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ABSTRACT 

Many different kinds of feature have been used as the basis for shape retrieval from image databases. This 

paper investigates the relative effectiveness of several types of global shape feature, both singly and in 

combination. The features compared include well-established descriptors such as Fourier coefficients and 

moment invariants, as well as recently-proposed measures of triangularity, rectangularity and ellipticity. 

Experiments were conducted within the framework of the ARTISAN shape retrieval system, and retrieval 

effectiveness assessed on a database of over 10 000 images, using 24 queries and associated ground truth 

supplied by the UK Patent Office. 

Our experiments revealed only minor differences in retrieval effectiveness between different measures, 

suggesting that a wide variety of shape feature combinations can provide adequate discriminating power for 

effective shape retrieval in multi-component image collections such as trademark registries. Marked 

differences between measures were observed for some individual queries, suggesting that there could be 

considerable scope for improving retrieval effectiveness by providing users with an improved framework 

(such as relevance feedback) for searching multi-dimensional feature space. 
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1. INTRODUCTION 

Retrieval of images from a database on the basis of shape similarity is one of the most challenging problems currently 

facing researchers within the field of CBIR. Shape similarity matching techniques are of importance both in their own right 

(for applications such as fingerprint identification, trademark image registration, and engineering design retrieval), and as 

components of more general object identification and image retrieval systems. Even though shape similarity matching has 

been the subject of research for over two decades, no completely satisfactory technique has yet been developed. This is 

largely due to the difficulty of devising shape similarity measures that accurately model human visual perception, an issue 

discussed by Ren et al1, who highlight the gulf between experimental findings on human similarity judgements and current 

techniques for automatic image similarity matching, and by Latecki and Lakämper2, who postulate five requirements that 

any useful shape measure needs to meet: 

(a) It should permit recognition of perceptually similar objects 

(b) It should not be affected by noise or segmentation errors 

(c) It should preserve significant visual parts of objects 

(d) It should be independent of scale, orientation or position of objects 

(e) It should not be restricted to any particular class of shapes 

Like Ren et al, they hold that since the first three requirements are of a cognitive nature, they should be tested by cognitive 

experiments - unlike the latter two, which can be demonstrated by mathematical arguments - though their paper does not 

specify the nature of these cognitive experiments. As discussed below, the design of such experiments is not a trivial task.  

Our paper reports the results of one series of experiments aimed at testing the overall retrieval effectiveness of a number of 

different shape measures, using ground truth from previous evaluation experiments based on real-life shape queries and 



similarity judgements. In Latecki and Lakämper's terms, it thus represents an attempt to assess whether the measures tested 

can satisfy their first three criteria sufficiently well to prove operationally useful in a restricted but important domain - 

trademark image registration. 

2. SHAPE SIMILARITY MATCHING 

2.1  Techniques for similarity matching 

A wide variety of techniques for shape similarity matching has been proposed over the years, though few (if any) have been 

shown to meet the criteria set out above. Some are based on direct matching of complete (information-preserving) 

representations of object shape, such as chain-codes or splines. Examples of this class of technique include string-matching 

of chains of boundary pixels3 comparison of turning angle4 and elastic deformation of templates5. Methods of this kind can 

have high discriminating power, at least when matching highly similar shapes, but often involve a matching process which 

is computationally very expensive. Hence most frequently-used techniques for shape similarity matching are based on the 

comparison of features such as edge direction histograms or moment invariants, which can capture important aspects of an 

object's appearance, but which cannot be used to reconstitute its entire shape. Commonly-used types of feature include: 

 Simple global features. Several computationally simple measures of a region's overall shape have been proposed over 

the years, such as aspect ratio, circularity, and convexity6. Though widely used in the past, such features have become 

less popular as the overhead of using the more computationally expensive features listed below has been rendered less 

significant by increases in computing power. 

 Local features. Features representing shape characteristics of small regions of an image can often act as a useful 

complement to global measures. Examples include the line-angle-line triplet features devised by Eakins7, and the longer 

segment sequences used by Mehrotra and Gary8. Their use in operational image retrieval systems to date has been 

limited. 

