
IEEE TRANS. VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, ZZZZZ XXXX 1

Bas-Relief Generation Using Adaptive Histogram

Equalisation
Xianfang Sun, Paul L. Rosin, Ralph R. Martin, and Frank C. Langbein, Member, IEEE

Abstract—An algorithm is presented to automatically generate
bas-reliefs based on adaptive histogram equalisation (AHE),
starting from an input height field. A mesh model may al-
ternatively be provided, in which case a height field is first
created via orthogonal or perspective projection. The height
field is regularly gridded and treated as an image, enabling
a modified AHE method to be used to generate a bas-relief
with a user-chosen height range. We modify the original image-
contrast-enhancement AHE method to also use gradient weights,
to enhance the shape features of the bas-relief. To effectively
compress the height field, we limit the height-dependent scaling
factors used to compute relative height variations in the output
from height variations in the input; this prevents any height
differences from having too great an effect. Results of AHE over
different neighbourhood sizes are averaged to preserve informa-
tion at different scales in the resulting bas-relief. Compared to
previous approaches, the proposed algorithm is simple and yet
largely preserves original shape features. Experiments show that
our results are in general comparable to and in some cases better
than the best previously published methods.

Index Terms—Bas-relief, adaptive histogram equalisation, fea-
ture enhancement.

I. INTRODUCTION

Bas-relief sculpting is a technique which has been practised

for thousands of years. The idea is straightforward: a flattened

sculpture is produced on some base surface—for example, por-

traiture on coinage. The overall range of depth of the elements

in the sculpture is highly compressed. Parallel or perspective

viewing effects may also be used. Bas-reliefs usually have a

single z depth for each x-y position, and portions of the scene

nearest to the viewer are elevated most [1].

The production of bas-reliefs is currently a costly and time-

consuming process, requiring skilled sculptors and engravers.

Automatic capture of computer models of 3D shape is be-

coming more commonplace using 3D scanners. This provides

a foundation for automation in bas-relief making, resulting in

reduced costs, and shorter time-to-market. Such advantages

also allow bas-reliefs to be extended to a wider range of

application areas such as packaging, where traditionally the

costs or lead times have often been too high. However, current

commercial CAD tools for bas-relief work, such as Delcam’s

ArtCAM, cannot yet be considered to provide a full solution

to relief making.
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Of course, considerable artistic skills are needed to decide

upon the composition and view of the subject matter. Having

chosen these, however, simple experimentation shows that an

acceptable bas-relief cannot be made by linearly compressing

a 3D scene’s depth coordinates while preserving width and

height (see Fig. 1(b)). In principle, by suitably choosing the

direction of the light source, and the surface albedo, the image

of a bas-relief generated by an affine transformation of the 3D

surface can be indistinguishable from that of the original 3D

surface [2]. However, in most cases, it is not possible to control

the light source, surface albedo and viewpoint. Considerably

more sophisticated methods are needed to produce a bas-relief

which has the right kind of visual appearance [3]–[6]. The

academic work to date has considered the issue of how to

achieve the necessary compression of depths, and even so,

has not achieved entirely satisfactory results.

The next section summarises state-of-the-art approaches.

We then present a new depth compression method based on

an adaptive histogram equalisation (AHE) method taken from

image processing, which has been adapted to bas-relief pro-

duction. Our goal is a simple method for bas-relief generation

which clearly preserves visible shape details in the final results,

as demonstrated in Fig. 1(c).

II. PREVIOUS WORK

Relatively little academic literature to date has considered

the automatic production of bas-reliefs. One older paper [1]

gives a basic approach to the problem, while two recently

published papers independently devised rather similar, more

sophisticated, solutions [4], [6].

The earliest paper [1] treats bas-relief generation as a prob-

lem of embossing on the view plane. The key principle used is

that depth within the relief should be a function of the distance

between the observer and any projected point. The authors

expect this function to preserve linearity, and note that standard

perspective transformation has the required properties. Thus,

they compress z coordinates inversely with distance, while

also adding perspective in x and y if desired. Their results are

generally of the correct nature, but of unacceptable quality

in detail. For example, a bas-relief of a head gives undue

prominence to the hair, while other reliefs may look rather flat.

The authors note that good results can only be obtained if the

artist subtly edits the 3D model before applying their approach.

However, they state an important principle for generating bas-

reliefs: unused depth intervals at height discontinuities should

be removed (either manually or automatically) to make best

use of the allowed bas-relief depth.
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(a) (b) (c)

Fig. 1. 3D dragon model (a) and the bas-reliefs generated by simply scaling depths (b) and our method (c).

More recent papers [4], [6], [7] note a similarity between

bas-relief generation and high dynamic range (HDR) imaging,

in which multiple photographs of the same scene over a

wide range of intensities, are composited and displayed on an

ordinary monitor: the range of intensities must be compressed

in such a way as to retain detail in both shadows and

highlights. In relief processing, depths replace the intensities

in HDR. However, it is not straightforward to apply these

ideas. As [6] notes, some HDR methods are global, e.g.

histogram equalisation (HE) [8], while others apply similar

methods to local regions of the image [9]. The latter generally

make better use of the dynamic range, and are necessary

if unused depth intervals at height discontinuities are to be

removed locally. HDR methods often separate the image into

frequency components and attenuate the low frequencies; one

consequent problem which must be avoided is ringing. For a

recent overview of HDR imaging methods, readers are referred

to [10].

