IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 1

Fast Rule Identification and Neighbourhood
Selection for Cellular Automata

Xianfang Sun, Paul L. Rosin, Ralph R. Martin

Abstract—Cellular automata (CA) with given evolution rules
have been widely investigated, but the inverse problem of extract-
ing CA rules from observed data is less studied. Current CA rule
extraction approaches are both time-consuming, and inefficient
when selecting neighbourhoods. We give a novel approach to
identifying CA rules from observed data, and selecting CA neigh-
bourhoods based on the identified CA model. Our identification
algorithm uses a model linear in its parameters, and gives a
unified framework for representing the identification problem
for both deterministic and probabilistic cellular automata. Pa-
rameters are estimated based on a minimum-variance criterion.
An incremental procedure is applied during CA identification to
select an initial coarse neighbourhood. Redundant cells in the
neighbourhood are then removed based on parameter estimates,
and the neighbourhood size is determined using a Bayesian
information criterion. Experimental results show the effectiveness
of our algorithm, and that it outperforms other leading CA
identification algorithms.

Index Terms—Cellular automata, rule identification, neigh-
bourhood selection.

I. INTRODUCTION

ELLULAR Automata (CA) are a class of spatially and
C temporally discrete mathematical systems characterized
by local interaction and synchronous dynamical evolution [1].
CAs were proposed by Von Neumann and Ulam in the
early 1950s [2] as models for self-replicating systems. Since
then, CA properties have been widely investigated, and CAs
have been applied to simulating and studying phenomena in
complex systems [3], [4], in such diverse fields as pattern
recognition, physical, biological, and social systems [5].

Currently, much research still focuses on analysing CAs
with known or designed evolution rules and using them in
particular applications such as urban modelling and image
processing. However, in many applications, formulating suit-
able rules is not easy [6], [7], [8]: often, only the desired
initial and final patterns, or the evolution processes, are
known. To be able to apply a CA, underlying rules for the
CA must be identified. Some research already exists on this
topic, but various fundamental problems remain. In particular,
rule identification is typically computationally expensive, and
neighbourhood selection is also a tricky problem.

CA rule identification goes back to Packard et al. [9],
[10], where genetic algorithms (GAs) were used to extract
CA rules. Many later works also use GAs, or more general
evolutionary algorithms, as a tool to learn CA rules [11], [12],

Manuscript received XXXX

The authors are with the School of Computer Science & Informatics,
Cardiff University, 5 The Parade, Roath, Cardiff CF24 3AA, UK. E-mail:
{xianfang.sun, paul.rosin, ralph.martin} @cs.cardiff.ac.uk.

[13]. However, such approaches are time-consuming, while if
the population size and number of generations are insufficient,
suboptimal results are produced. Other parameters also need
to be chosen carefully. Recently, Rosin [8], [14] considered
training CAs for image processing, using the deterministic
sequential floating forward search method to select rules. This
approach is faster than those based on evolutionary algorithms,
but is still slow.

Adamatzky [15], [16] proposed several approaches to ex-
tracting rules for different classes of CA without resorting to
evolutionary algorithms. For deterministic cellular automata
(DCA), he starts with a minimal neighbourhood comprising
only a central cell, collects data associated with the neigh-
bourhood, and then extracts rules directly from that data. If
contradictory rules occur, the radius of the neighbourhood
is increased, data are re-collected, and rules are re-extracted
from the enlarged data. This is repeated until no contradictory
rules are generated, or a maximum neighbourhood size is
reached. For probabilistic cellular automata (PCA), a similar
procedure is used, but with different output and stopping
criteria: it stops when a sequence of outputs, which are state
transition probability matrices, has converged as a Cauchy
sequence, or a maximum neighbourhood size or runtime has
been reached. Calculation is fast, but the final neighbourhood
may contain redundant neighbours if the target neighbourhood
is not symmetric about the central cell. Maeda et al. [17]
used the same approach as Adamatzky [16] to extract rules,
but with a heuristic procedure to remove redundant cells.
They further used a decision tree and genetic programming
to simplify the CA state transition rules. Unfortunately, their
technique can only deal with DCA. Also, their redundant cell
removing procedure requires costly re-collection of data and
re-identification each time a neighbourhood cell is removed.

Using parameter estimation methods from the field of sys-
tem identification, Billings et al. have developed a series of CA
identification algorithms [18]. While their early work also used
GAs for CA rule extraction [12], [19], [20], one of their main
contributions was to introduce polynomial models to represent
CA rules and an orthogonal least-squares (OLS) algorithm to
identify these models [19], [21], [22]. This makes CA rule
extraction a linear parameter estimation problem, allowing
faster solutions. Many new identification algorithms [23], [24],
[25], [26], [27], [28], [29] can also be used to solve the
estimation problem. Other contributions have been made for
neighbourhood selection, either as a by-product of the OLS
algorithm [19], [21], or based on statistical approaches [30]
or mutual information [31]. CA identification algorithms for
binary CA have also been extended to n-state CA and spatio-

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 2

temporal systems [32], [33]. The main drawback of these algo-
rithms is their inefficiency for CAs with large neighbourhoods.

Overall, speed is the major problem for most current CA
identification algorithms, coupled with inefficient neighbour-
hood selection. We show how to overcome these problems.
Our main contributions are (i) a fast identification algo-
rithm for extracting CA rules from input data, (ii) a simple
neighbourhood reduction method which can remove redundant
neighbours, or optionally remove non-redundant but insignif-
icant neighbours, and (iii) use of the Bayesian information
criterion (BIC) to determine optimal neighbourhood size.
Our algorithms are faster than prior algorithms, while our
neighbourhood selection method produces appropriate results
as demonstrated experimentally.

In the following, Section II introduces CAs, and presents
a unified identification model for both DCA and PCA. Sec-
tion Il describes a CA rule identification method based
on minimum-variance parameter estimation. Algorithms are
provided for cases with and without given neighbourhoods.
Section IV gives a method for deleting redundant cells from a
neighbourhood based on parameter estimation, and a neigh-
bourhood selection method based on the BIC. Section V
compares the time and space complexity of our algorithm
with others, while Section VI experimentally demonstrates the
effectiveness of our algorithms and validates the complexity
analysis and comparison. Section VII concludes the paper.

II. CELLULAR AUTOMATA AND IDENTIFICATION

This section briefly introduces cellular automata (CA) and
their identification. Basic concepts and notation used in this
paper are presented. For further background, see [1] and [4].

A. Cellular Automata

A CA can be described by a quadruple (C,S, N, f) com-
prising a d-dimensional cellular space C, an m-value state
space S, an n-cell neighbourhood N, and a cell-state transition
function f : S™ — S. The cells in C typically form a regular,
usually orthogonal, lattice, although 2D hexagonal lattices are
also encountered. Recently, irregular grid structures have also
been used to connect cells [34]. The cells have states normally
represented by the numbers {0, ..., m — 1}. The neighbour-
hood N of a cell consists of n cells which are usually spatially
close to the cell; sometimes, the cell itself is included in this
neighbourhood. The cell-state transition function f determines
the state of a cell at the next time step according to the current
states of the cells in its neighbourhood. All cells change states
synchronously at each time step, and the cell states evolve the
same function f at each time step.

Let x;(t) be the state value of cell ¢; at time step ¢, and
N;(t) = {zk(t) : ¢t € N;,;(I =1,...,n)} be the state values
of the cells in ¢;’s neighbourhood N; at time ¢. The state value
of ¢; at time ¢ 4 1 is given by

zi(t +1) = f(Ni(t)). (1)

Since the state set S is limited to m values, the cell-state
transition function f can be represented by a set of (m™) rules,

which are enumerated as:

if Nl(t) = {07 .. ,O},then l‘l(t —+ 1) = fo;
if N;(t) ={0,...,1},then z;(t + 1) = fi;

it N;(t)={m—1,...,m—1},then z;(t + 1) = frn_1.

The left-hand-side of each rule is used to match the pattern
of neighbourhood state values, while the right-hand-side gives
the corresponding new state. Each f; can be any value in S,
and is chosen according to the desired CA behaviour.

