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Abstract. A previous paper to the Camahan Conference (Zurich. 1989) 
[ 7 ]  described the development of a knowledge-based vision recognition 
system for automating the interpretation of alarm events resulting 
from a perimeter intrusion detection system (PIDS). Measurements 
extracted over a sequence of digitised images are analysed to identify 
the cause of alarm. Models are maintained for both alarm causes and 
the scene and the measurements are matched with the models to derive 
an appropriate classification of the event. 

In this paper we record progress on the further development of the 
system and present the results of applying it to a number of real 
alarms. The system is shown to behave robustly, correctly classifying 
genuine alarm events (i.e. human intruders) and providing statistics 
of false alarm events. It has also been exercised under a wide range 
of illumination conditions. for both long-term (e.g. day/night 
transitions, shadows cast by movement of the sun) and short-term (e.g. 
clouds, shadows caused by trees moving in the wind etc.) variations. 

Introduction 

The problem of detecting moving objects in sequences 
of images is of interest in many fields. Examples 
include target tracking for the military (e .g .  [ Z ] )  
and visual surveillance systems. Whilst the more 
general problem of motion includes both motion in the 
scene and ego motion of the image sensor, surveillance 
systems are more typically concerned with static 
camera scenes, locating and classifying object motions 
1 5 1 .  This constraint tends to simulifv the task of 

A dominant paradigm in current machine vision systems 
uses explicit (usually rigid and geometric) models to 
describe objects. While appropriate for representing a 
wide class of man-made objects, geometric models do 
not adequately describe most natural objects such as 
trees, animals, and landscape because of their wide 
variety in form and shape. In addition, monocular 
images of such objects in motion (e.g. animals) 
introduces further ambiguities due to the changing 
viewpoint, complicating any recognition scheme based 
on projected shape profiles. 

L .  . -  
motion detection and image differencing is a commonly used technique. However, this places considerable A further difficulty in the current work of using such 

models lies in the poor spatial resolution of target 
objects. As a consequence of the large range of depth reliance on maintaining a reliable reference image, 
(over 100 metres) and a minimum obiect size which and much work has been done in this area [l]. 

In an earlier paper [7] we described the first phase 
in the development of a knowledge-based vision 
recognition system for automating the interpretation 
of an alarm event resulting from a perimeter intrusion 
detection system (PIDS). Sequences of digitised 
images, captured over the period of an alarm resulting 
from some physical event (typically, an animal), xre 
analysed to identify the cause of alarm. ( A  
complimentary system has been developed to detect 
weather-related alarms [ 4 ] ) .  The system maintains 
models of possible alarm causes, as well as modelling 
the imaged scene. Images are processed to detect and 
extract measurements from motion-related events and 

would correspond to a small bird at-the extreme of 
this range, the poor quality of structural information 
that can be extracted from the detected objects in the 
image precludes the use of structural models to 
represent the objects. In its absence, we have 
represented the objects by simple features (projected 
area, maximum velocities and accelerations. estimates 
of object height etc.) and observable behaviour 
patterns (e .g .  birds tend not fly in heavy rain or 
wind). Without the image resolution to detect 
structural information, we must accept large error 
ranges for these parameters, since we will be unable 
to obtain precise information on viewpoint projection. 

these are matched with the to derive an TO help overcome some of these problems we take 
advantage of the constraint associated with the static appropriate classification of the event. 

In machine vision terms, the problem of tracking 
complex articulated objects in outdoor scenes of the 
real world using a monocular view is inherently under- 
constrained. Major problems arise from occlusion, 
shadows, changing viewpoint, and variations in 
lighting conditions caused by changes in the ambient 
light levels due, for example, to clouds. These give 
rise to segmentation errors and missing data, and 
introduces uncertainty and ambiguity to the model 
matching process. 
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camera position, together with the assumption that 
significant changes of intensity between images in the 
sequence correspond to moving objects. On this basis, 
a simple image segmentation algorithm (image 
subtraction followed by thresholding) is sufficient to 
detect movemenTA further assumption is that objects 
are in contact with one of the modelled surfaces in 
the scene. Using a camera and scene calibration model 
we can then estimate the distance of the object from 
the camera and scale pixel measurements into real- 
world units. 