 Edge direction histograms. Another indirect measure of shape within an image is to compute a histogram of edge 

directions by identifying edge pixels, computing edge directions, and accumulating these into bins at appropriate 

intervals9. This can give an indication of directionality within the image, though not necessarily the shape of any object 

it depicts. Such measures are included in at least one commercially available CBIR system. 

 Fourier descriptors. A very popular way of representing a region's overall shape is to represent the cumulative curvature 

around the boundary as a function of curve length, and expand this function as a Fourier series10:  
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The coefficients Ak and ak, the kth harmonic amplitude and phase angle respectively, known as the Fourier descriptors 

of the curve, provide a description of the curve which appears to reflect its overall shape fairly consistently. 

 Moment invariants. For any digital image I(x,y), it is possible to compute a series of central moments pq, defined as  
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from which a series of moment invariants n can be derived which characterize shape in a manner which is invariant to 

scaling, rotation and translation11. Moment invariants have been widely used in image analysis for many years. 

 Affine moment invariants. A set of four moment invariants, invariant under the general affine transformation  
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was proposed by Flusser and Suk12, who demonstrated the value of such invariants in matching objects deformed by 

affine transforms. 

 Zernike moments. The Zernike moment of order n with repetition m for image I(r,) is defined as: 
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where Rnm(r) are the set of radial polynomials originally defined by Zernike13. Zernike moments have the useful property 

of orthogonality, and have been applied to a number of image analysis problems, including trademark recognition14.  



2.2  Effectiveness of different techniques 

Little hard information on the relative effectiveness of different shape representation and matching techniques is currently 

available, since few cognitive studies of the kind called for by Latecki and Lakämper2 have yet been carried out. Even fewer 

have yielded results which can be relied on. Although most reports of new image retrieval techniques do now include 

quantitative data on retrieval effectiveness, judgements on what constitutes a match are all too often made by the 

development team themselves. Since such judgements are inherently subjective, this inevitably introduces an element of 

subconscious bias - a problem well recognized in the wider information retrieval field15. A recent study by Squire and Pun16, 

comparing the results of human and machine classification of images by similarity of appearance, confirms that this 

problem does indeed exist in the field of image classification and retrieval. One of the most striking results of their trial was 

that the judgements made by the paper’s author (who had also developed much of the software) correlated far better with the 

machine’s results than any of the independent observers - highlighting the dangers of relying on in-house judgements.  

Such considerations limit the validity of the results reported by Mehtre et al17, who compared the effectiveness of several 

boundary- and region-based shape methods (including Fourier descriptors, moment invariants, and Zernike moments) over 

15 queries put to a database of 500 trademarks. All shape measures seemed to perform well, with moment invariants the 

best single technique, and moment invariants plus modified Fourier descriptors giving the highest overall scores. 

Unfortunately, the authors failed to obtain independent judgements of the relevance of each retrieved image to each query.  

Rather different results were reported from a study conducted by Scassellati et al18, which compared machine estimations of 

shape similarity with those of independent human observers. Their experiments were designed to assess the relative 

effectiveness of a number of different methods for automated shape similarity assessment, including algebraic moments, 

parametric curve distance, turning angle, and modified Hausdorff distance. 40 human subjects were asked to scan a database 

of 1415 simple shapes to identify all shapes they considered similar to each of 20 query shapes. Machine rankings of 

similarity were then obtained for each of the 20 queries, with each similarity assessment technique. The effectiveness of 

each technique was calculated from the total number of times each of the top 20 retrieved images had been selected by 

human judges. In contrast to Mehtre et al, Scassellati et al found that no technique performed particularly well (scores were 

typically only 20-30% of perfect performance), though turning angle appeared to give better overall performance than any 

other method. It seems premature to draw any firm conclusions from either study about the effectiveness of different shape 

retrieval techniques.  

2.3  "Natural" shape features 

The concept of shape similarity is clearly a problematic one. More understanding of human visual perception is needed to 

tackle the shape matching and retrieval problem successfully. Unfortunately, few detailed investigations of human shape 

similarity judgement have been reported in the literature. Studies such as those of Goldmeier19 provide fascinating insights 

into the process of shape similarity estimation. But they do not in themselves directly lead to definitions of shape features 

capable of modelling human similarity judgements.  