If all rules are deterministic, i.e. F' is deterministic, then
the CA is a deterministic cellular automaton (DCA). In real-
world systems, disturbances exist, and can cause uncertainty
in the transition rules. Thus some of the f; take values statis-
tically distributed in S. Such a CA is called a probabilistic
cellular automaton (PCA). Normally, the rules of a PCA
are represented by f; = {pjo,...,Pjim—-1)}, Where pj; is
the probability that the cell moves to state value k when its
neighbourhood has the pattern j. Adamatzky [15] has provided
algorithms for identifying {p,}.

However, in many cases, it is required to identify determin-
istic CA rules from data corrupted by noise, even though the
CA behaves as a PCA. An alternative way to express the rules
of a PCA is to decompose f; into a deterministic part and a
statistical noise term [20], giving

zi(t+1) = F(Ni(1)) + e(Ni(1)), 2)

where f(N;(t)) is a deterministic term and e(N;(t)) is a noise
term. The identification problem considered in this paper uses
the formulation in Eqn. (2).

B. Identification Problem

We now consider the problem of CA identification. Here,
we only consider CAs with binary states, so m = 2. The
spatial dimension of a CA does not actually matter, because
in the identification of CA rules, only the state values are used
for each state in their neighbourhood—the precise locations of
the neighbouring cells are not taken into account.

For a DCA, the state transition function can be represented
as

2" —1
zi(t+1) =Y QL) 3)
=0

where Qg (t) is the value of j* neighbourhood pattern defined
by

Ql(t) = [[V(). @)
=1

and bé is defined as the coefficient of 2/~! in j when j is
written as a binary number.

Note that for any state combination of {zl(t),(I =
1,...,n)}, only one pattern of {Q7(¢),7 =0,...,2" —1} has
value 1, and all others have value 0. 67 is either O or 1, and
67 = 0 represents the CA rule that when the neighbourhood
state combination is pattern Q7 (¢), x;(t + 1) takes value 0,
while 67 = 1 means that x;(t + 1) takes value 1.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 3

The identification problem for DCA is to determine the
parameters {67}, such that all collected data pairs {(z;(t +
1), N;(t))} are consistent with Eqn. (3). In principle, we need
at least 2™ collected data pairs in order to identify all the 2™
parameters corresponding to the 2" CA rules. However, in
practice, some neighbourhood patterns may never happen, so
less than 2™ parameters need to be identified, and fewer than
2™ data pairs may be available.

Following Eqn. (2), the analogue of Eqn. (3) for a PCA is

2" —1
mit+1)= > Q) + e(Ni(1)).)
=0

The identification problem for PCA is then to estimate the
parameters {67}, such that the variance of the noise term
e(Ni(t) = z5(t+1) — 32551 07Q] (t) is minimised.

Because DCA is a special case of PCA, we henceforth only
study Eqn. (5). Mathematically, the identification problem can
be formulated as

2" -1
{67} = argmin variance | z;(t +1) — Z Q) |, (©6)
=0

if we assume that the neighbourhood is known in advance.
If no a priori neighbourhood is known, a selection approach
must be used to determine a suitable neighbourhood.

Our approach to finding an optimal neighbourhood and CA
parameters (rules) is (i) to use an incremental neighbourhood
algorithm to select an initial coarse neighbourhood and simul-
taneously identify the parameters, (ii) to remove redundant
neighbours from this initial neighbourhood, and (iii) to remove
insignificant neighbours from the neighbourhood based on a
Bayesian information criterion (BIC).

III. RULE IDENTIFICATION

We now consider estimating the CA parameters {6’} from
collected data pairs {(z;(t+1), N;(t))}. A parameter estima-
tion algorithm for a CA with a predetermined neighbourhood
is first introduced, and generalised to an incremental algorithm
when the neighbourhood is not known.

A. Rule Identification with Known Neighbourhood

We first consider CA rule identification with known neigh-
bourhood. To solve Eqn. (6), we use the collected data pairs
{(z;(t + 1), N;(t))} to estimate the variance. This gives

T
{67} = argmin%zz

t=1 i=1

2
2" —1

zi(t+1) = > 0QI1) |
=0
j (7

where T is the number of time steps, C' is the number of cells,
and 67 is the optimal estimate of parameter #’. For notational
simplicity, we combine the two summations into one with K =
TC terms, and use y;, and Q, to represent z;(¢t+1) and Q? (t),
respectively. We can thus rewrite Eqn. (7) as

n_ 2
K 2" —1

N 1 .y
{93}:argmingz ykuWQfg) (8)

k=1 j=0

Now, 69, ., and _Qi canonlybeOor 1,and 02 =0, 12 = 1.
Furthermore, Q% 7. =0 for ¢ # j, so the right-hand-side of
Eqn. (8) leads to

A2() _izK _22"719ij 2
o\n) =g 2ik=1\Yk j=0 k 9)
K on_ 1 .
= % Zk:1 Yk — Zj:o 6777,
where 62(n) is the variance estimate when the neighbourhood

size is n, and 77 is the contribution of the 6/-related pattern
to the reduction of the variance:

1 K K
k=1 k=1

Writing g, to denote logical NOT of y, and using yx+yr = 1,
this can be expressed as

o1 (& K .
r=5 <Zkai —Zkai> :
k=1 k=1

The first sum is the number of occurrences when the ;"
neighbourhood pattern appears (@ = 1) with y, = 1, and
the second is the number with y; = 0 in all K data pairs.

Eqn. (9) shows that minimising 652(n) leads to an optimal
07 value of:

(10)

(1)

N 1, ifri >0,
0 = 0, ifrf <0, (12)
u, ifri =0,
where u can be either 1 or 0: as r; = 0, it does matter

whether 67 is 1 or 0, because the #7-related pattern makes
no contribution to the reduction of variance. Eqn. (11) shows
that r; = 0 implies that: either the pattern @, never appears,
or it appears as often with y; = 1 as with y; = 0 over all K
data pairs. Although we could simply set v = 0, we choose
not to fix it yet, as we can make good use of this freedom in
neighbourhood selection. Afterwards, we can then set u = 0
to simplify rule description.

B. Rule Identification with Incremental Neighbourhoods

The above works if the correct neighbourhood is known,
or an a priori neighbourhood is set. Otherwise, typically, a
large enough initial neighbourhood is chosen to guarantee
that the correct neighbourhood is included within it. After
identifying the CA rules, the neighbourhood is reduced using
some neighbourhood selection algorithm.

However, too large an initial neighbourhood will result
in excessive calculation. To avoid this problem, we use an
approach similar to that in [15] to incrementally build the
neighbourhood. Algorithm 1 describes our incremental algo-
rithm, but we first explain the basic idea behind it.

To begin with, we set a tolerance o2 for the variance esti-
mate 62(n). The tolerance can be considered as the maximum
rate at which the identified CA rules may produce results
different from the observed ones. For a DCA, a% should be
set to 0, while for a PCA, it should be set according to the
noise level. If the noise level is unknown, a very small value
should be used, to ensure that the correct neighbourhood is
included in the selected neighbours.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 4

Algorithm 1 Incremental Neighbourhood Algorithm
JMmax; k=1,...,K)

Input: o2 and {yk,mz} (n=1,...

Output: {0(n>, 2n)} (n € Namax;j =0,...,2" — 1)
Inltlallsatlon
Zk 1yk n—O,...,nmax)

n=0
while 7 < nmax and 6%(n) > Ko2 do

n=n+1

ri=0 (j=0,...,2""" —1)

for all k& do

Ly = L + 2”1’2
L, =7, +1
end for

fory-OtoQ”fldo
=1 = T
if r7 > 0 then
9]
I (n) = &Q(n) —rd
else if 77 < O then
0, =
else
92") = u {Use any value other than 0 or 1 to represent u
as a variable.}
end if
end for

%(n) =

end while

&*(n)/K

Using a small 0% will result in low consistency between the
observed data and the CA rules acting on a small neighbour-
hood, so to obtain high consistency between the data and CA
rules, a larger neighbourhood is often required, increaseing
the computational cost. More consideration is given to the
selection of 02 in Section VI-A

The incremental approach starts from a neighbourhood of
size n = 1, and estimates the parameters and variance using
the algorithm described in Section III-A. It adds one neighbour
on each iteration until 62(n) < o2 or we reach a stipulated
maximum neighbourhood size n = nyax. Usually, the central
cell ¢; is selected first, and when a new cell should be added
to the neighbourhood, the cell closest to ¢; but outside the
neighbourhood is selected. If this does not result in a unique
choice, any can be used.