The alarm classification system has been developed 
within a knowledge-based system (JIBS) for vision 
called FABIUS [8,9]. FABIUS is a frame-based system 
for image interpretation written in Prolog. It 
combines the object oriented taxonomic structure of 
frames, with the problem solving and general 
inferencing mechanism of a logic language like Prolog. 
It incorporates mechanisms to support property 
inheritance, which allows common properties to be 
inherited by links between frames and decompositional 
hierarchies which allow complex models to be described 
by decomposing them into sub-parts. Other features 
include defaults, value restrictions, and demons, as 
well as value and relational constraints. 
Probabilistic updating [ 6 ]  is used to match image data 
to object models and determine the classification of 
the event and image processing algorithms, written in 
'C' for efficiency, are called directly from within 
the system. 

This paper records progress on the development of the 
system and presents the results of applying it to a 
number of real alarms. The system is shown to behave 
robustly on the current test data, correctly 
classifying genuine alarm events (i.e. human 
intruders) undertaking a range of activities (crossing 
alarm zones, crawling, climbing fences, etc.). It has 
also been exercised under a wide range of illumination 
conditions, for both long-term (e.g. day/night 
transitions, shadows cast by movement of the sun) and 
short-term (e.g. clouds, shadows caused by trees 
moving in the wind etc.) variations. The system is 
currently being modified to cope with other weather- 
related "noise", largely resulting from camera 
movement a 
wider range of alarm examples. 

The next section provides an overview of the initial 
classification system, described more fully in [7]. 
Following this, we describe in detail modifications to 
the system. Finally, we present results of applying 
the system to a range of real alarm events, and 
discuss further improvements which are currently being 
investigated. 

caused by the wind and is being tested on 

Earlier Svstem 

Since the cameras are fixed, scene models can be 
constructed for individual camera positions. Three 
models were made: an approximate range map, a map of 
the areas covered by the various alarm sensors, and a 
segmentation map of the scene in which distinct areas 
such as ground, fence, sky, etc. are labelled. All 
these models were stored as images for ease of access. 
Looking up a value is simply a matter of reading the 
image at the appropriate location. 

Each object model was represented by a frame 
containing a list of properties to be matched against 
the properties of features extracted from the image. A 
pair of weighting values associated with each property 
are used to update the probabilities for and against 
the model. Measurements were converted to probability 
values by one of a set of pre-defined probability 
distribution functions before the weightings are 
applied. The size of the object and the range of 
expected locations were the sole properties used. 

Successive frames in the image sequence were 
subtracted from a reference image which depicted the 
scene in its undisturbed state. The differenced images 
were thresholded using a fixed threshold value of 8. 
Isolated image blobs were detected in the image, and 
measurements made of their size, centroid, minimum 
bounding rectangle, location and sequence number, as 
well as several measures of shape. All objects with an 
area less than 10 pixels were discarded as likely to 
be noise. 

A co-ordinate from the bottom edge of the bounding 
rectangle was used to look up the scene segmentation 

map and label the object's location within the image. 
The same co-ordinate also pointed to the range of the 
object in the scene range map, which determined the 
appropriate scaling factor for calculating the area of 
the object in square metres. 

Object sequences were made up from blobs in 
consecutive frames with the Euclidian distance between 
blobs constrained to be less than a threshold. The 
sequences were matched against the set of models 
associated with the alarm causes, and classified as 
the best matching model. 

Current Svstem 

Imaee Models and Calibration 

In the original scheme, image-based models of the 
static scene were used to provide identification 
information about object location (segmentation map), 
detection sensor zone (alarm map) and a range map. 
Given the (x,y) coordinates of some particular point 
of interest in the image sequence (e.g. the location 
of a detected object) it is a simple matter to 
determine the object's location and range by looking 
up this information in the associated map. Similarly, 
we can determine if a track intersects with any 
specified alarm zone. Whilst this representation is 
convenient in image form, allowing a very quick and 
simple lookup operation to determine object location 
etc., it is very inefficient in storage terms, 
requiring 0.25 MByte of image memory storage. To 
reduce this requirement, at some small sacrifice to 
speed of access, we encode the boundaries of the 
prescribed regions using a set of polygonal 
approximations. The task of extracting object location 
or alarm zone then becomes a search through the set of 
closed polygons determining inside which polygon the 
point lies. For the segmentation map shown in the 
previous paper [7], only 40 coordinate pairs of points 
are required to represent the boundaries. 