One source of features which has received surprisingly little attention in this respect is the set of generic shapes which are so 

well known that they are distinguished by name, such as square, triangle or circle. Such features play an important part in 

the development of shape recognition capabilities in children20, and it can be hypothesized that the ability to recognize such 

basic features is a fundamental part of the mechanism of human shape characterization. Support for this hypothesis comes 

from the fact that some of the principal shape classes in well-known manual classification systems like the Vienna 

classification of trademark images21 are triangles, circles, and squares. Similarly, Dyson and Box's investigation of elements 

that human observers found useful in distinguishing between pairs of images in order to derive a set of features of potential 

use in image retrieval showed that some of the most frequently used features were triangles, rectangles, circles and 

ellipses22. It therefore seems reasonable to postulate that the degree to which a shape can be regarded as (say) a triangle or a 

rectangle could be a useful feature for retrieval. While circularity has been extensively used as a measure in computer 

vision, few other types of shape have received attention. Recently, however, Rosin has proposed and evaluated a number of 

possible measures of triangularity, rectangularity and ellipticity, showing that they have considerable promise as 

perceptually significant shape discriminators23. Their robustness to noise and variation in aspect ratio could be particularly 

valuable in discrimination of artificial images designed to have a strong visual impact, such as product designs and 

trademarks. 



3. TRADEMARK IMAGE RETRIEVAL 

3.1 Techniques for trademark matching 

Trademark registration is a process of considerable commercial significance. It is the task of trademark registries around the 

world to ensure that when a new trademark is submitted for registration, it is sufficiently distinct from all existing marks 

that there is no danger of confusion. Trademarks may consist of words, images or a combination of both: images may be 

abstract geometric shapes, illustrations of real or mythical beings, or any combination. The process of analysing trademark 

image similarity is clearly complex. Wu et al24 have identified three components of similarity - shape, structure and 

semantics. Traditionally, trade mark registries have relied on manually-assigned codes from schemes such as the Vienna 

classification21, which mixes all three elements to some extent. 

The earliest report of a CBIR system designed specifically for trademark image retrieval is that of Kato25, who describes a 

system known as TRADEMARK. This used the relatively simple approach of mapping normalized trademark images to an 

8  8 pixel grid, and calculating a GF-vector for each image from various pixel frequency distributions. Query and stored 

images could then be matched by comparing GF-vectors. Kato’s system matched trademarks purely as complete images, 

though most subsequent researchers have regarded trademark images as multi-component objects, capable of being matched 

at more than one level. For example, the STAR* system developed by Wu et al24 allows human indexers to segment 

trademark images into perceptually meaningful components, from which shape features such as Fourier descriptors and 

moment invariants are extracted. Overall similarity between trademarks is expressed as a distance measure computed from 

the weighted sum of component distances. Peng and Chen26 take the principle of component matching one stage further. 

Their technique involves approximating each image component as a set of (possibly overlapping) closed contours, and 

representing each contour as a list of angle descriptors. Images are then matched in hierarchical fashion: contour-contour, 

component-component and finally image-image, using appropriate similarity functions to propagate similarity values 

between levels.  

Some researchers prefer to match trademarks as complete images. Jain and Vailaya27, for example, describe a technique for 

shape retrieval based on comparing normalized edge histograms from whole images. They demonstrate its usefulness in 

retrieving scaled, rotated and noisy versions of a given image. Kim and Kim14 show how Zernike moments can be used to 

capture rotational symmetry in an image, and illustrate their potential usefulness in retrieval with a number of examples. 

The authors suggest that these descriptors need to be combined with other types of feature to achieve fully effective 

retrieval. An alternative approach to multi-level trademark image representation and matching is that of Ravela and 

Manmatha28. They compute Gaussian derivatives for every point on the image at several scales, and then derive histograms 

of local curvature and phase. Image matching is then performed by calculating normalized cross-covariance between 

curvature and phase histograms. Their system has been used as the basis for a combined prototype text and image search 

engine which is currently being tested on a database of 63 000 US trademarks.  

It is currently not possible to compare the effectiveness of these alternative techniques, since no comparative evaluation 

studies have been performed. The fact that no CBIR system is currently in routine use at any national trademark registry 

suggests that no system yet meets the exacting standards required by trademark examiners. 