We now explain Algorithm 1. We denote by G{n) the ;"

parameter, ¥y the k" evolved state value, an) . the k" value
of the j" neighbourhood pattern for the neighbourhood of
size n, x! the k** state value of the ‘" neighbour.

Initially, n = 1, and we set Q(()l)k = T}, and Q%l)k = 1}.
07,y and 6, are calculated using Eqn. (12), while 5°(1) is
calculated using Eqn. (9) and 77 is calculated from Eqn. (11).

When a new neighbour is added, the number of neighbour-
hood patterns is doubled from 2" to 2"*1. As a result, 6%(n+
1) and 9€n +1) Must be recomputed. The simplest approach is
to recompute them ab initio from Equations (9), (11), and (12).
While such an approach is taken by [15], this is inefficient.
Instead, we use a recursive approach to calculate the parameter
and variance estimates.

) . . L on—1
Define Qén)k‘ = Q‘Zn—l)kxk” and_ Q‘Z:)Qk
27~1 — 1. Clearly, an)k

n
j=> a2
=1

The algorithm uses a label L for each data pair to code its
neighbourhood pattern and yy, state, calculated by Ly = yi +
2j with j being defined by Eqn. (13). Note that L, = 2j
and L = 25 + 1 imply ngzn)k = 1 and kazn)k =1,
respectively. The numbers of occurrences, 5; and 75, , of
Ly = 2j and Ly, = 2j+1 are used in Algorithm 1 as equivalent
to the numbers of occurrences of gijzn) . = land kafn) p =
1, when using Eqn. (11) to calculate 7.
Substituting Eqn. (13) into Ly and decomposing, we get

= Q%n—l)kxz
for 3 =0,..., =1 only if

13)

n—1
L= (ye + »_ 2'af) + 2"a},
=1

(14)

which provides a basis for recursively calculating Lj. Algo-
rithm 1 uses this recursively with for increasing neighbourhood
size n. This allows us to find L; for all neighbourhoods of
sizes 1 to n using the same amount of computation as for just
the single neighbourhood size n.

IV. NEIGHBOURHOOD SELECTION

Algorithm 1 determines a large initial neighbourhood and
CA parameter values. Typically, this neighbourhood contains
some redundant neighbours, which can be removed from the
neighbourhood without changing the CA behaviour. Further
neighbours, which are not redundant but have very small
effect on the CA behaviour, may also be removed to make
the model parsimonious. We next discuss approaches for
removing neighbours from the neighbourhood (Section IV-A)
and optimal neighbourhood selection (Section IV-B).

A. Neighbourhood Reduction

We first consider how to eliminate redundant neighbours,
then discuss how to remove non-redundant neighbours.

Let j be an integer having 1 as its A" bit in its binary
expression, and let j5 have the same binary expression as j
except that its A*" bit is 0. From the definition of neighbour-
hood pattern in Eqn. (4), we get the merged pattern

Q" (1) = Q1) + Q1 (1) = [[t (=i 1)),
I#X\

5)

which means that the state value of the A" neighbour is not
included in the merged pattern QJ m(t) for the given j. Suppose
that for all those #7 = 0 we have 675 = 0 or u, and for all
those #7 = 1 we also have 7% = 1 or w. Then, when the
values of 67 and 67s are substituted into Eqn. (5), its right-
hand-side sum does not include the A** neighbour according
to Eqn. (15). Thus, the A\th neighbour is redundant, and can
be excluded from the neighbourhood without changing the
variance estimate: 6%(n — 1) = 62(n).

In some cases, especially for PCA, in which model parsi-
mony is important, we may wish to eliminate a neighbour even

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 5

though it is not redundant. Suppose we want to eliminate the
A" neighbour. Then all pairs of ;' and j;"" patterns need
to be merged. If #7 = @5, or either or both of them are
u, then the pair can be simply merged using as parameter
value 69m = 67 for the merged pattern Q/™ (). If 67 # 6ix,
the merged pattern contributes to the reduction of variance
an amount 7/ = rJ 4 75, and the optimal parameter value
fim can be obtained by substituting 7/ into Eqn. (12). The
variance estimate %(n — 1) is recalculated using Eqn. (9) by
replacing 67 and r/ with 6= and rim, respectively. Elimi-
nating a non-redundant neighbour will increase the variance:
6%(n —1) > 62(n).

B. Bayesian Information Criterion for Neighbourhood Selec-
tion

Normally, the true neighbourhood is unknown and we need
to select an optimal neighbourhood: in the DCA case, the
selected neighbourhood should have the smallest size while
keeping the variance 62(n) = 0; in the PCA case, the selected
neighbourhood should satisfy both accuracy and parsimony, as
explained later.

In the DCA case, having obtained an initial neighbourhood
of size ng and corresponding parameter values through Algo-
rithm 1, we can eliminate redundant neighbours while keeping
62(n) = 0 using the approach described above to consider all
the neighbours from A =1 to ng in turn.

Whether a neighbour is redundant may depend on whether
other neighbours are in the neighbourhood, and after a re-
dundant neighbour is removed from the neighbourhood, other
initially redundant neighbours may become non-redundant.
Thus, the order of eliminating redundant neighbours matters.
Trying all orders of elimination to find the smallest non-
redundant neighbourhood is too time-consuming. We use the
natural order from A = 1 to ny, i.e., the neighbours closest to
the central cell are considered first for removal. In some sense,
this order is heuristically best order since the last neighbour
is definitely not redundant (otherwise, Algorithm 1 would
have terminated before the last neighbour was reached). On
the other hand, non-redundant neighbours are usually very
close each other in the neighbourhood, so neighbours close
to the last one are most likely to be non-redundant, so we
should check them later than the ones close to the central
cell. Experiments shows that using this order always results in
the smallest-size neighbourhood.

In the PCA case, we can also use the above method to get rid
of redundant neighbours while keeping variance unchanged,
and then use some criterion to eliminate non-redundant neigh-
bours while balancing accuracy and parsimony.

CA rule identification is a parameter estimation problem
for a model linear in its parameters (see Eqn. (5)), allow-
ing model selection techniques to be used to determine the
neighbourhood size. Many model selection criteria exist; the
Akaike information criterion (AIC) [35] and the Bayesian
information criterion (BIC) [36] are the most popular. We
have tried both criteria in our experiments, and have found
that BIC tends to give better results—it always results in the
true neighbourhoods of ground-truth CA used in experiments.

We next give a brief introduction to the BIC, and then describe
our neighbourhood selection method.

Given a class of models with varying numbers of param-
eters, BIC is a criterion for determining the optimal number
of model parameters, based on Bayesian estimation using the
observation data. The optimal number of parameters is the one
that minimises the following cost function:

BIC(n) = —2log(L(n)) + nlog(K), (16)

where n is the number of parameters, K is the number of data
items, and L(n) is the likelihood function with n parameters
based on K data. If the data has a normal distribution, or the
number of data items is large, this can be approximated by

BIC(n) = K log (6*(n)) + nlog(K), (17)

where 62(n) is the variance estimate for the n-parameter
model.

We can now describe our neighbourhood selection method.
Let n’ neighbours remain after redundant neighbours have
been eliminated. Some non-redundant neighbours are consid-
ered for removal according to the BIC criterion. In principle,
all 2" combinations of these neighbours should be checked
to find the minimum BIC value. This is time-consuming, so
instead we use a heuristic, as follows.