The second part of the scene modelling enables range 
(distances to the camera) measurements to be made on 
the objects. Consideration of the geometry of the 
scene and the focal length of the camera allows 
adequate estimates of object range. This, combined 
with a small number of camera measurements, the camera 
position and the orientation of surfaces in the scene, 
allows estimates of range to be calculated knowing the 
coordinates of an object that touches the ground plane 
or some other modelled surface. (Note: This assumption 
is invalid for birds in flight. In this case, we tend 
to underestimate the distance of the bird from the 
camera, producing an overestimate of the objects size. 
Similarly, we would tend to underestimate the speed of 
the object, though this is complicated if the bird is 
flying directly towards the camera). 

Obiect Models 

The frame-based representation supports relationships 
between models through hierarchical properties and 
also makes use of this hierarchical relationship in 
order to associate and match low-level image data with 
models. Figure 1 shows the hierarchy constructed for 
the current task. At the top-most level of the 
hierarchy, alarm causes are divided into two major 
classes - human and non-human. The non-human class 
breaks down into further sub-groups associated with 
other animal types and other possible types of alarm 
(i.e. genuinely false). Each object model has 
essentially two parts. The first describes the 
measurement parameters associated with single 
instances of the class, whilst the second reflects 
properties of the motion (maximum speed, 
acceleration). 

Each object model is partitioned into two components: 
the first part is associated with characteristics of 
the invidual instances of the animals, and the second 
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Figure 1. Hierarchy diagram for the interpretation 
system. 

describes the dynamic behaviour of the animals (speed, 
acceleration). Figure 2 shows an example of a model 
used to describe a fox. This describes the object as a 
kind of animal, via which it inherits properties of 
the general class of animals. The model describes some 
common physical properties of the fox which must be 
matched against a set of primitive features extracted 
from the images. A pair of weighting values are 
associated with each property, which are used to 
update the probabilities for and against the current 
model. Evidence values (measurements) are first 
converted to probability values (pdf) by one of a set 
of pre-defined functions (e.g. downslope), before the 
veightings are applied. The large ranges associated 
with some of the measurements reflect the uncertainty 
due to natural variation, and image detection errors. 

frame fox 
ako value 
scaled-area weight 
scaled-area pdf 
location weight 
location one-of 

frame fox-sequence 
ako value 
sequence-of value 

speed weight 
acceleration pdf 
acceleration weight 

speed Pdf 

alarm 

[band,0.06,0.1,0.30,0.35] 

[ground,trees] 

~ 5 1  

[3,101 

sequence 
fox 
[band,0.0,0.0,8.0,15.0] 

[band,0.0,0.0,0.5.0.6] 
~ . 5 1  

[is1 

Figure 2. Model description frame for a fox. 

-- Detection and Confusine, Factors 

In order to achieve acceptable levels of reliability, 
the system must be able to cope with a range of 
confusing factors which can give rise to alarm events, 
o r  which may occur during the period of an alarm. 
Although the object detection mechanism we employ 
(image differencing) is quick and efficient, it 
responds equally to both objects of interest, such as 
animals, and other contrast changes, arising for 
example from shadows. 

In general, in an outdoor scene, the illumination 
levels change continuously. Long term variations (as 

opposed to moving objects) arise from changes in the 
ambient light levels and the gradual movement of 
object shadows resulting from the changing position of 
the sun. By maintaining a reference image vhich is 
regularly resampled (in time), we can adapt to such 
variations. Sudden but long term changes (e.g. 
floodlights turned on) are detected independently of 
the vision system, and such events can inform the 
system to sample a new reference image. 

Sudden short-term changes generally result from the 
effects of the wind - fast moving clouds give rise to 
large scale intensity changes over the image; trees 
and the shadows they cast can result in objects in the 
detected image which are characteristic of (usually 
small) animals. 

The differencing technique we have used for extracting 
areas of movement relies on the availability of good 
reference images. Reference images that do not 
accurately depict the same scene background as the 
image sequence will result in poor difference images, 
generating spurious blobs. The recording system 
currently provides reference images updated every 
fifteen minutes. While this is usually adequate, 
certain conditions can lead to problems. Early or late 
in the day, when the sun is low in the sky, objects 
(such as trees) cast long shadows. Even a delay of 
fifteen minutes can produce a significant shift of the 
shadow. Another problem is that since the reference 
image is automatically generated there is no guarantee 
that there are no objects such as animals or birds in 
the scene. When differenced, these will generate 
spurious stationary animals or birds. 