Weyrich et al. [6] used HDR-based ideas to give a mostly

automatic method for constructing bas-reliefs from 3D models;

they also imposed some additional requirements, such as main-

taining small, fixed-size depth discontinuities. Their method

uses perspective foreshortening as in [1] as a first step, but

unlike that paper, subsequent steps do not preserve planarity.

Instead, emphasis is placed on retaining important visual clues:

steps at silhouettes, and surface gradient directions (but not

magnitudes). This method allows user-controlled attenuation

of low frequencies in gradient space; relief shape is then

recovered by integrating the gradient field in a least-squares

sense. The goal is to make an orthogonal view of the relief,

seen with a particular camera, similar to the appearance of the

original object; viewing off-axis leads to distortion and a flat

appearance. This approach also automatically removes unused

depth intervals. The authors usefully give a set of principles

for constructing reliefs, taken from the artistic literature. These

cover: how to generate the illusion of depth, object ordering,

depth compression, depth discontinuities, steps, and undercuts.

They also note that material properties are important, and

that specular reflections can look larger on reliefs than on the

original object.

Independently, [4] uses different steps to generate reliefs,

but actually performs rather similar computations in terms

of the underlying principles. 3D shape is first represented

in differential coordinates. Unsharp masking and smoothing

are combined to emphasise salient features and de-emphasise

others. The shape is then scaled in differential coordinates, and

finally the bas-relief is reconstructed from these differential

coordinates. Again, a chosen viewing direction is taken into

account. The authors note that their approach leads to a

certain amount of distortion, and that it does not enhance

the silhouette of the shape (unlike [6]). They suggest shading

exaggeration as a possibility for future research.

A related paper [7] considers feature-preserving depth-

compression of range images, based on linear rescaling of

the gradient of the image, again using unsharp masking for

gradient enhancement. The results of this approach unnaturally

exaggerate areas with high gradient but flatten areas with

low gradient, and thus look rather flat. An improvement on

this method is proposed in [5], which rescales the gradient

nonlinearly using a function from [9], providing a compromise

between the exaggerated and the flattened areas.

In summary, these papers produce results which at first sight

appear acceptable, but reveal shortcomings under more critical

analysis. In [4] and [7], the impression of curvature is lost, and

in [5], the silhouettes of shapes are not well preserved, while

in [6], a bump appears to exist in the foremost rod where rod-

shaped features cross (see Fig. 9). There is clear scope for

improved methods of depth compression for relief making.

An extensive literature exists on image enhancement [11],

some of which is clearly applicable to bas-relief production.

Even within a single application area, however, there is no

single image enhancement algorithm that is consistently the

most effective. One of the most commonly used techniques is

unsharp masking, whose application to bas-relief generation

we have already noted. It essentially enhances edges by

increasing the magnitude of high frequency components. One

drawback as a consequence is that it magnifies any noise

present in the image. Moreover, it enhances high contrast areas

more than low contrast areas, leading to undesirable artifacts

when low contrast areas must also be enhanced. Modified

versions of unsharp masking have been developed to overcome

these limitations [12].

The relation of histogram equalisation to HDR imaging has

been noted, together with its limitations as a global method.

As a result, adaptive histogram equalisation (AHE) utilising

local windows has been considered, e.g. [13]. However, win-
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dow size and other parameters need to be carefully chosen,

otherwise, again, noise may be enhanced and undesirable

artifacts created [14]. Most work in this area does not take into

account the properties of the human visual system. Of the few

exceptions, Frei [15] suggested use of a hyperbolic rather than

constant intensity histogram, based on Weber’s law: percep-

tual brightness is a logarithmic function of intensity. Further

work in this direction is given in [16], [17]. However, such

perceptually-based optimisation is not directly applicable to

depth modifications for relief making: these do not correspond

directly to intensities.

Many other approaches to contrast enhancement have also

been proposed. E.g., Subr et al. [18] pose the problem as

optimisation of a scalar function measuring local contrast

in the image, subject to constraints on local gradients and

intensity ranges; they also refer to other approaches based

on anisotropic diffusion, morphological techniques, clustering,

retinex theory, k-sigma clipping, and curvelet transformations.

For consumer electronics, several HE methods have been

proposed having a brightness-preserving property, such as

bi-HE [19], [20], multi-HE [21], equal-area dualistic sub-

image HE [22], brightness-preserving HE with maximum

entropy [23], and brightness-preserving dynamic HE [24].

Inspired by the close relations between HDR, HE and bas-

relief generation, we consider a local version of HE in this

paper. We modify AHE [13] for use for depth compression in

providing automated bas-relief generation.

III. PROBLEM STATEMENT AND APPROACH

As a bas-relief typically has no undercut, it can be repre-

sented by a height field (measured in z direction), which for

simplicity of processing we take to be regularly gridded in x
and y at a sufficiently fine resolution. Thus, as a starting point,

we take a gridded height field representing a scene containing

one or more objects.