We start with n’ neighbours, and hence on' parameters, and
&%(n’) known from the above algorithm. The value of BIC(n')
is calculated, using Eqn. (17) with n (number of parameters)
in the last term being replaced by 2", and 62(n’) = 62(ng)
since the redundant neighbour elimination procedure does
not change the variance estimate. To calculate BIC(n’ — 1),
we consider removing one non-redundant neighbour from the
neighbourhood. All n’ neighbours are separately considered as
a candidate to be removed, and the corresponding 62(n’ — 1)
are calculated using the method in Section IV-A. The one
resulting in smallest 62(n’ — 1) is then removed from the
neighbourhood, and the corresponding BIC(n' — 1) is cal-
culated based on this 62(n’ — 1), using Eqn. (17) with the
last n being replaced by 27’1 The procedure continues from
this new neighbourhood, using the above strategy to remove
neighbours one by one, and calculate BIC(n) for n = n’ — 2
to 1. Finally, searching for the minimum BIC value over the
results gives us the optimal neighbourhood.

V. COMPLEXITY ANALYSIS

We now analyse the complexity of our algorithm and
compares it to Adamatzky’s [15] algorithm and Billings and
Mei’s fast cellular automata orthogonal least-squares (FCA-
OLS) [22] algorithm. We consider the case in which that the
maximum neighbourhood size is pre-chosen. The complexity
is determined by the size of the neighbourhood ny and
the number of data items K. As Adamatzky’s identification
algorithm for PCA [15] uses a different formulation from
Eqn. (5), only his DCA identification algorithm is considered.

A. Time Complexity

The time complexity is analysed by counting the worst-
case number of primitive operations in each algorithm (ig-
noring a few extra operations which make an insignificant

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 6

contribution to the total). The primitive operations involved
are arithmetic operations (addition, subtraction, multiplication,
division), comparison, and indexing into an array. As multipli-
cation/division and addition/subtraction typically use the same
number of clock cycles in modern processors [37], and as
indexing and comparison can be taken as addition/subtraction
operations, we simply count the total number of operations.

We commence by analysing our algorithm 1. Operations in
the initialisation step can be ignored in comparison to the main
operations in the while-loop. In the worst case, the while-loop
runs ng iterations, and the main operations in each iteration
consist of 1 + 2K + 2 - 2™ additions/subtractions, 1 + K
multiplications/divisions, 2K + 3 - 2™ indexing operations, and
3+ 2 - 2™ comparisons, for n = 1,...,ng. The total number
of main primitive operations is 5ng + 5ngK + 7-2(2" — 1),
giving Hno K +14-2™° as the significant approximation of the
number of main primitive operations in the algorithm.

To make a comparison with Adamatzky’s DCA identifi-
cation algorithm [15], we put Adamatzky’s algorithm in the
same implementation framework as our algorithm. The main
difference between ours and Adamatzky’s algorithm is in
the calculation of Lj. As neighbourhood size is increased,
Adamatzky’s algorithm needs to recalculate L using all the
data {yk,x};/,n’ =1,...,n}ie, Ly =ye + >, 2"/532/.
The main operations in each iteration of Adamatzky’s algo-
rithm comprise 14+ K +nK +2-2" additions/subtractions, 1+
nK multiplications/divisions, 2K + 32" indexing operations,
and 3+42-2" comparisons. The total number of main primitive
operations is 5ng+3noK +ng(no+1)K+7-2(2" —1), which
gives ng(no+4)K+14-2™ as its significant approximation. If
K > 270, then the first term dominates the time complexity,
and the ratio of time complexity between our algorithm and
Adamatzky’s is 5/(ng + 4). In practical applications, if all
the CA rules/parameters need to be identified, the number of
data items should be much more greater than the number of
parameters, so we usually have K > 20,

Billings and Mei’s FCA-OLS algorithm starts by forming a
polynomial expression for CA rules similar to Eqn. (5) with
Q! (t) being replaced by ®!(t) = Lz, zk(t), where L; C I
is a subset of the index set I = {1,---,ng}. The calculation
of {®(t),j = 0,---,2" — 1} requires 2"~ 1(ng — 2) + 1
multiplication operations for each data pair {z;(t+1), N;(¢)},
which makes the total number of multiplication operations for
all data pairs (2"°~*(no—2)+1) K, approximately Kno2" .
After all {®](¢)} are obtained, the FCA-OLS algorithm uses a
forward subset selection method to determined the neighbour-
hood. In the selection of the first neighbour, 2n¢(K + 1) + 1
multiplications, 2nq (K —1) additions, and ny—1 comparisons
are required. The selection of the rest of the neighbours
involves (ng — 7)(K + 2r + 6) + r + 1 multiplications,
(n0—r)(k+r-+1) additions, and ng —r — 1 comparisons for
r=1,---,ng—1. The total number of primitive operations for
forward subset selection is ng(no+3)K +0.5n9(ng+8ny—8),
or approximately n3 K. The final step of the FCA-OLS algo-
rithm calculates parameters, which takes ng(ng — 1)/2 mul-
tiplications and ng(no — 1)/2 additions, with negligible time
complexity. Adding the primitive operations for the first two
steps gives a total number of approximately Kng(ng+2"0~1)

TABLE I
STATE TRANSFER RULES FOR RULE 126 CA AND ITS RIGHT-SHIFT
VERSION
Original Right-shift
neighbourhood neighbourhood
wifl(t) 0]0]01|O0O 1 1 1 1 x¢+n5,1(t)
zi(t) ojo|1 1|00 1]|1 Tigng (L
xprl(t) 0 1 0 1 0 1 0 1 zi+n3+1(t)
zi(t+1) o1 |1 |11 |1]1]O0 zi(t+1)

operations. If K > 270, the ratio of our time complexity to
the FCA-OLS algorithm’s is 5/(ng + 2"°~!), which means
ours is faster when ny > 2. Since the time complexity of the
FCA-OLS algorithm grows exponentially with ny compared
to our algorithm, it will be much slower than our algorithm
for large ng. Our experiments demonstrate this observation.

B. Space Complexity

The space complexity includes the memory required to store
the input data, output data, and the intermediate variables
used in the computing procedures. All three algorithms have
the same requirement for input and output data, so we only
discuss the memory requirements for intermediate variables of
the algorithms.

Both ours and Adamatzky’s algorithms require memory
to store the variables {6%(n),n = 0,--- ,no}, {Lr,k =
L,---,K}, and {r},j = 0,---,2"° — 1}. Ignoring the in-
significant parts, the space complexity for both algorithms is
K + 2"°. The largest space requirement for the FCA-OLS
algorithm is for storing the regressors {®7(¢)}, which takes
K - 2™ memory stores. Comparing the FCA-OLS algorithm
with ours and Adamatzky’s, it can be seen that the former has
a higher space complexity, exponentially increasing with ng,
in comparison with the latter.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents some experimental results from our al-
gorithm and gives a timing comparison between our algorithm,
Adamatzky’s [15] and Billings and Mei’s FCA-OLS [22]
algorithms.

A. Experiments on Our New Algorithm

Three examples are introduced in this section to show the
effectiveness of our algorithm.

The first considers a simple one-dimensional three-cell
neighbourhood cellular automata, which is used to illustrate
the algorithm procedure. We consider a right-shift version of
Rule 126 CA. The original Rule 126 CA (named by Wol-
fram [4]) takes N; = {c;—1,¢i,c;i+1} as the neighbourhood
of the it cell ¢;, and the state of the it cell evolves from
time ¢ to ¢ + 1 according to the rules in Table I, where x;(?)
represents the state of ¢; at time step ¢. The right-shift version
has the same rules as in Table I but with its neighbourhood
shifted n cells to the right: N; = {Citn.—1, Citn.s Citn.+1};
in this example, we chose ns = 1.