3.2  The ARTISAN project  

The ARTISAN† system29, developed at the University of Northumbria in collaboration with the UK Patent Office, is based 

on an underlying philosophy similar to that of STAR, though with a rather more restricted scope. It relies for shape 

matching on a combination of simple global features calculated both from individual image components and from 

perceptually significant families of components. Unlike STAR, ARTISAN identifies these perceptually significant regions 

automatically. Images are automatically segmented into closed-boundary regions, which are then aggregated into 

perceptually significant groupings known as families, using principles derived from Gestalt psychology30. Features are 

extracted and stored at the level of both the family and the individual component, allowing matching to be performed at the 

level of the entire image, the component family, or the individual component. The system also allows a choice of matching 

paradigms, to cope with the fact that in general, query and stored images have different numbers of components. 

The retrieval effectiveness of version 1 of ARTISAN has been evaluated using a selection of real queries put to a database 

of 10 745 abstract geometric images from the UK Trade Marks Registry31. Overall retrieval effectiveness scores were 

encouraging, but not good enough for operational use. Work is now under way on the development of an improved version 

                                                           
* System for Trademark Archival and Retrieval 
† Automatic Retrieval of Trademark Images by Shape ANalysis 



of the ARTISAN prototype, reflecting some - though not all - of the lessons learnt from failure analysis of version 129. 

Important changes being incorporated into version 2 include the use of multiresolution analysis to remove texture and 

improve the system's ability to cope with noisy images, new ways of grouping low-level components into higher-level 

regions, and a wider range of shape and structural features.  

Boundary creation within ARTISAN version 2 is performed by segmenting a multi-resolution representation of the 

trademark. The trademark is first processed into a multi-resolution pyramid using Burt and Adelson's algorithm32, in which a 

level L Gaussian image gL(i,j) is computed from the corresponding level L-1 image gL-1(i,j) by the formula: 

where w(m,n) is a 55 Gaussian convolution kernel.  

As illustrated in Figs 1 and 2, four pyramid levels are created (zero being the original trademark). Although it is possible to 

construct higher levels of this pyramid, no advantage is gained in detecting the image’s overall shape. The energy of each 

level of the pyramid (calculated using the square of the Laplacian pyramid at level L, the difference between levels L and 

L+1 of the Gaussian pyramids) is then used to classify the original image as simple, intermediate, or complex. Examples of 

simple and complex images are shown above. For simple images such as that shown in Fig 1, it has been found 

advantageous to select levels 0 and 3 for further processing, as this allows both the overall shape of the image and the 

shapes of its components to be represented. For complex images such as the one in Fig 2, levels 1 and 3 are segmented, 

allowing us to discard unnecessary fine detail. For intermediate images (mainly images with large amounts of coarse 

texture), levels 2 and 3 are selected, again allowing us to avoid identifying spurious shapes in textured regions (a major 

problem in the initial version of ARTISAN). As with previous versions of ARTISAN, all image preprocessing and level 

selection is done automatically. No manual intervention is required at any stage. Finally, region boundaries are identified in 

each of the selected image levels using a smoothed histogram trough detection algorithm similar to the method described by 

Pauwels et al33. An example of region boundary detection is shown in Fig 3.  

Applying multi-resolution techniques to the segmentation process provide three benefits. Firstly, it improves segmentation 

of textured regions by merging texture into greyscale, allowing simple histogram thresholding techniques to extract the 
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Fig 1. The four levels of Gaussian smoothing 0-3 derived from a simple 

image. Level 0 (left) is the original image. 

 

Fig 2. The four levels of Gaussian smoothing applied to a complex image 

 
 

Fig 3. An example of image segmentation, showing 

region boundaries extracted from a complex image. 



region boundary. Secondly, the band pass filtering removes high frequency noise (often caused by fax scanning) increasing 

the quality of the segmented boundaries. Finally, multi-resolution techniques also simulate some of the Gestalt processes of 

the previous ARTISAN v1 system; in particular proximally associated boundaries are robustly coupled.  