Cignoni et al. [1] and Weyrich et al. [6] list several features

of bas-reliefs, and requirements that height fields must fulfil

in order to suitably represent a bas-relief. While a bas-relief

typically has much smaller z extent than x or y extent, it

should still exhibit shape features as clearly as possible, so

that it is visually close to the original input shape when viewed

in the z direction from the front. In practice, this means that

the height field should exhibit strong contrast or significant

variation in shading (typically due to variation in slope) where

objects or parts of objects meet.

If the input is a 3D (mesh or CAD) model, we thus need

to first generate a height field from it, using a suitable view.

Following Cignoni et al. [1], we do so by retrieving depth

values from a z-buffer following perspective projection of the

3D model. The depth values, lying in [0, 1], may be simply

read from an OpenGL z-buffer as suggested in [6].

¿From the input height field, we wish to generate an output

height field meeting the bas-relief requirements. The user also

either states a desired final range of z values, or, amounting to

the same thing, the overall compression factor to be achieved

in z direction: the ratio of the distance between lowest and

highest points in the height field before and after processing. A

non-linear depth compression process is then used to adapt the

height field to meet this requirement while preserving shape

features. In the next section, we give our approach to this depth

compression problem.

IV. DEPTH COMPRESSION

Histogram equalisation (HE) methods can enhance contrast

in image processing. We use such methods to produce en-

hanced features in the final compressed height field. The stan-

dard HE method is simple but is unsuitable for our problem,

because it uses a single monotonic function to transform the

entire image, and does not consider local intensity distribu-

tions. Instead, we use a local or adaptive HE method [13],

and modify it to enhance the depth compression effect.

Before performing AHE, we automatically remove unused

depth intervals between the background and the scene, as

suggested by Cignoni et al. [1]. We detect the corresponding

smallest and second smallest height values, and move the

scene towards the background, so that the second smallest

height value is now the same as the smallest.

A. Height Field Histogram Equalisation

We next introduce our notation and describe the standard

HE method in the context of height fields rather than intensity

images. The goal of HE is to apply a non-linear monotonic

transformation to the input image intensities such that the

resulting image has a uniform intensity distribution. Doing

so maximises the entropy of the data, and as a consequence

improves the overall image contrast.

We suppose the input to be a height field z(x, y) with

M × N uniformly gridded sample points S = {(x, y) :
x = 1, . . . ,M, y = 1, . . . , N}. Suppose the minimum and

maximum of z(x, y) are zmin and zmax, respectively. The

height values of the sample points are placed into B equal-

sized bins {bi : i = 1, . . . , B} between zmin and zmax, giving

a histogram H = {hi : i = 1, . . . , B}, where hi is the number

of points whose height value falls into the ith bin, defined by

bi = [zmin + (i− 1)δ, zmin + iδ) for i = 1, . . . , B − 1, and

δ = (zmax − zmin)/B. Note that bB = [zmax − δ, zmax].
The cumulative histogram C is defined as

ci =
∑

j≤i

hj . (1)

The histogram equalisation process maps the height values

in each bin to new values such that the new histogram is

(approximately) uniformly distributed. The new height z′(x, y)
for a sample point z(x, y) ∈ bi is given by

z′(x, y) = z′i =
ci − c1
cB − c1

(z′max − z′min) + z′min, (2)

where z′min and z′max are the desired minimum and maximum

height values after HE. Note that in image processing, often

the output intensity range I ′max−I ′min is larger than Imax−Imin

to maximise contrast in the final result, whereas here we want

a smaller range of heights to produce a bas-relief. Typically,

we set z′min = 0 for simplicity of computation.

Note that z(x, y) is (at least in principle) a continuous

value, but z′(x, y) is discrete. Because of this, the new
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equalised histogram is not exactly uniformly distributed with

equal numbers of points z′(x, y) in each bin. The uniformity

achieved is dependent on the number of bins B. The larger B,

the higher the uniformity, and the fewer the artifacts caused by

discretisation, but at the expense of increased computational

effort. We have used B = 10000 in all of our examples with

max(M,N) ranging from 624 to 1024. Experiments showed

that the artifacts are negligible for B this large, although they

become noticeable in all of our examples if we reduce B to

3000.

Combining Equations (1) and (2), we obtain

∆z′i = z′i − z′i−1 =
z′max − z′min

cB − c1
hi. (3)

This implies that the larger hi, the larger the height difference

∆z′i between successive height values z′i and z′i−1. Because

the output height range is fixed, Equation (3) means that HE

increases contrast, i.e. the difference in height, for bins with

high counts, and decreases it for bins with low counts, thus

enhancing global contrast. In some sense then, enhancement of

global contrast implies enhancement of global shape features

of the height field, which is a desirable property for depth

compression. However, because HE focuses on global features,

local features may be lost, and shape distortion may also

result. In the next section, we thus use adaptive histogram

equalisation to tackle the problem of local shape distortion.