Consider the DCA case. Figure 1(a) shows an example of
the evolution of the cell states with black representing 1 and

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 7

(a) b)

Fig. 1. Evolution of the one-cell right-shift version of the Rule 126 CA in
(a) the deterministic case and (b) the probabilistic case; random initialization.
TABLE I
PARAMETER ESTIMATES OF EXAMPLE 1 (DCA) BY ALGORITHM 1
J 0 1 2 3 4 5 6 7

J

0(5> 0 1 0 1 1 1 1 1
i 8 9 10 | 11 [12 | 13 | 14 | 15
J

0(5> 0 1 0 1 1 1 1 1
J 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
J

0(5) 1 1 1 1 1 0 1 0
J 24 [25 | 26 | 27 | 28 | 29 | 30 | 31
J

0(5) 1 1 1 1 1 0 1 0

white 0. The first row shows a randomly generated initial state,
and each subsequent row is one time step later than the row
above. Periodic boundary conditions are used for evolution, i.e.
the right-hand neighbour of the last cell is the first cell, the
left-hand neighbour of the first cell is the last one, and so on,
cyclically. We suppose that no exact neighbourhood is known,
and only an a priori maximum neighbourhood size nyax = 7
is assumed to guarantee that all the correct neighbours are
included in the neighbourhood.

The identification procedure starts by collecting data
{ye, 2} (n = 1,--- ,nmax) by scanning the image in Fig-
ure 1(a) row by row from left to right and top to down,
where k is numbered according the order of scanning, so
yr = x;(t + 1) is the value of row ¢ 4+ 1 and column 4, and
{zf,n =1,--- ,Nmax} are values of nya.x columns (centred
at column ¢ and ordered in accordance with the neighbourhood
described above) in row t. The size of the image is 200 x 200.
As each data set comes from two adjacent rows ¢ and ¢ + 1,
a total of 199 x 200 = 39, 800 data items are available.

After assembling the data, Algorithm 1 is performed to
estimate the parameters. The tolerance o2 is set to be 0
since we are dealing with a DCA. The algorithm ends
with a neighbourhood {c;,ci—1,cit1,¢i—2,cip2} of size 5
(although nya.x = 7), and the parameter estimates {é€5), j=
0,---,31} are shown in Table II. Clearly, the correct neigh-
bours {¢;,ci+1,¢i+2} are included in the output neighbour-
hood of Algorithm 1, but also included in the output are
redundant neighbours c;_1 and c¢;_s. The neighbourhood se-
lection procedure described in Section IV-B is then used to
eliminate redundant neighbours. Now, the correct neighbour-
hood {¢;, ¢it1,Ci+2} is obtained, and the parameter estimates
are shown in Table III. Also shown in Table III are the state

TABLE III
PARAMETER ESTIMATES AND STATE TRANSFER RULES OF EXAMPLE 1
(DCA), FROM LEFT TO RIGHT j = 0,--- ,7
07 of1r |1 |r|1r|y1]1]0
xi(t) ojojofolr|r|urifi
Tit1 (t) 01]0 1 1 01]0 1 1
zi+2(t) o|1|(0]1]O0]1]0]1
i+ [Jol1 [T [1]1T[1]1]O
TABLE IV

BIC VALUES FOR DIFFERENT NEIGHBOURHOODS FOR EXAMPLE 1 (PCA)

[size n | neighbourhood [BIC(n) |
6 {ci,ci—1,ciq1,cim2,Cita,ci—3} | —3.1264 x 107
5 {ci, cit1,ci—2,Cit2,ci—3} —3.1575 x 104
4 {ci,cit1,civ2,ci—3} —3.1746 x 10%
3 {ci,cit1,civa} —3.1831 x 104
2 {ci,cit1} —3.0050 x 104
1 {cit1} —2.9436 x 104

transition rules, which are obtained according to Eqn. (4). Note
the the values in the last row of Table III are exactly equal to
those in the first row.

Continuing with this example, we consider the PCA case.
The same right-shift version of Rule 126 CA is used but
the cell state is flipped with a probability p. For example,
if {l‘z(t) = 1,$i+1(t) = 0,$i+2(t) = 0}, then xi(t + 1)
is 1 in the DCA case, but it is 0 with probability p and 1
with probability 1 — p in the PCA case. Figure 1(b) shows
an example of the evolution of the cell states when the
flipping probability p is 45%. The triangle patterns seen in
the deterministic case are absent.

The first steps of the identification procedure for the PCA
are the same as that for the DCA, i.e., it starts by collecting
data, and applies Algorithm 1 to get initial parameter esti-
mates, and then eliminates redundant neighbours. After these
steps, the correct neighbourhood is not necessarily obtained
since noise exists in the data, and the BIC neighbourhood
selection method described in Section IV-B is used to find the
correct neighbourhood.

In identifying the CA rules from the data shown in Fig-
ure 1(b), the maximum neighbourhood size 1.y is still set to
be 7, but the tolerance 0'% is set to 0.45, which exactly equals
p. After eliminating redundant neighbours, the neighbourhood
size is 6, and BIC neighbourhood selection is performed.
Table IV shows the BIC values for different neighbourhoods.
From the table it can be seen that BIC(3) has the minimum
value, so the neighbour size is determined to be 3, and
the corresponding neighbourhood is {¢;, ¢; 41, ¢;+2}, which is
the same as that obtained in the DCA case. The parameter
estimates are also the same as in the DCA case: we have
recovered the correct neighbourhood and state transition rules
even though the noise level is very high, 45%.

Note that here we have assumed that the noise level is
known and the tolerance is set to be equal to the noise
level. In practice the noise level may be unknown, and the
tolerance can not be set in the above way. If the tolerance
is set too large, the number of neighbours included from
Algorithm 1 may be too small, and some correct neighbours
may be not included. On the other hand, if the tolerance is

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 8

TABLE V
STATE TRANSITION RULES FOR THE CODE 467 CA

EIRI0) TJO[1]O0]T][O0O]T]O[1]0

Sa o @ma) |44 33 2]2]1]1 0

z; i (t+ 1) 0|1][1]1]0[T1]0]O 1
(@) (b)

Fig. 2. Pattern of the Code 467 CA at time step 22 in (a) the probabilistic
case and (b) the deterministic case, starting from a central black pixel.

set smaller, a larger number of neighbours will be included
from Algorithm 1, and somewhat more computation is needed
during the neighbourhood reduction and BIC neighbourhood
selection steps. However, this increased computation is nec-
essary to ensure that the correct neighbours are included and
retained. In this example, when a% is increased to 0.5, only
one neighbour is included from Algorithm 1, and no correct
neighbourhood can be obtained. If 0% is reduced to 0.4, then
Nmax = [neighbours are included from Algorithm 1, and after
neighbourhood reduction and BIC neighbourhood selection
steps, we still get the correct results. We have performed
many experiments with different initial states, and in all cases
the correct neighbourhood is chosen after performing BIC
neighbourhood selection, if a% is set smaller than the noise
level. This suggests that in practice, 0% should be set as
small as possible to ensure that the correct neighbourhood is
selected.

The second example concerns a two-dimensional five-cell
neighbourhood totalistic cellular automaton, where the state
value x; j(t+1) of a cell ¢; ; at time step t+1 depends only on
the total state values >, . ¢y, - @m,n(t) of its von Neumann
neighbourhood N; ; = {(i—1, 7), (441, j), (¢, j—1), (¢, j+1)}
at the previous time step ¢, and its own previous state value
x;,;(t). Here, we consider a probabilistic version of the Code
467 CA [4]. The original state transition rules of the Code
467 CA are shown in Table V. In this PCA example, the cell
state flips with a probability p = 40%. Figure 2(a) shows the
pattern (size 91 x 91) of the Code 467 PCA after 22 steps
of evolution starting from a single black point in the middle
(z46,46 = 1, and other states are 0).

The identification procedure follows the same steps as in
the first example for identifying the one-dimensional PCA.
Let the selected maximum neighbourhood to be a Moore
neighbourhood around the centre cell: N, = {(m,n) : [m —
1| < 1,|n—j| < 1}, with size nmax = 9. The data are collected
from successive time steps, and at time step ¢, only the data
related to cells {¢; ; : |t — 46| < t,|j — 46| < t} are collected.