4. THE PRESENT STUDY 

4.1 Shape description in ARTISAN 

The main motivation for the present study is to compare the effectiveness for trademark image retrieval of alternative sets of 

shape descriptors, including some of the "simple" features used in version 1 of ARTISAN, three of the "natural" shape 

descriptors proposed by Rosin23, and some frequently-used measures such as Fourier descriptors and moment invariants. 

Our hypothesis is that if the "natural" descriptors do indeed model human shape perception more accurately than Fourier 

descriptors or moment invariants, this should be reflected in significantly improved retrieval performance.  

Our current version of ARTISAN computes and stores the following features for each individual component of every image 

added to the database: 

(a) 3 "simple" shape features: aspect ratio w/l, circularity 4A/p2 , and convexity A/H, where A is the region area, p its 

perimeter, l and w the length and width respectively of its minimum bounding rectangle, and H the area of the region's 

convex hull. 

(b) 3 "natural" shape features proposed by Rosin23, using measures which appeared from his experiments to be most robust 

to noise and changes in aspect ratio: 

 Triangularity, defined as  

108I1 where I1  1/108, 

1/108I1 otherwise.  

where I1 is the first of the set of affine moment invariants proposed by Flusser & Suk12 (see (e) below). 

 Rectangularity, defined as 

B
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where B is the area of the region's bounding rectangle, D the area of the difference of the region and the rectangle, 

and R the difference of the rectangle and the region.  

 Ellipticity, defined as  

162I1 where I1  1/162,  

1/162I1 otherwise.  

(c) 8 normalized Fourier descriptors Ak (1  k  8), where Ak = Ak+1/A1, and Ak is the kth harmonic amplitude of the 

Fourier expansion of the cumulative curvature around the region boundary as a function of curve length:  
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(d) The 7 normal moment invariants n defined by Hu11:  
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(e) The 4 affine moment invariants defined by Flusser and Suk12: 
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In addition, a relative size parameter is computed for each image component. This is the ratio of the area of each component 

to the area of the largest component in the image (normally the envelope of the entire image). This allows matching to be 

based either on shape alone, or on shape and size. Any combination of the above feature types can be selected at query time 

for similarity matching.  

The system provides several alternative means of computing overall similarity scores between query and stored images from 

component similarities, to take account of the fact that in general, query and stored images will have different numbers of 

components. The two methods of comparison used in this study were the two which had been shown to perform most 

effectively in previous trials of ARTISAN. These were symmetric strict, which averages similarity scores for the min(q,s) 

closest component matches, where q and s are the numbers of components in query and stored images respectively, and 

asymmetric simple, which averages similarity scores for the q closest component matches31. The results presented in tables 

1-3 are all based on asymmetric simple matching: scores based on symmetric strict matching were slightly but consistently 

lower in every case. In contrast to earlier versions of ARTISAN, component similarities were computed as city-block 

distances between vectors representing the unweighted values of currently-selected shape features. Several other run-time 

options (such as whole-image matching) are provided in the new ARTISAN prototype, but were not tested in this study. 

4.2  Evaluation experiments 

As indicated above, the process of evaluating retrieval effectiveness is far from straightforward. The approach adopted in 

this paper follows the methodology developed for our evaluation of the original version of ARTISAN31. A set of 24 query 

trademarks selected by staff at the UK Trade Marks Registry for evaluation of the first version of ARTISAN (illustrated in 

Table 4) was run against the 10 745 image database of abstract geometric trademarks also supplied by the Registry. Results 

were compared with relevance judgements already generated by human trademark examiners, which formed our "ground 

truth". This approach ensured that the performance of each set of features was compared against the same benchmark - 

though it is still open to the criticism that the human judgements forming our ground truth were based on overall 

assessments of image similarity (potentially based in shape, structure and semantics), not necessarily judgements based 

purely on shape.  

Several combinations of shape feature were tested against this database, as follows: 

 The three "simple" measures defined in (a) above; 

 The three "natural" measures proposed by Rosin, and defined in (b) above; 

 Fourier descriptors (using either the 3 lowest-frequency or all 8 coefficients); 

 Moment invariants (using either the first 4 or all 7 normal measures, or all 4 affine measures); 

 Various combinations of simple features, Rosin measures, Fourier descriptors and moment invariants. 