Alternative methods exist which generate a reference 
image directly from the image sequence [l]. We have 
developed a temporal median filter for this purpose. 
Each pixel in the reference image is generated by 
reading the corresponding pixels at the same location 
in each of the eight sequence images, and choosing the 
median of the eight pixel values. When the objects 
move substantially this produces good results. 
However, if some pixels are set to the foreground for 
the majority of the sequence, then the reference image 
will contain some foreground as well as background. 

Currently blobs are extracted from the differenced 
image after applying a dynamic global threshold. The 
histogram of the differenced image is calculated, and 
the potential threshold is stepped down until the 
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Figure 3 .  (a) Composite image (over 8 frames) showing 
two rabbits running through the scene. (b) Results of 
sequence detection, showing two tracks detected. 

thresholded area shows a very large increase. This 
signifies that the noise level has been reached. and 
the threshold is stepped back to before the increase. 
An improvement would apply local thresholds rather 
than a global one. since local contrast levels can 
vary considerably across image. 

The static camera model provides reasonable detection 
in the majority of cases. However, in relatively heavy 
vinds, camera shake can severely disrupt the picture 
subtraction algorithm, generating considerable noise 
in the differenced image. We are currently using a 
cross-correlation technique to detect and correct this 
camera shake by applying shifts to the image. The 
correlation is performed in the horizontal and 
vertical directions, using a pair of arbitrary lines 
through the centre of the image, and are correlated 
vith two equivalent lines in the reference image. In 
the current implementation, we use a zeroth-order 
interpolation scheme for correcting the shake. 
shifting the image with respect to the reference by a 
whole number of pixels, rounded up from the 
correlation value. Whilst this does not entirely 
eliminate the noise from the differenced image, it can 
considerably reduce it. This correction procedure need 
only be invoked in windy conditions. a situation which 
can be anticipated by examining the associated data 
file for the sequence. 

Because the shake is rather fast (due to the stiffness 
and length of the mounting pole), pairs of image 
fields may also exhibit considerable differences as a 
result of using an interlaced image, complicating both 
the detection and correction processes. To overcome 
this, ve halve the resolution of the image by 
discarding one of the interlaced fields, and perform 
the correlation on the remaining field. Of course, 
this has the effect of reducing the spatial resolution 
of the image and will reduce our ability to detect 
very small objects, but under such circumstances we 
can at least satisfy our main goal of detecting very 
large (human-size) events. 

Seauence Detection 

Object recognition is applied to a consistent temporal 
sequence of detected image blobs. In general, we are 
not interested per se in tracking objects through the 
scene. Hovever, identifying blobs that form a 
consistent sequence is a valuable tool for identifying 
significant blobs and eliminating "noise" blobs that 
only occur sporadically. A search is made over the set 
of image primitives measured from each image in the 
sequence, and consistent blob sequences are determined 
vith the following criteria: 
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1) The 3D distance between blobs is less than a 
threshold which represents the maximum distance an 
object would be expected to move over the interframe 
sampling period. Currently, a threshold of 10 metres 
per second is used, approximating a bird in (slow) 
flight. As this is only an upper limit, it is a weak 
constraint, and groups of slow moving blobs vi11 
generate many sequences. 

2) There must be some consistency in the area blobs 
within a sequence. However, due to changing viewpoint 
and the possible articulation of subparts, an object's 
size may vary significantly. In addition, allowance 
must be made for measurement errors. Thus, the area of 
blobs are loosely constrained to lie within a factor 
of three. 

3 )  The sequence must exist over a contiguous, minimum 
number of images in the sequence. At present, this is 
set to 5.  

4 )  The blobs must form a relatively smooth track. 
This is determined by averaging the magnitude of the 
acceleration of each blob over a sequence of three, 
and accumulating this value over the entire sequence. 

Candidate sequences are generated over the full set of 
image primitives, using criteria 1-3, for all possible 
combinations. Valid sequences are then 
these sequences by identifying thos 
smoothest tracks. 

Model Matching 

Finally, the valid sequences are evaluated by the 
probabilistic model matching function within FABIUS. 
Probabilities are derived from image feature 
measurements and are weighted to reflect their 
significance to the object model. Feature 
probabilities within an object model are combined and 
propagated up to the sequence model. The sequence is 
finally classified as the model with the highest 
probability rating over all te object models, over all 
the object models. 

