the exception of those that measure di�erences in textural properties.8,12 Wang andHowarth suggested using various structural measures such as edge and junction density for the classi�cation ofremotely sensed images.24 We take a related approach and incorporate some structural information into thechange detection process.This is done by �rst detecting spatial features such as edges and corners, and then propagating the in
uenceof these features over the whole image using the multi-scale salience distance transform (MSSDT).21 The MSSDTis an extension of the standard distance transform (DT)3 in which each pixel in the image is assigned the(approximate) distance to the nearest feature in the image. The DT has several weaknesses which the MSSDTrecti�es. First, the DT requires a binary feature map. However, when dealing with features such as edges andcorners it is generally di�cult to automatically choose a good threshold value. Second, an appropriate scalefor feature detection must be known beforehand. The salience DT overcomes the �rst restriction by operatingdirectly on the unthresholded feature map. It weights the distance to the feature by the strength of the feature,so that a short distance to a weak feature may be considered less signi�cant than a longer distance to a strongedge. This e�ectively reduces the in
uence of noise without requiring an arbitrary cut-o�. The problem of scaleis overcome by performing feature detection at several scales. The salience DT is applied to each feature map,and the results at multiple scales are then combined by addition.E�cient algorithms are available for calculating the DT which only use local operations. Similar algorithmsare also available for the salience DT and MSSDT. The iterative parallel version is described below, and the serial(\chamfer") algorithm operates in a similar fashion. The initial distance map d0x;y is created containing values of0 at feature pixels and 1 (or an appropriate large value) elsewhere. The initial feature map m0x;y contains themagnitude of the feature pixels. At each iteration, at every pixel, weighted distances within a 3�3 neighbourhoodare calculated using the mask wa;b centred on the pixel, and the minimum distance is propagated to the centrepixel. The most common weights are 3 for horizontal and vertical weights, 4 for diagonal weights, and 0 forthe central value. In the salience DT this weighted distance is converted into a salience value by dividing by thecorresponding feature magnitude. This process of propagating salience values from feature pixels can be describedas a0; b0 = arg min(a;b)=�1:::1 di�1x+a;y+b + wa;bmi�1x+a;y+b !!dix;y = di�1x+a0;y+b0mix;y = mi�1x+a0 ;y+b0where a0; b0 is the location in the window producing the minimum salience, mix;y and dix;y are the edge magnitude



and distance values propagated to (x; y) at iteration i, and the �nal salience map at iteration f (after whichadditional iterations make no further changes to mix;y and dix;y) is sx;y = dfx;ymfx;y .The result of the salience DT is that every pixel in the image is assigned a salience value. This has the advantageover methods for quantifying structure based on averaging feature values within a pre-set window8,10,24 that itdoes not require any parameters. Moreover, propagation of values is preferable to blurring since it does not distort�ne features. Structural measures are calculated for each region by averaging the salience values of the pixelswithin the region, and change is estimated by the di�erence in the structure measures between images.We apply the MSSDT to features maps of the image consisting of edges and corners. Edges are generatedusing the Canny edge detector.4 The �rst derivative is calculated for each image band independently, and then theresponses of all the bands are combined by performing a maximum operation at each pixel. Finally, non-maximalsuppression is performed on the combined edge response image. Corners are detected using the Kitchen/Rosenfeldoperator.14 Although a multi-band version could have been implemented in a similar method to the Canny edgedetector, for simplicity it was applied to the 1st principal component instead. Both edge and corner detectionwas performed at four scales of Gaussian smoothing with � = f1; 2; 4; 8g.3.5 Pixel Di�erencingFinally, we also include standard pixel spectral di�erencing and vegetation index di�erencing. There havebeen many di�erent vegetation indices proposed in the literature. However, it has been shown that most of themare highly correlated with each other.19 We use the Normalised Vegetation Index (NVI) which is de�ned for eachpixel in a Landsat TM image as NV I = band 4� band 2band 4 + band 24 COMBINING THE CHANGE MEASURESHaving de�ned the set of change measures in the previous section (listed in table 1) it now has to be determinedhow they can be combined in the best manner. To perform this task we use a multi-layer perceptron neuralnetwork.22 A set of training data containing examples of change measures derived from areas of change and nochange is provided, and the network learns the best combination of the measures that discriminates the changeusing the back-propagation algorithm. This is a similar approach to the direct multidate classi�cation methodsexcept that they generally operate on the spectral vales directly using, for instance, a maximum likelihoodclassi�er,17 or apply cluster analysis to discriminate between change and no change areas in feature space.16TYPE OF CHANGE MEASURE METHODstructural information entropy di�erenceMSSDT edge di�erenceMSSDT corner di�erencecorrelation cross correlationSpearman rank correlationaverage mutual informationpixel di�erencing spectral di�erencevegetation index di�erenceTable 1. Change measures