In each case, all 24 queries were run against all 10 745 images, using both the asymmetric simple and symmetric strict 

matching paradigms defined above. Retrieval effectiveness was measured using the same set of measures as in the original 

ARTISAN evaluation: normalized precision Pn, normalized recall Rn, and last-place ranking Ln: 
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Each of these measures gives an estimate of retrieval effectiveness in the range 0-1, but emphasizes different aspects of 

system performance. Broadly, Pn gives an overall measure of system performance at all retrieval ranks, Rn emphasizes good 

performance at high retrieval ranks, and Ln indicates how effective the system is at retrieving all relevant images. While a 

less robust measure than the other two, it is particularly important in the context of trademark image registration, as the 

penalties for missing even a single relevant image can be substantial.  

4.3  Results 

The first set of experiments were designed to measure the relative effectiveness of the three "natural" descriptors proposed 

by Rosin and three of the "simple" shape features used in the original version of ARTISAN.  

Table 1: Retrieval results using simple measures and Rosin descriptors 

Query parameters Size? Rn Pn Ln 

Rectangularity + 0.790.03 0.480.05** 0.460.05 

 - 0.800.03 0.340.03** 0.450.06 

Triangularity + 0.830.02 0.520.04** 0.460.05 

 - 0.840.02 0.420.03** 0.440.06 

Ellipticity + 0.840.02 0.530.04** 0.450.05 

 - 0.840.02 0.450.04** 0.480.06 

3 Rosin descriptors + 0.880.02 0.590.04* 0.550.06 

(3RD) - 0.880.02 0.540.04* 0.540.06 

3 simple descriptors + 0.890.02 0.600.05 0.620.06 

(3SD) - 0.890.02 0.600.05 0.610.06 

All figures represent mean and standard error effectiveness scores from the 

same set of 24 queries. Asymmetric simple matching was used in all cases. 

Key - **: size difference significant over query set at P<0.01 level, *: size 

difference significant, P<0.05 (Wilcoxon matched-pairs, signed-rank test) 

Overall retrieval results for each Rosin descriptor taken separately were only modest compared with some of the combined 

measures tried. For single descriptors their discriminating power was quite encouraging. When combined, their 

effectiveness increased markedly - their effectiveness was not significantly different from that of the three simple 

descriptors in combination. Perhaps disappointingly, there is no evidence from these experiments that the newly-proposed 

measures of triangularity, ellipticity and rectangularity can on their own capture human shape similarity judgments more 

effectively than more traditional features. All three Rosin descriptors appeared to perform more effectively when relative 

size was taken into account.  

The second set of experiments examined the retrieval effectiveness of some widely-used but more computationally intensive 

shape features, Fourier descriptors and moment invariants. 



Table 2: Retrieval results using Fourier descriptors and moment invariants 

Query parameters Size? Rn Pn Ln 

4 affine moment + 0.700.03** 0.400.05** 0.310.05* 

Invariants (AMI) - 0.850.02** 0.490.04** 0.480.06* 

4 normal moment  + 0.790.03* 0.500.05 0.450.05 

Invariants (4MI) - 0.850.03* 0.570.05 0.520.06 

7 moment invariants + 0.790.03* 0.510.05 0.450.05 

(7MI) - 0.850.03* 0.570.05 0.520.06 

3 Fourier descriptors + 0.880.03 0.610.04 0.600.05 

(3FD) - 0.890.02 0.620.04 0.640.06 

8 Fourier descriptors + 0.900.02 0.650.04 0.660.06 

(8FD) - 0.910.02 0.660.04 0.650.06 

Key - **: size difference significant at P<0.01 level, *: size difference 

significant at P<0.05 level (Wilcoxon matched-pairs signed-rank test) 

The more computationally intensive features performed no better - and in some cases worse - than the simple features 

above. Fourier descriptors gave overall results almost identical to those achieved using simple features; moment invariants 

significantly worse (P<0.05, Wilcoxon matched-pairs signed-rank test) for all three performance measures used. Use of just 

the three lowest-frequency Fourier descriptors gave performance that was almost as good as the use of the first eight - 

suggesting that the higher-frequency components may be matching noise as much as genuine shape variations. Neither 

normal nor affine moment invariants produced especially impressive figures. In contrast to the Rosin descriptors, they 

appeared to be less effective when relative size was taken into account in shape matching. The poor overall performance of 

the affine moment invariants seemed particularly surprising, as they form the basis for two of the "natural" measures 

proposed by Rosin, both of which appear markedly more successful in discriminating between the shapes used in this study 

than the affine moment invariants themselves. 