¿From Equation (3) we can also see that if hi = 0, then

z′i − z′i−1 = 0. This means that HE will effectively discard

depth intervals of the original height field containing no

sample points. Doing so is desirable in any depth compression

method, as it ensures optimal use of the limited depth range

available in the output—depths with no sample points are

simply skipped. Unlike the methods of Kerber et al. [5], [7]

and Weyrich et al. [6] where gradients are set to zero when

they are over a threshold, which locally collapses large steps,

HE compresses global steps no matter whether these steps are

large or small, and no thresholding is needed. Nevertheless,

when we consider the depth intervals between the background

and the foreground, we can see that although large steps are

removed, the depth difference between the background and the

foreground in the resulting bas-relief may still be rather large

if the number of points in the second non-empty bin (which

contains foreground points nearest to the background) is large,

which occurs in many cases. This is also why we move the

scene towards the background as a preprocessing step.

Because no local information is used, standard HE is less

effective at dealing with local steps. Adaptive HE as intro-

duced in the next section uses local information to compress

local steps.

B. Adaptive Histogram Equalisation with Gradient Weights

In this section, we introduce AHE [25] and explain how it

deals with local features. We then present a gradient-weighted

AHE method to provide improved depth compression results.

AHE is also called local HE. For each point (or pixel, in

terms of image processing), it performs HE within a local

neighbourhood of this point, and uses the result as the output

value for the point. Let

N (x, y) = {(u, v) ∈ S : |u− x| ≤ m, |v − y| ≤ m}

be the m-neighbourhood of point (x, y), and let hi(x, y) be

the number of points in N (x, y) whose height value falls into

bi. We compute the local cumulative histogram using

ci(x, y) =
∑

j≤i

hj(x, y). (4)

If point (x, y) falls into the ith bin bi, then the new height

value z′(x, y) = z′i(x, y) at point (x, y) is calculated by

z′i(x, y) =
ci(x, y)− c1(x, y)

cB(x, y)− c1(x, y)
(z′max − z′min) + z′min. (5)

Note that the only difference between Equation (2) and (5)

is that the former uses the global cumulative histogram while

the latter uses the local one. Because of this difference, AHE

can efficiently compress local steps. Its ability to do this

depends on the size m of the neighbourhood: as m increases,

the method becomes less efficient. In the extreme case when

m = max(M,N), AHE is equivalent to standard HE.

However, it is not necessarily true that, the smaller m, the

better the method compresses local steps. As m is reduced, the

total number of points in N (x, y) becomes smaller, and if it is

too small, many hi(x, y) may be zero. If this happens, the local

histogram after equalisation will be far from uniform, and the

resulting effects of feature enhancement will be unsatisfactory:

ultimately, too small a value of m results in distortion of the

output height field. For example, in an extreme case, suppose

i > 1 and all neighbouring points of (x, y) fall into the same

bin i. Then cB(x, y) = ci(x, y), and the output height at (x, y)
will be set to z′max, whatever the original z(x, y), even if it

were close to zmin.

Since AHE can efficiently compress local height variations

with relatively small m and global height variations with

large m, we perform AHE with different sizes of m and take

the average of the resulting height fields as the final result.

In this way, we can compress both local and global steps,

and preserve different scales of information in the resulting

bas-relief. Fig. 2 shows part of a bas-relief computed using

different m, and an average. Look carefully at the front wall

of the tower. It appears bumpy in differing places as m varies;

such problems are much less visible in the averaged bas-relief.

Even though AHE can compress height fields better than

standard HE, it is still not perfect. Because both standard

HE and AHE only use the histogram (i.e. the proportion of

samples falling into each bin), but not any shape information,

it is incapable of preserving shape features such as the

surface gradient. The latter is important as it determines the

surface’s brightness under given lighting conditions. Hence,

we introduce the novel idea of applying gradient weighting

to AHE, to preserve relative magnitudes of gradients in the

output height field.

The difference between gradient-weighted AHE and un-

modified AHE lies in the computation of hi(x, y). A simple

gradient-weighted scheme would replace the computation of
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Zooms of bas-reliefs showing part of a building produced by AHE with different neighbourhood sizes: m = 16, 32, 64, 128, 256 from (a) to (e),
and the average of these bas-reliefs (f).

hi(x, y) by

hi(x, y) =
∑

(u,v)∈N (x,y); z(u,v)∈bi

g(u, v), (6)

where the weight g(u, v) is the gradient magnitude computed

using the Sobel operator [11]:

g(u, v) =
√

g2x(u, v) + g2y(u, v); (7)

here

gx(u, v) =
z(u− 1, v − 1) + 2z(u− 1, v) + z(u− 1, v + 1)−
z(u+ 1, v − 1)− 2z(u+ 1, v)− z(u+ 1, v + 1),

(8)

gy(u, v) =
z(u− 1, v − 1) + 2z(u, v − 1) + z(u+ 1, v − 1)−
z(u− 1, v + 1)− 2z(u, v + 1)− z(u+ 1, v + 1).

(9)

Unmodified (unweighted) local histograms would be com-

puted by simply setting g(u, v) = 1 in Equation (6).

The idea behind Equation (6) is that, the larger the gradients

of points in bin bi, the larger hi(x, y), and thus, from Equa-

tion (3), the larger the height difference ∆z′i(x, y). Because

larger gradients in the original height field result in larger

height changes, the introduction of gradient weights in AHE

helps to preserve the original gradient information in the

resulting height field.