We previously mentioned that some changes in the image may be due to external factors such as sensorcalibration, atmospheric conditions, etc. The spectral variations associated with these factors should be ignored,although their magnitude may be greater than that of real (i.e. signi�cant) change. Most previous work in changedetection has been restricted to a binary classi�cation of change or no change.23 There are also other types ofchanges, more directly associated with land cover change, that it may also be desirable to ignore for certainapplications. For instance, as discussed previously, certain changes in vegetation may be unimportant. On theother hand, it may be of interest to specify more precisely some particular types of change, so that for instance,forest to cleared ground can be distinguished from rural to urban, etc. Using simple pixel di�erencing it wouldbe di�cult to distinguish between di�erent types of change. However, with the large feature vector composedof the change measures described in section 3 it is now feasible. In the extreme case, n classes are detected ineach image, and all combinations of possible land cover change are calculated, forming an n�n change matrix.18However, a more restricted set of interesting types of change is probably su�cient (and more reliably detected).17In training the network we have distinguished the following changes:� Vegetation ! vegetation. This class includes areas of vegetation with no change as well all types of unim-portant vegetation change that are not to be distinguished.� Urban ! urban (1). This class includes urban areas containing no (signi�cant) change.� Urban ! urban (2). This class covers signi�cant changes (development) in urban areas.� Vegetation ! urban.� Urban ! vegetation. 5 RESULTSAlthough all the techniques described above are operational, only preliminary results can be described. Thisis because we currently have little multi-temporal ground truth. The parcel based approach requires substantialareas of image change for training since each parcel becomes just a single training element. Moreover, the needfor large amounts of training data is compounded by the many change measures being used, since increasing thedimensionality of the feature space increases the amount of training data required.11 Therefore it is di�cult bothto train the network with any con�dence in its generalisation abilities, and to test the system.The application of the structural salience measures are demonstrated on a 200 � 200 portion of the imageshown in �gure 1. The �rst principle component is shown in �gure 1a, and the edges detected at two scales(� = 1; 4) are shown in �gure 1b&c. It can be seen that there is considerable noise at the �ne scale. Althoughthis is suppressed at the coarser scale, �ne detail has also been removed, and boundaries have been distorted.The MSSDT calculated at the four scales is shown in �gure 1d (log mapped for visualisation). The main featuresare emphasised while a reasonable spatial �delity has been maintained. Figure 1e shows the log mapped MSSDTof the corners which overcomes the problems of noise and scale in a similar manner.6 CONCLUSIONSWe have suggested using a large number of measures to increase the reliability and discriminative powerof change detection procedures. This would enable a variety of classes of change to be identi�ed rather thanjust the usual binary change/no change classi�cation provided. A number of new change detection measures andcomparison techniques have been proposed. The former incorporate spatial information in the form of propagatedstructural measures and region complexity measured by its entropy. The various comparison techniques di�er in



(a) 1st principal component (b) Thresholded Canny edges � = 1
(c) Thresholded Canny edges � = 4 (d) MSSDT of edges

(e) MSSDT of corners Figure 1: MSSDT of structural features
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