TABLE VI
PARAMETER ESTIMATES AND STATE TRANSFER RULES FOR THE CODE
467 CA. k =0,---,31, FROM TOP LEFT TO BOTTOM RIGHT.

9k
z;,5(t)
wi—1,;(t)
41,5 (1)
a:iﬁj_l(t)
Ti,j+1(1)
Ti g (t —+ 1)
ek
@;,5(t)
zi—1,5(t)
Tit1,5(t)
Ti5-1(t)
Ti,j+1(1)
Ti,j (t —+ 1)

Ll iR el | Rel L elelele] o | fo] Joh e Nele] L | L Je el Nl
Ol = OO =[O~ O OO OO = OO O O OO ——
Ll el R =] Fel | g e Rel el el | §S [l =R R el fe] | o ool fa)
Ll el Rl Kl | Rl e Rl =] | fol fe el i e} | ol S o Rol S e k=l
o Bl Nl Hel | B R el el]| gl e le] o] | lol jloc ol S =l =] k=]
Ll el el Fel | ol el el =] | fol je il el o] o le el S =2 k=]
S S R) [y | S Sy < [ESY | S [RN N | O R S SRy) G
Ol— == = == o= ro—=lo—~r~—rlo|lclcoo — ~~|o

Altogether 16,214 data items are used for identification.

If we set 07 = 0.4, the five-cell neighbourhood is cor-
rectly determined. Table VI shows the parameter estimates
and corresponding state transition rules when the neighbours
are arranged in the order {c; ;, Ci—1,j,Cit+1,j5Cij—1,Ci j+1}-
Comparing Table VI and Table V, it can be seen that both
describe exactly the same state transfer rules—except that
the totalistic rules in Table V are simpler in representation.
Figure 2(b) shows the pattern at the 22"¢ step generated by
the identified rules with no probabilistic state flipping, starting
from a single black point in the middle. This pattern is exactly
the same as generated by the Code 467 CA, which validates
the identified rules.

The third example comes from [4] and shows that our
method can also deal with high dimensional CAs and large
data sets. It has a 3-dimensional 7-cell neighbourhood: a cell
¢i,j,k should become black (state value 1) only when exactly
one of its 6 neighbours {¢y, 1 : |m—i|+|n—j|+|l—k| =1}
were black on the previous step, otherwise it remains un-
changed. Note that although the rule statement only mentions
6 neighbours, the central cell ¢; ; 5, is naturally included in the
rules, because in the cases it keeps unchanged, the evolved
state will depend on its previous state, which makes the
neighbourhood size 7. In the experiment, PCA is considered
with flipping probability p = 45%, and data are generated
according to the above rule, starting from a single black point
in the center (61,6161 = 1, and other states are 0), and
running 30 steps.

The identification procedures again follow the steps de-
scribed above. We assume that a maximal neighbourhood of

Ni(jj,lc = {(manvl) : ‘miz| < 1v|n7j| < 1a|lik| <

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 9

1, and |m — ¢| + |n — j| + |l — k| < 2}, which includes
Nmax = 19 neighbours. The data are collected from successive
time steps, and at time step ¢, only the data related to cells
{cijr:]t—61] <t,|j—61 <t,|k—61] <t} are collected.
Altogether K = 1,846,080 data items are collected, which,
considering that n,.x = 19, causes the input data {yj, z}} to
comprise 36,921,600 numbers.

We had set 02 = 0.45 and even smaller to 0% = 0.045,
but did not obtain the correct neighbourhood. The reason is
that the a priori neighbourhood is too large: 2% = 524,288
parameters or rules need to be identified if all the neighbours
are considered, and thus the data is still inadequate to resolve
different neighbours. The neighbours selected by Algorithm 1
cannot cover all of the correct neighbourhood. However, when
we set 02 = 0.0045, all 19 neighbours are selected by
Algorithm 1, and the following BIC neighbourhood selection
procedure correctly determines the 7-cell neighbourhood and
corresponding parameters. Since the number of parameters
is so large, we do not list the results here. This example
again shows that o2 must be set small to ensure that correct
neighbourhood is included from the result of Algorithm 1,
especially in the case of large neighbourhoods. It is practical
to simply set 0% = 0, and let ny,., to manage stopping
Algorithm 1 when one do not know how to set o2. The
computational cost is also very low. In this experiment on this
example, it took less than 2 seconds to generate the correct
result when o2, is set to be 0. Further discussions of time taken
by our algorithm come next.

B. Computation Time

FCA-OLS, Adamatzky’s and our algorithm were imple-
mented in Matlab R2009b to compare their actual computation
times. No coding optimization was done for any of these
algorithms. We used a Windows 7 platform on a PC with an
Intel Xeon Quad-Core 2.4GHz E5530 Processor and 6GB of
RAM. The Rule 126 CA was again used here as an example,
and only DCA is considered because Adamatzky’s algorithm
can only deal with DCA in the formulation discussed in
Section II. (We did not use the more complicated 2D Code
467 CA because the FCA-OLS algorithm cannot tackle large
neighbourhoods and thus we cannot get enough data for
comparison). We have performed many experiments, and have
observed similar behaviour in each case. Here we simply
use the results of 10 runs with randomly generated initial
cell states, which are sufficient to illustrate the algorithm
performance. The experimental results shown for Adamatzky’s
and our algorithms are based on the average of these 10 runs,
while for FCA-OLS algorithm they are divided into two parts:
the best-case averages and other case averages. The best case
occurs when the forward subset selection method of the FCA-
OLS algorithm finds the correct neighbourhood and then stops
without any redundant neighbours, and the other cases are
when a larger neighbourhood other than the correct one is
selected before the forward subset selection ends.

Three different scenarios are discussed in the following.
The first scenario involves the original Rule 126 CA with
different initial neighbourhood sizes ng. The centre of the
neighbourhood of a cell ¢; ; is set to be ¢; ; itself.

Figure 3(a) and (b) show the runtime of FCA-OLS,
Adamatzky’s and our algorithms for different ny with K =
10,000 data items. Bear in mind that for the FCA-OLS
algorithm the result shown is the best-case average, and the
runtime can reach 11,272 seconds in the worse-case when
ng = 13. Here we only run the FCA-OLS algorithm for
ng < 13 because when ng > 13 the algorithm runs out of
memory on our computer. It can be seen that the compu-
tation times of both Adamatzky’s and our algorithms vary
little with changes in ng, while the time for the FCA-OLS
algorithm grows quickly with ng. In fact, the timing of the
FCA-OLS algorithm agrees quite well with the theoretical
time complexity we have deduced in Section V-A, which
shows it grows exponentially with ng. The worst-case time
complexity of our and Adamatzky’s algorithms grows linearly
or quadratically with ng when K > 2™ (and exponentially
otherwise). However in practice, eg., in this scenario, both
our and Adamatzky’s algorithms start from the central cell
and stop when the neighbourhood size is increased to 3 no
matter how large ng is, so the total time should be almost the
same for all ng; our experiments agree with this conclusion.
The experimental results show that our algorithm is a little
bit faster than Adamatzky’s, as predicted by our theoretical
analysis.

Figure 3(c) and (d) show the runtime ratios of FCA-OLS,
and Adamatzky’s algorithm, against ours. Our algorithm is
16-32% faster than Adamatzky’s algorithm, and is more than
34,000 times faster than FCA-OLS algorithm in its best-case
when ng = 13. If we consider the worst case, we have
observed a runtime ratio between FCA-OLS and our algorithm
of a factor of more than 12 million in our experiments.

The second test also considers the original Rule 126 CA,
using a fixed initial neighbourhood size ny = 11, but with a
number of input data items varying from 1,000 to 10, 000.
Figure 4(a) and (b) show the runtime of the algorithms, and
Figure 4(c) and (d) shows the runtime ratio of FCA-OL,S
and Adamatzky’s algorithm, vs ours. It can be seen that all
the three algorithms have a runtime linearly growing with the
number of data items, which is consistent with our analyses.
Our algorithm here is 12-43% faster than Adamatzky’s algo-
rithm, and is around 2, 200-5, 900 times faster than the FCA-
OLS algorithm.