We may further improve results slightly by using an idea

due to Weyrich et al. [6]: we apply a non-linear transformation

to the gradient magnitudes before use (see Fig. 4). This non-

linear transformation is defined as

T (g(u, v)) =
1

α
log (1 + α g(u, v)), (10)

where α is a parameter set between 0.5 and 10 as suggested

in [6]. This function has the property of strongly attenuating

large gradients while preserving small gradients, and thus

preserving small shape details in the modified AHE procedure.

Note that α = 0 implies the identity function T (g(u, v)) =
g(u, v).

We also suggest that the influence of neighbouring points

on the local histogram should decrease as their distance from

the central point grows. To do so, we use a Gaussian distance

weighting function:

D(d(u, v)) = e−d(u,v)2/2m, (11)

where d(u, v) =
√

(x− u)2 + (y − v)2 is the distance be-

tween the central point (x, y) and the point (u, v) in the

m-neighbourhood. We use a Gaussian function as we want

the influence of boundary points of the neighbourhood to

be very small, such that moving the central point does not

change the local histogram dramatically. This reduces height

artifacts even if points at the boundary change substantially in

adjacent neighbourhoods. While [13] also considered weighted

AHE for image processing, using a conical weighting function,

they found little noticeable difference in results compared to

unmodified AHE in their tests, and thus did not recommend its

use. However, in our case, experiments show that this Gaussian

weighting function generally improves the results.

Combining gradient weighting with non-linear compression

of gradient magnitudes, and distance weighting, gives the final

form we use for the gradient-weighted histogram:

hi(x, y) =
∑

(u,v)∈N (x,y);z(u,v)∈bi

T (g(u, v))D(d(u, v)). (12)

After computing this gradient-weighted hi(x, y), we again use

Equations (4) and (5) to calculate the new height value for a
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single gradient-weighted AHE.

C. Limitations on Height-Dependent Scaling Factors

As the total height range is fixed for the output height field,

HE increases the height difference (i.e. the height contrast)

between certain adjacent height values and decreases others

(see Section IV-A). From Equation (3) we can see that if hi

is great for a certain i, the height difference between z′i and

z′i−1 will be great. If this is too great, problems can arise:

many other i will correspond to small height differences. The

result can be both, shape distortion, and enhancement of any

noise present in the original height field. To limit the contrast

in an AHE approach for image enhancement, Pizer et al. [13]

suggest modifying the local histograms so that no hi(x, y)
exceeds a given limit. Larson et al. [8] suggests the same

modification for standard (global) HE. We follow this idea

and modify the local gradient weighted histogram in the same

way.

In detail, Pizer et al. [13] clip the excess bin contents of

hi(x, y) over a given limit and redistribute the clipped contents

among other histogram bins. They considered two schemes

of redistribution. One uniformly distributes the clipped parts

amongst all bins. The other distributes them into bins with

contents less than the clipping limit, in proportion to their

contents. Their analysis suggested that the former is preferable.

We also adopt the first scheme of uniform distribution, but

implement it more efficiently by distributing the clipped parts

only amongst those bins whose contents are less than the

clipping limit, as we now explain.

If the histogram is clipped at the exact set limit, redis-

tributing the clipped contents uniformly into all bins will

cause the clipped histogram to again rise over the set limit.

Thus, a lower clipping point is needed so that the clipped

and redistributed histogram will be exactly below the given

limit. To find such a lower clipping point, Pizer et al. [13]

suggested an iterative binary search procedure. Larson et al. [8]

also suggested an iterative procedure for an alternative scheme

of redistribution. In our case the histogram does not have

an integer frequency in each bin, so no exact clipping point

can be obtained through an iterative procedure. Instead, as

finding an accurate solution with an iterative procedure is

time-consuming, we use the following non-iterative method

of calculating the exact clipping point.

Let the contrast limit be L(x, y) = cB(x, y) × l/B, where

l ∈ [1, B] is the limit on height-dependent scaling factors,

representing the maximum allowable unit value of height

difference in the output height field with respect to one unit of

height difference in the input. The smaller l, the less we allow

enlargement of height differences from the input to the output.

In the extreme case of l = 1, no enlargement is allowed,

and transformation from the input height field to the output is

linear.

The procedure for clipping and redistributing the histogram

is given in Algorithm 1. The underlying idea is simple. Excess

contents of hi(x, y) over the given limit L(x, y) are clipped

and uniformly distributed into bins with contents less than the

limit. If any bin’s content is over the limit after redistribution,

Algorithm 1 Clipping and Redistributing the Histogram

Input {h1(x, y), . . . , hB(x, y)} and l.
Compute cB(x, y) according to Equation (4).
Compute L(x, y) = cB(x, y)× l/B.
Sort {h1(x, y), . . . , hB(x, y)} in descending order to obtain
{h′

1(x, y), . . . , h
′
B(x, y)}.