Table 3: Retrieval results using combined measures 

Query parameters Size? Rn Pn Ln 

3FD+4MI + 0.890.03 0.620.04 0.620.06 

 - 0.890.03 0.630.04 0.640.06 

3SD+3FD + 0.910.02 0.650.04 0.670.06 

 - 0.900.02 0.650.05 0.630.06 

3SD+3RD + 0.920.02 0.660.04 0.670.06 

 - 0.920.02 0.660.04 0.640.06 

3RD+3FD + 0.930.02 0.670.04 0.690.06 

 - 0.930.02 0.680.04 0.670.06 

3SD+3RD+3FD + 0.930.02 0.690.04 0.710.06 

 - 0.920.02 0.690.04 0.650.07 

3SD+3RD+8FD + 0.940.02 0.700.04 0.710.06 

 - 0.930.02 0.690.04 0.660.07 

Combining different measures produced a further slight but significant increase in system effectiveness, with the best 

performance among the combinations tested shown by the combination of simple, Rosin and Fourier descriptors. All 

combinations of two or more types of descriptor gave significantly higher Pn and Rn scores over the 24 queries used in our 

tests than simple, Rosin or Fourier descriptors on their own (P<0.01, Wilcoxon matched-pairs signed-rank test). Ln scores 

for these combinations were significantly higher than those for Rosin or Fourier descriptors on their own, but not for simple 

descriptors. The least effective combination tested was Fourier descriptors plus moment invariants, which proved 

significantly less effective (P<0.05 or better) than any of the other combinations listed in table 3, at least when Pn or Rn 

measures were used. This was one of the combinations that proved most effective in the experiments performed by Mehtre 

et al17. Our study provides no support for their findings. 



The average performance figures presented here tell only part of the story. For individual queries, different techniques often 

produced markedly different results. As an indication of this, Table 4 summarizes the performances of the best individual 

combination of features for each query. The parameter combinations appearing to give optimum query performance most 

frequently were Rosin, simple and Fourier descriptors (8 instances), Rosin and simple descriptors (4 instances), and Fourier 

descriptors alone (4 instances). The average effectiveness scores of these "best" parameter combinations were Rn: 0.96  

0.01, Pn: 0.74  0.04, and Ln: 0.80  0.05, significantly better (P<0.01 whichever performance measure was used) than 

either the overall effectiveness scores achieved with any single parameter combination, or the best scores achieved with the 

first version of ARTISAN (Rn: 0.90  0.02, Pn: 0.63  0.05, and Ln: 0.56  0.06). 

Table 4: Best retrieval results for each individual query 

Query Best results Best combination* Query Best results Best combination 

Image Rn Pn Ln Shape Match Size Image Rn Pn Ln Shape Match Size 

 

1.00 1.00 1.00 Nearly all 

combinations 

AS or 

SS 

+ or 

-  
0.98 0.71 0.93 3RD+3SD+8FD SS + 

 

1.00 1.00 1.00 3SD+3RD+8FD AS + or 

-  

0.98 0.59 0.95 3RD+3FD AS + 

 
1.00 0.93 0.98 3RD+3SD+3FD AS + 

 
0.97 0.84 0.82 3RD AS - 

 

1.00 0.90 1.00 3RD+3SD SS + 

 

0.97 0.80 0.91 8FD AS + 

 

1.00 0.84 0.98 3RD+3SD+8FD SS - 

 

0.97 0.75 0.90 3SD+3RD AS + 

 

0.99 0.91 0.95 3SD+3RD AS + 

 

0.97 0.57 0.85 3RD+3SD AS + 

 
0.99 0.88 0.95 3FD+4MI AS - 

 
0.94 0.69 0.75 3FD+4MI SS - 

 
0.99 0.87 0.91 3RD+3SD+8FD AS or 

SS 

- 

 