The third test involves the right-shift Rule 126 CA with
shift distances changing from ny, = 0 to 9 and K = 10,000
data items. The initial neighbourhood of a cell is set to be
centred at the cell itself with size n(to guarantee the correct
neighbourhood is included, i.e., ng = 2ng + 3, and the
rightmost cell is one of the correct neighbours. Figure 5(a) and
(b) show the runtime of the algorithms. It can be seen that the
FCA-OLS algorithm behaves as in the first test, since here the
increase of n, implies an increase in ng. The runtime of both
our and Adamatzky’s algorithms grows slowly when n,, and
hence ng, is small, and fast when ng is large. This also agrees
with our analyses, which shows that the time complexity
of both algorithms grows linearly or quadratically with ng
when it is small, and exponentially when it is large. Because
both algorithms select neighbours from the centre outwards,
in order to include the rightmost cell, all neighbours in the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 10

35 : :
3 L 4
5 25 .
c
S 200 -
2}
2 15 1
E10]
5, 4
3 5 7 9 11 13 15 17 19 21
initial neighbourhood size
(a)
3.5X10°
| [o=Foaoison ,
0?29 i
8 2]
215 1
= |
0.5 i
3 5 7 9 11 13 15 17 19 21

initial neighbourhood size
(©

Fig. 3.
algorithm, (d) Adamatzky’s / our algorithm.

2.5

—0— FCA-OLS|

time (seconds)
[N
o

[N
L

[~ L L L L L L L L
01‘(’)00 2000 3000 4000 5000 6000 7000 8000 9000 1000(C
number of data sets

(a)

600 w w
—6— FCA-OLS/ou

5000 1

time ratio
N
o
o
o

3000 1

209800 2000 3000 4000 5000 6000 7000 8000 9000 1000C
number of data sets

(©

x10°

—a&— Adamatzky's
—~ 1.4:| —e—our |

time (seconds

3 5 7 9 11 13 15 17 19 21
initial neighbourhood size

(b)
1.35 : ; .
1.3F
o
B
5 1.25/
E

1.2¢

11 : : : : : : :
53 5 7 9 11 13 15 17 19 21
initial neighbourhood size

(d)

Computation time for different initial neighbourhood sizes ng: (a) FCA-OLS algorithm, (b) Adamatzky’s and our algorithm, (¢) FCA-OLS / our

x 10°

—&— Adamatzky's
[| —&—our

time (seconds)

1500 2000 3000 4000 5000 6000 7000 8000 9000 1000C
number of data sets

(b)

—&— Adamatzky’ s/our

timeratio

11boo 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of data sets

(d)

Fig. 4. Computation time and comparison for varying numbers of input data items: (a) FCA-OLS algorithm, (b) Adamatzky’s and our algorithm, (c) FCA-OLS

vs our algorithm, (d) Adamatzky’s vs our algorithm.

initial neighbourhood need to be explored, which corresponds
to the worst case. Figure 5(c) and (d) shows the runtime
ratio of FCA-OLS, and Adamatzky’s algorithm, versus ours.
Again our algorithm is about 12-58% faster than Adamatzky’s
algorithm, and is more than 8, 347 times faster than the FCA-
OLS algorithm when ng = 5, corresponding to ng = 13.

In summary, our algorithm is somewhat faster than
Adamatzky’s algorithm, and is significantly faster than the
FCA-OLS algorithm even in the best-cases for the FCA-OLS
algorithm. Another drawback of the FCA-OLS algorithm is
that it is also space-consuming, such that when ny > 13, the
algorithm runs out of memory on our computer, while our

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 11

40,

—4— FCA-OLS|

time (seconds)
N w

Qe e

L L

=
2
I

3 4 5 6 7
eighbourhood shift distance (cells)
(a)

0o 1 2
n

10000

—— FCA-OLS/ou

8000 1
6000 1

4000 1

time ratio

2000 1

0 1 2 3 4 5 6 7 8 9
neighbourhood shift distance (cells)

©

Fig. 5.
FCA-OLS vs our algorithm, (d) Adamatzky’s vs our algorithm.

algorithm still works even when ng > 21.

VII. CONCLUSIONS

Considerable research has been done on analysing and simu-
lating CAs with known or designed evolution rules. However,
the inverse problem of finding CA rules from observed CA
evolution patterns has been relatively little tackled. Most early
efforts on this issue used genetic algorithms as a tool to
learn CA rules from experimental data. Unfortunately, genetic
algorithms can be very time-consuming in real applications.
Adamatzky’s CA identification algorithms [15] can extract
rules fast from observed data, but the neighbourhood identified
by them usually contains some redundant cells, which makes
the CA rules overly complex. Maeda and Sakama’s heuristic
procedure [17] can remove redundant cells, but only DCA
is dealt with. Another drawback of Maeda and Sakama’s
algorithm for redundant cell removal is that each time a
cell is removed, all data needed to be reconsidered, and
identification needs to be recomputed. Billings and colleagues
developed a series of relatively fast CA rule identification and
neighbourhood selection algorithms [18] based on orthogonal
least-squares method, but their algorithms are not efficient for
large neighbourhoods.

This paper gives a new fast algorithm, which is a significant
improvement on the current CA identification algorithms. The
proposed algorithm is consistently faster than Adamatzky’s
algorithm, and more importantly, it provides a unified ap-
proach to rule identification and neighbourhood selection
for both DCA and PCA, while Adamatzky’s algorithm does
not perform neighbourhood selection. Our algorithm removes
redundant cells from neighbourhoods simply based on the

0.1 -
—A— Adamatzky’s|

@ : D

©

§ 0.06f 1

o 0.04f |

E

002} 1
0o 1 2 8 9

2 3 4 5 6 7
neighbourhood shift distance (cells)
(b)

—A— Adamatzky’ s/our

timeratio

A
1'10 1 2 3 4 5 6 7 8 9

neighbourhood shift distance (cells)
(d)

Computation time and comparison for different neighbourhood shift distances: (a) FCA-OLS algorithm, (b) Adamatzky’s and our algorithm, (c)

parameter estimates, without resorting to reconsidering data,
unlike Maeda and Sakama’s algorithm. The Bayesian infor-
mation criterion has been used in the proposed algorithm to
determine neighbourhoods, which is shown through experi-
ments to work well. Compared to Billings’ most recent fast
identification algorithm (FCA-OLS), the proposed algorithm is
significantly faster, even when the FCA-OLS algorithm runs
in its best case, as well as being much more space efficient.

REFERENCES

[1] A. Tlachinski, Cellular Automata: A Discrete Universe.
NJ, USA: World Scientific Publishing Co., Inc., 2001.

[2] J. von Neumann, “The general and logical theory of automata,” in
Cerebral Mechanisms in Behavior - The Hixon Symposium, L. Jeffress,
Ed. New York: John Wiley & Sons, 1951, pp. 1-31.

[3] S. Wolfram, Cellular Automata and Complexity: Collected Papers.
Boulder, Colorado, USA: Westview Press, 1994.

[4] S. Wolfram, A new kind of science. Champaign, Ilinois, USA: Wolfram
Media Inc., 2002.

[5] N. Ganguly, B. K. Sikdar, A. Deutsch, G. Canright, and P. P. Chaudhuri,
“A survey on cellular automata,” Centre for High Performance Comput-
ing, Dresden University of Technology, Tech. Rep., Dec. 2003.

[6] J. Shan, S. Alkheder, and J. Wang, “Genetic algorithms for the cali-
bration of cellular automata urban growth modeling,” Photogrammetric
Engineering & Remote Sensing, vol. 74, no. 10, p. 12671277, 2008.

[7]1 E. Sapin, L. Bull, and A. Adamatzky, “Genetic approaches to search
for computing patterns in cellular automata,” IEEE Computational
Intelligence Magazine, vol. 4, no. 3, pp. 20 -28, 2009.