Suppose h′
q(x, y) ≥ L(x, y) and h′

q+1(x, y) < L(x, y).
Compute S =

∑
i≤q

(h′
i(x, y)− L(x, y)).

for i = q, . . . , B − 1 do
if S/(B − i) > L(x, y)− h′

i+1(x, y) then
S = S + h′

i+1(x, y)− L(x, y).
else

break.
end if.

end for.
for j = 1, . . . , i do

h′
j(x, y) = L(x, y).

end for.
for j = i+ 1, . . . , B do

h′
j(x, y) = h′

j(x, y) + S/(B − i).
end for.
Reorder {h′

1(x, y), . . . , h
′
B(x, y)} back into

{h1(x, y), . . . , hB(x, y)}.
Output {h1(x, y), . . . , hB(x, y)}.

the overflow is further clipped and redistributed uniformly

among the unfilled bins. We repeat clipping and redistributing

until no remaining bins have contents more than L(x, y).
In our algorithm, hi(x, y), i = 1, . . . , B is first sorted to

avoid having to search for bins with contents over the limit.

A for loop then finds the bin with the smallest content among

all those bins that will reach the limit L(x, y) after clipping

and redistributing the histogram. After finding this bin, all bins

with content greater than or equal to the content of this bin

are allocated a content equal to L(x, y), and the excessive

contents of these bins are uniformly distributed to other bins.

Our algorithm finds the exact solution using a single for loop,

while Pizer et al.’s [13] binary search algorithm only finds an

approximate solution, taking a number of iterations dependent

on the required accuracy.

D. Algorithm

We now combine the above details to give our complete

algorithm. As mentioned earlier, the initial input for our

algorithm can be either a 3D model or a height field. If the

input is a 3D model, we generate a height field from it as

described in Section III. Having a height field z(x, y), we then

employ Algorithm 2 to generate a new height field z′(x, y)
which represents the bas-relief model. We may optionally use a

feature-preserving smoothing algorithm such as [26] to smooth

z′(x, y) if necessary.

In Algorithm 2, zo is the minimum z value of the scene

exclusive of the background in the original height field (we

ignore the possibility of noise in the background for simplicity

of exposition). We tightly attach the scene to the background

before performing AHE by subtracting zo from z(x, y). zmax

is reduced accordingly, and zmin becomes 0. The algorithm

simply sets gradients to 0 for boundary points as we cannot

compute them using the Sobel operator. Although these gra-

dients could be computed using other methods, there is little
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(a) (b) (c) (d) (e)

Fig. 3. Bas-relief produced by our method with different limits on the height-dependent scaling factors: l = 1, 4, 8, 16, 32 from (a) to (e).

Algorithm 2 Bas-Relief Generation Algorithm

Input height field z(x, y), grid dimensions (M,N), number of bins
B, maximum resulting height value z′max, gradient compression
parameter α, limit on height-dependent scaling factors l, minimum
size of neighbourhood m0, and number of neighbourhood levels
n.
zmin = min{z(x, y)}.
zmax = max{z(x, y)}.
zo = min{z(x, y) : z(x, y) > zmin}.
zmax = zmax − zo.
z(x, y) = max(z(x, y)− zo, 0).
δ = zmax/B.
for i = 1, . . . , B − 1 do

bi = [(i− 1)δ, iδ).
end for.
bB = [zmax − δ, zmax].
Initialise T (g(u, v)) according to Equations (7)–(10).
Set T (g(u, v)) to 0 at boundary.
for k = 1, . . . , n do

for (x, y) ∈ [1,M ]× [1, N ] do
Compute hi(x, y), i = 1, . . . , B according to Equations (12)
and (11) with N (x, y) = {(u, v) ∈ S : |u−x| ≤ m and |v−
y| ≤ m} and m = 2k−1m0.
Compute ci(x, y), i = 1, . . . , B, according to Equation (4).
Compute L(x, y) = cB(x, y)× l/B.
Clip and redistribute the histogram according to Algorithm
1 to obtain the clipped histogram hi(x, y).
Compute z′(x, y) according to Equation (5) with z′min = 0,
and let z′(k)(x, y) = z′(x, y).

end for.
end for.
for (x, y) ∈ [1,M ]× [1, N ] do

z′(x, y) = 1
n

∑k=n

k=1 z′(k)(x, y).
end for.
Output z′.

point in doing so, as the boundary points normally belong to

the background, and hence have zero gradient.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides experimental results from our method

and compares them with those of Cignoni et al. [1], Kerber

et al. [5], [7], and Weyrich et al. [6]. In our experiments,

we generated height fields with sizes (M,N) ranging from

624 to 1024. We set the number of bins B to 10000, the

minimum size of neighbourhood m0 to 32, and the number

of neighbourhood levels n to 4. The gradient compression

parameter α and the limit on height-dependent scaling factors

l were set to 1 and 16, respectively, except where we consider

the effects of parameter settings.

The ratio between the x-y size, and the output height range,

was set to 50:1 for these tests; this was used to determine the

maximum output height z′max. Such a ratio is typical of that

found in bas-reliefs of heads on coins, for example.