0.92 0.81 0.60 3SD AS + 

 
0.99 0.81 0.97 3 RD SS + 

 
0.92 0.64 0.45 8FD AS - 

 
0.99 0.77 0.89 4MI or 7MI  AS or 

SS 

- 

 

0.81 0.43 0.28 3FD AS + 

 
0.98 0.77 0.87 3SD+3FD+8FD AS + 

 
0.81 0.33 0.15 3SD+3RD+3FD AS + 

 
0.98 0.71 0.90 8FD AS - 

 

0.79 0.28 0.30 3SD AS - 

* Key: 3RD - three Rosin descriptors; 3SD - three simple descriptors; nFD - n lowest-frequency Fourier descriptors; nMI - 

first n moment invariants; AS - asymmetric simple; SS - symmetric strict. Entries are ordered by Pn scores within Rn. 

4.4 Discussion 

Overall, our findings suggest that a variety of global shape measures can prove useful in supporting retrieval of multi-

component images such as trademarks. However, our initial hypothesis that “natural” measures of the type proposed by 

Rosin23 would prove more effective than other feature types could not be confirmed. The differences in overall system 

effectiveness between different combinations of shape measure were generally small and not statistically significant. This 

suggests that there may be little to be gained from further research into new global shape measures. Improvements in 

retrieval effectiveness are more likely to come from the development of different paradigms for shape representation (e.g. 

Latecki and Lakamper2) or matching (e.g. Santini and Jain34).  

The results in Table 4 are more an indication of system potential than actual effectiveness. They indicate that to get the best 

out of any system offering a variety of shape features, considerable effort needs to be devoted to selection of the most 



appropriate features for any given query. At present the only realistic way in which an end-user can realistically exploit the 

flexibility offered by such systems is by using techniques such as relevance feedback35, where searchers are able to indicate 

the relevance of each item retrieved, and the system can adjust its search strategy accordingly – e.g. by increasing the 

weighting of parameters featuring more strongly in user-selected items. Our study suggests that techniques such as 

relevance feedback could indeed prove useful in improving the effectiveness of retrieval systems designed for multi-

component images such as trademarks. 

It should be remembered that human similarity judgements among images of this sort are based on a mixture of shape, 

structure and semantic cues24. Two of the query images providing the ground truth for our experiments (the last two in the 

right-hand column of images in Fig 4) demonstrate this point. Examination of the set of desired images for each of these 

queries suggests strongly that searchers are looking in one case for repeated patterns, in the other for groups of lines 

implying a particular type of crossover. In these queries, shape similarity does not appear to be the prime consideration. The 

current version of ARTISAN (which matches on shape but not on structural similarity) performs poorly on both these 

queries whatever set of shape features is chosen. Major improvements in system effectiveness thus appear to depend on 

developing better techniques for matching on image structure – and if possible on implied features, too. The development of 

better techniques for image segmentation, or preferably matching techniques which avoid the need for image segmentation 

altogether (e.g. Ravela and Manmatha28), represents another possible way forward. 

The strength of our evaluation experiments lies in our use of ground truth derived from a set of real image queries and 

independent relevance judgements made by experts in the field. However, this is also a limitation in a number of respects: 

the total number of queries is not large, not all of them are pure shape queries, and human relevance judgements are 

inevitably subjective. There is clearly a danger in tuning our system exclusively to perform well on these 24 queries. We are 

actively seeking additional sources of ground truth for this purpose, though the difficulty of obtaining independent human 

similarity judgements with collections of over 10 000 images should not be underestimated.  

5. CONCLUSIONS 

Our experiments have shown that a number of different shape measures can, in the majority of cases, provide adequate 

discriminating power for effective retrieval by shape similarity in multi-component image collections such as trademark 

registries. Overall retrieval effectiveness scores appear remarkably similar for nearly all shape measures used. However, 

marked differences can often be observed between measures for individual queries, suggesting that there is indeed value in 

providing a wide variety of different measures within any one system, provided a suitable framework can be devised to 

allow users to search such a multi-dimensional feature space effectively. Future research effort will be devoted both to 

identifying improved methods of computing image similarity on the basis of shape and structural features, and to developing 

an appropriate relevance feedback framework to allow users to exploit the flexibility of multi-dimensional feature searching 

to the full. 
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