Results 

The image sequences used in the interpretation are 
typically 8 frames in length, with frames spaced at 
approximately 0.5-1.0 seconds. The sequence is taken 
during the alarm event, with typically four images 
before and four after the actual event. Each image is 
a 512x512 resolution image, digitised to 8 bits 
intensity resolution [3] .  



(a) 

Figure 4. (a) Binary detected objects overlaid onto 
original image from the sequence, showing two birds 
(and shadows). (b) Results of sequence detection for 
four tracks. 

This section presents some preliminary results of 
applying the interpretation system to approximately 30 
image sequences. Even for very low contrast images it 
performed well, reliably detecting movement and 
extracting the image blobs. Forming sequences has 
proved effective as a temporal filter, removing noisy 
image blobs while robustly detecting valid object 
tracks. In all image sequences reliable human/non- 
human classification is achieved. In three non-human 
sequences the subclassification is incorrect, 
labelling rabbits as large birds, for instance. 

Figures 3-5 show examples of the blob and sequence 
detection. They show the results of processing three 
example image sequences. Figure 3a is a composite 
image (formed by combining a sequence of 8 images) of 
a pair of rabbits running though the foreground. 
Figure 3b shows the two sets of tracks generated by 
the sequence detection. Since the rabbits are not 
present in all eight of the frames, the sequence 
detector selects a common object for the last frame, 
apparently merging the two sets of tracks. 

Figure 4a shows the binary detection image of two 
birds (plus shadows) taking off, overlaid onto one of 
the images from the sequence. Figure 4b shows the four 
sets of tracks that are detected the motion (i.e. both 
birds and shadows). 

Finally, figure 5a shows the detection image of a 
person running across the scene. Due to only slight 
contrast changes between parts of the persons clothes 
and the tree shadow, the detection image is "broken 

as shown by the set of detected image blobs shown 
%"figure 5b. The sequence detector selects the most 
consistent set of blobs to form a track, as shown in 
figure 5c. 

We are currently performing more extensive testing 
a larger set of several hundred example sequences. 

on 

Discussion 

Several stages in the image analysis are problematic, 
and their improvement would increase the robustness 
and generality of the system. Some of these 
difficulties are outlined, and possible solutions are 
given. 

Object classification is principally based on size. 
However, an object's size may vary significantly due 
to several causes: changing viewpoint (e.g. animal 
turning), articulation of subparts (bird wings opening 
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and closing), and shadows becoming attached to the 
object during thresholding. Such variability of size 
necessitates loose bounds on object model sizes, vhich 
in turn causes considerable overlap of object models. 
Thus, fine distinctions between objects cannot be 
reliably made. This is the reason several rabbits were 
mis-classified as large birds. 

Camera shake, experienced in strong winds, remains a 
problem. The correlation method described earlier 
works adequately if the camera motion is purely 
horizontal or vertical, but if the camera suffers any 
rotational movement, then it performs poorly. To 
correct for this, a more general affine transformation 
of the image would be more appropriate, but 
computationally more expensive. 

The affects of wind are also apparent for trees, or 
tree shadows, which are imaged in the scene. These 
tend to generate a number of both large and small 
objects in the differenced image, and tend to overload 
the sequence detection (see below). We are currently 
trying to generate appropriate models of such tree 
motion in order to minimise this problem. 

Forming sequences is a combinatorial operation since 
all combinations of blobs through the image sequence 
that satisfy the loose constraint on an object's upper 
speed limit are calculated. Only then can the best 
paths (in terms of smoothness, etc.) be selected. When 
many blobs are present this technique becomes 
impracticably slow. Two solutions are currently being 
considered. Sequences with many small blobs usually 
arise from flocks of birds. In this case, tracking all 
the birds is unnecessary. Instead, it is more 
efficient to directly classify the sequence as a flock 
of birds if many small blobs exist, but no larger 
blobs are present. Alternatively, a sequence finder 
could be implemented that does not consider all 
possible tracks, but applies heuristics to prune the 
search space. This would have the advantage of speed, 
but would result in sub-optimal sequences. 
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Figure 5. (a) Detected object for a person running 
across the scene. (b) set of image 'blobs' detected. 
(c) extracted sequence. 
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