[8] P. L. Rosin, “Image processing using 3-state cellular automata,” Com-
puter Vision and Image Understanding, vol. 114, no. 7, pp. 790 — 802,
2010.

[9] N. Packard, “Adaptation toward the edge of chaos,” in Dynamic Patterns
in Complex Systems, J. Kelso, A. Mandell, and M. Shlesinger, Eds.
Singapore: World Scientific, 1989, pp. 293-301.

[10] F. C. Richards, T. P. Meyer, and N. H. Packard, “Extracting cellular
automaton rules directly from experimental data,” Phys. D, vol. 45, no.
1-3, pp. 189-202, 1990.

River Edge,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. XX, NO. XX, OCTOBER 2010 12

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

M. Mitchell, J. P. Crutchfield, and R. Das, “Evolving cellular automata
with genetic algorithms: A review of recent work,” in Proceedings of
the First International Conference on Evolutionary Computation and Its
Applications (EvCA96). Russia: Russian Academy of Sciences, 1996.
Y. Yang and S. Billings, “Extracting Boolean rules from CA patterns,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics, vol. 30, no. 4, pp. 573-580, Aug. 2000.

Z. Pan and J. Reggia, “Artificial evolution of arbitrary self-replicating
structures,” Journal of Cellular Automata, vol. 1, no. 2, pp. 105-123,
2006.

P. Rosin, “Training cellular automata for image processing,” [EEE
Transactions on Image Processing, vol. 15, no. 7, pp. 20762087, July
2006.

A. Adamatzky, Identification of Cellular Automata. London, UK: Taylor
& Francis, 1994.

A. Adamatzky, “Automatic programming of cellular automata: identifi-
cation approach,” Kybernetes: The International Journal of Systems &
Cybernetics, vol. 26, no. 2, pp. 126-135, Feb. 1997.

K.-I. Maeda and C. Sakama, “Identifying cellular automata rules,”
Journal of Cellular Automata, vol. 2, no. 1, pp. 1-20, 2007.

Y. Zhao and S. Billings, “The identification of cellular automata,”
Journal of Cellular Automata, vol. 2, no. 1, pp. 47-65, 2007.

Y. Yang and S. Billings, “Neighborhood detection and rule selection
from cellular automata patterns,” IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, vol. 30, no. 6, pp. 840—
847, Nov. 2000.

S. Billings and Y. Yang, “Identification of probabilistic cellular au-
tomata,” IEEE Transactions on Systems Man and Cybernetics, Part B:
Cybernetics, vol. 33, no. 2, pp. 225-236, 2003.

S. Billings and Y. Yang, “Identification of the neighborhood and CA
rules from spatio-temporal CA patterns,” IEEE Transactions on Systems
Man and Cybernetics, Part B: Cybernetics, vol. 33, no. 2, pp. 332-339,
2003.

S. A. Billings and S. S. Mei, “A new fast cellular automata orthogonal
least-squares identification method,” International Journal of Systems
Science, vol. 36, no. 8, pp. 491-499, 2005.

F. Ding, Y. Shi, and T. Chen, “Auxiliary model-based least-squares
identification methods for Hammerstein output-error systems,” Systems
& Control Letters, vol. 56, no. 5, pp. 373 — 380, 2007.

F. Ding, L. Qiu, and T. Chen, “Reconstruction of continuous-time
systems from their non-uniformly sampled discrete-time systems,” Au-
tomatica, vol. 45, no. 2, pp. 324-332, 2009.

F. Ding, P. X. Liu, and G. Liu, “Multiinnovation least-squares identifi-
cation for system modeling,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 40, no. 3, pp. 767 — 778, 2010.
F. Ding, P. X. Liu, and G. Liu, “Gradient based and least-squares based
iterative identification methods for OE and OEMA systems,” Digital
Signal Processing, vol. 20, no. 3, pp. 664 — 677, 2010.

F. Ding, G. Liu, and X. Liu, “Partially coupled stochastic gradient
identification methods for non-uniformly sampled systems,” Automatic
Control, IEEE Transactions on, vol. 55, no. 8, pp. 1976 —1981, 2010.
L. He and X. Sun, “Recursive triangulation description of the feasible
parameter set for bounded-noise models,” IET Control Theory Applica-
tions, vol. 4, no. 6, pp. 985 —992, Jun. 2010.

H.-F. Chen, “New approach to recursive identification for ARMAX
systems,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp.
868 879, Apr. 2010.

S. Mei, S. A. Billings, and L. Guo, “A neighborhood selection method
for cellular automata models,” International Journal of Bifurcation and
Chaos, vol. 15, no. 2, pp. 383-393, 2005.

Y. Zhao and S. Billings, “Neighborhood detection using mutual infor-
mation for identification of cellular automata,” IEEE Transactions on
Systems, Man and Cybernetics, Part B: Cybernetics, vol. 36, no. 2, pp.
473-479, 2006.

Y. Guo, S. A. Billings, and D. Coca, “Identification of n-state spatio-
temporal dynamical systems using a polynomial model,” International
Journal of Bifurcation and Chaos, vol. 18, no. 7, pp. 2049-2057, 2008.
L. Guo, S. Mei, and S. Billings, “Neighbourhood detection and iden-
tification of spatio-temporal dynamical systems using a coarse-to-fine
approach,” International Journal of Systems Science, vol. 38, no. 1, pp.
1-15, 2007.

M. Esnaashari and M. Meybodi, “A cellular learning automata based
clustering algorithm for wireless sensor networks,” Sensor Letters, vol. 6,
no. 5, pp. 723-735, 2008.

H. Akaike, “A new look at the statistical model identification,” IEEE
Transactions on Automatic Control, vol. 19, no. 6, pp. 716-723, 1974.

[36] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461464, 1978.

[37] K. Mao, “Fast orthogonal forward selection algorithm for feature subset
selection,” IEEE Transactions on Neural Networks, vol. 13, no. 5, pp.
1218 — 1224, Sep. 2002.

Xianfang Sun received a BSc degree in Electrical
Automation from Hubei University of Technology
in 1984 and MSc and PhD degrees in Control The-
ory and its Applications from Tsinghua University
in 1991 and the Institute of Automation, Chinese
Academy of Sciences in 1994, respectively. He is
lecturer at the School of Computer Science & In-
formatics, Cardiff University. His research interests
include computer vision and graphics, pattern recog-
nition and artificial intelligence, system identifica-
tion and filtering, fault diagnosis and fault-tolerant
control. He has completed many research projects and published more than
80 papers. He is on the editorial board of Acta Aeronautica et Astronautica
Sinica. He is also a member of the Committee of Technical Process Failure
Diagnosis and Safety, Chinese Association of Automation.

Paul L. Rosin is Reader at the School of Computer
Science & Informatics, Cardiff University. Previous
posts include lecturer at the Department of Infor-
mation Systems and Computing, Brunel University
London, UK, research scientist at the Institute for
Remote Sensing Applications, Joint Research Cen-
tre, Ispra, Italy, and lecturer at Curtin University of
Technology, Perth, Australia.

His research interests include the representation,
segmentation, and grouping of curves, knowledge-
based vision systems, early image representations,

low level image processing, machine vision approaches to remote sensing,
methods for evaluation of approximation algorithms, etc., medical and bio-
logical image analysis, mesh processing, and the analysis of shape in art and
architecture.

Ralph R. Martin received the PhD from Cambridge
University in 1983, with a dissertation on “Principal
Patches”, and since then, has worked his way up
from a lecturer to a professor at Cardiff University.
He has been working in the field of CADCAM since
1979. He has published more than 170 papers and
10 books covering such topics as solid modelling,
surface modelling, intelligent sketch input, vision
based geometric inspection, geometric reasoning and
reverse engineering. He is a fellow of the Institute
of Mathematics and Its Applications, and a member
of the British Computer Society. He is on the editorial boards of Computer
Aided Design, Computer Aided Geometric Design, the International Journal
of Shape Modelling, the International Journal of CADCAM, and Computer-
Aided Design and Applications. He has also been active in the organisation
of many conferences.