We first analyse the effects of varying the limit l on height-

dependent scaling factors. Fig. 3 shows bas-reliefs produced

from a Julius Caesar model using l = 1, 4, 8, 16, 32. Note that

l = 1 corresponds to simple linear scaling (see Section IV-C),

and thus degenerates to the method of Cignoni et al. [1]. It

can be seen that large l yields better feature enhancement, but

at the expense of amplifying noise, and sometimes producing

distortion (e.g. see the upper lip for l = 32). In contrast, a

smaller value of l results in smoother surfaces but with less

feature enhancement. We have tried averaging results from

different l values to provide a compromise result, but this

does not effectively suppress noise. We have also experimented

with other ways of combining results with differing values

of neighbourhood size m and limit l, such as averaging the

results with different m directly, or inversely proportional to

l, but no better results were obtained than by using a constant

l and averaging results over different m. In the rest of this

paper, l is set to 16 because in most cases, this produces good

feature enhancement, while noise amplification and distortion

remain low. If output noise is too high, we may use the

feature-preserving denoising (smoothing) method in [26] on

the resulting height fields to provide smoother bas-reliefs.

We now discuss the effects of altering the gradient compres-

sion parameter α. Fig. 4 shows results with α = 0, 1, 5, 10. A

first impression is that there is little difference in the results

except in the case of α = 0, and it is hard to decide which

is better. However, there is a clear difference between setting

α to zero, and some other value. Specifically, comparing the

arms on the bas-reliefs with α = 0 and α = 1, it is clear that

in the former case they look flat, while in the latter case they

appear truer to the original shape. Since setting α 6= 0 gives

better results than α = 0, and since there are no significant

differences in results for different non-zero values of α, we

set α = 1 for all remaining experiments.

Now we turn to compare our method with other bas-relief

production methods. We begin by comparing our method
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Fig. 4. Bas-reliefs produced by our method with different α values: the left column shows the detail of the arms for α = 0 (a) and 1 (b); the middle and
right columns show the whole bas-reliefs for α = 0 (c), 1 (d), 5 (e), and 10 (f).

with those of Cignoni et al. [1] and Kerber et al. [5], [7].

Results for our method, and Cignoni’s, were obtained using

our implementation of both methods. We used the following

parameters: B = 10000, m0 = 32, n = 4, l = 16, and

α = 1, in the rest of our experiments. Results for both of

Kerber’s methods were obtained using code kindly provided

by the author; we used default parameter settings (τ = 5,

σ1 = 4, σ2 = 1, α = 4, and the compression ratio is 0.02).

Fig. 5 shows results using the above-mentioned methods. It

is obvious that Cignoni’s method causes significant features

to become almost invisible, while Kerber’s earlier method [7]

clearly shows the object contours and has high contrast,

but unnaturally exaggerates certain areas and flattens others.

Results of Kerber’s improved method [5] look more natural,

but certain fine features are still not well preserved. The bas-

relief generated by our method also looks natural, and it

preserves an impression of curvature and depth better than

does Kerber’s improved method [5] in such areas as the hands,

the chest, and the knees.

Fig. 6 shows bas-reliefs produced from a real scanned face;

the original data was quite noisy. Thus, we first applied a

feature-preserving smoothing method [26] to the data. Kerber’s

earlier method [7] mainly preserves the contours, but loses

almost all curvature of the face. Kerber’s improved method [5]

preserves curvature well, while our method preserves features

even better in areas such as the nose and the collar. Gener-

ally, our result looks more three-dimensional, having both a

stronger outline with respect to the background, and in such

areas as the ear, nose, and lips. However, Kerber’s improved

result is clearly less noisy than our result.

Next, we compare our method with that of Weyrich et

al. [6], who kindly provided us with output reliefs produced

by their method. To facilitate comparison, we adjusted our

viewing parameters to match theirs as closely as possible.

We furthermore rescaled all output bas-reliefs provided by

Weyrich to match the aspect ratio of ours (50:1), and rendered

both our and Weyrich’s bas-reliefs using the same lighting

conditions and the same material. We compare our results

with Weyrich’s using a flat background, except for the building

model, as our method cannot generate bas-reliefs with negative

heights, while Weyrich’s can. Negative heights can enhance

silhouettes with beneficial effects in architectural reliefs, but

are unacceptable in other applications such as coin and medal

manufacture.

Fig. 7 shows bas-reliefs of a castle model. The merit of our

result is that it emphasises height contrasts and line details
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Fig. 5. Bas-reliefs produced by the methods of Cignoni et al. [1] (a), Kerber et al. [7] (b), Kerber [5] (c) and our method (d).

(a) (b) (c) (d)

Fig. 6. Bas-reliefs of a denoised, real scanned face (a) produced by the method of Kerber et al. [7] (b), Kerber [5] (c) and our method (d).

more than Weyrich’s method. Our bas-relief looks more three-

dimensional than Weyrich’s, an effect also noted in comparison

to Kerber’s method. However, our result is less effective than

Weyrich’s in preserving certain geometric features, and certain

planes in particular are distorted. We suggest that the reader

should try viewing these images from a distance, which is how

they would generally be viewed in practice (or equivalently,

they would be smaller if on coinage). If this is done, most

subjects we have consulted prefer the apparently greater three-

dimensionality of our result, despite the disadvantage of its

greater geometric distortion. We also note that our result shows

some quantisation artifacts. These artifacts can be reduced by

increasing the (x, y) resolution or the number of bins, B, both

leading to greater computational cost. They are also reduced

by choosing smaller l, but then the details become a little

weak.

Fig. 8 shows bas-reliefs of a building model produced by our

method and Weyrich’s. Our result again shows larger height

contrast in some details, e.g. the truck wheels in our result look

sharper. At the horizon, the ground and the sky seem to form

an acute angle in Weyrich’s bas-relief, while it looks more

natural in our bas-relief. Because Weyrich’s method allows

negative heights, this can enhance the silhouette, so, e.g. the

shade of the ground in front of the building is obviously

brighter than the front face of the building in Weyrich’s bas-

relief, while they have similar shades in our bas-relief. In

this case, they are clearly different, but it is hard to decide

which looks globally more three-dimensional when viewing

them from a distance.

Finally, we compare our method with both Kerber’s later

method [5] and Weyrich’s, using the high depth, complex,

table model designed by Weyrich et al. [6]. Fig. 9 shows

bas-reliefs generated by these three methods. Kerber’s method

preserves the least features, especially on the table legs, where

the curvature is almost totally lost. Additionally, it suffers from

poor contrast. Compared to Weyrich’s method, our method

preserves features better in some places but worse in others.

For example, the left edge of the paper on the table (near

the basket holding the pencils) is clearly visible in our bas-

relief, while it almost merges into the surface of the table in

Weyrich’s relief. On the other hand, the pencils clearly show

through the basket in Weyrich’s relief, while they are not so

obvious in ours. Our result is more noisy than those produced

by the other methods. Weyrich’s relief is smoother, and hence

more aesthetically pleasing; it would also be more suitable for

manufacturing. However, it has more obvious bump artifacts

where the thick rods underneath the table cross each other.

There is also a particularly visible bump in the front pen on

the table in their relief, while there is none in ours.

In summary, Cignoni’s method [1] does not adequately

preserve important features. Kerber’s method [7] exhibits good

enhancement of contour features, but unnaturally exaggerates

certain areas and flattens others. The method in [5] is an

improvement on the method in [7], and preserves certain

features naturally, but in some cases fails to preserve fine

details. Both Weyrich’s method and ours preserve features
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(a) (b)

Fig. 7. Bas-reliefs of a castle model produced by Weyrich et al. [6] (a) and our method (b).

(a) (b)

Fig. 8. Bas-reliefs of a building model produced by Weyrich et al. [6] (a) and our method (b).

more naturally. Generally, however, our results preserve more

details than theirs, whereas their results preserve curvature

better. In addition, their bas-reliefs are less noisy than ours,

but show more obvious bump artifacts than ours. Our method

probably produces the most three-dimensional looking reliefs,

but at the expense of greater distortion of planar features.

However, such distortion of planar features may at times be

preferable, because it results in bas-reliefs which look more

three-dimensional. This effect is analogous to the creation of

halo artifacts in tone mapping, where distortion, rather than

faithful reproduction, of the luminance in the captured scene

is preferred, as it leads to increased contrast.

We have not compared our approach with Song et al’s [4].

Their resulting bas-reliefs preserve salient features of the

original 3D shapes well. However, just as the authors note and

show in their paper, their technique results in some distortions,

and does not enhance the shape silhouette of the shape.

One drawback of our current, unoptimised, implementation

is that it is very time-consuming. For example, using a PC

with a 3.2GHz Intel Xeon CPU and 2.0GB of RAM takes

almost 1 hour to process the table model with an (x, y)
resolution of 1024 × 725 and B = 10000 height levels.
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(a) (b) (c)

Fig. 9. Bas-reliefs of a table model produced by Kerber [5] (a), Weyrich et al. [6] (b) and our method (c).

However, potential exists for greatly speeding the computation

using the methods described in [13] and [27]. A suitable

sampling and interpolation method can save over an order of

magnitude in time [13], and use of bucket sorting can reduce

the computational complexity from O(r2) to O(r) [27], where

r is the window radius. These assertions are supported by

experimental results provided by [13] and [27], and give us

strong grounds to expect that our current computational cost

could be reduced to well under one minute if both acceleration

techniques were used.

VI. CONCLUSIONS

Bas-relief generation is closely related to HDR compression,

and so many HDR compression methods can potentially be

modified for application to bas-relief generation. In this paper,

we have adopted the adaptive histogram equalisation approach

to image contrast enhancement so that it also takes into

account gradient information, allowing it to be used to process

height fields for bas-relief generation while enhancing shape

features. Our method is simple, and experimental results show

that our method can generate bas-reliefs with good shape-

feature preserving properties. Compared to other state-of-the-

art approaches, our results are competitive, having somewhat

different advantages and disadvantages.

The algorithm in this paper works on a gridded discrete

height field, and the detail-preserving properties of the result-

ing bas-relief are dependent on the resolution of the height

field in all three dimensions (x,y,z). Higher resolution will

preserve finer details, but at increased computational costs.

Given sufficiently high resolution, fine details are preserved,

and quantisation artifacts are no longer visible. In future, we

intend to investigate using exact mesh representations for bas-

relief generation.
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