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Abstract 
 
This paper presents a methodology for evaluating the 
performance of video surveillance tracking systems. We 
introduce a novel framework for performance 
evaluation using pseudo-synthetic video, which employs 
data captured online and stored in a surveillance 
database. Tracks are automatically selected from the 
surveillance database and then used to generate ground 
truthed video sequences with a controlled level of 
perceptual complexity that can be used to quantitatively 
characterise the quality of the tracking algorithms. 
 

1. Introduction
 
Performance evaluation of image surveill ance systems is 
an essential requirement, particularly when the system is 
deployed in a li ve environment. Our motivation for the 
work presented in this paper is to resolve some of the 
issues that arise when evaluating the performance of a 
video tracking algorithm. The evaluation issues include: 
how can we define ground truth for large datasets of 
video? What measures can be used to determine the 
complexity of a dataset along with the qualit y of its 
associated ground truth? What measures are appropriate 
to characterise tracking performance? The performance 
evaluation framework presented in this paper addresses 
each of these issues. 

Our online surveill ance system [1] comprises of 
a set of intelli gent camera units with fixed camera views 
that utili se vision algorithms for detecting and tracking 
moving objects in 2D image coordinates. Each intelli gent 
camera unit employs background subtraction [2] for 
motion detection and a partial observation-tracking 
algorithm [3] for object tracking and trajectory 
prediction. Tracked object data generated by each 
intelli gent camera unit is stored in an on-line 
surveill ance database. We will demonstrate how pseudo-
synthetic video sequences can be generated from this 
data and then used within our performance evaluation 
framework. We choose to use pseudo-synthetic video to 
evaluate system performance, since it is possible to 

generate a large variety of datasets that represent a 
number of different tracking scenarios, which can vary in 
perceptual complexity. In addition, the ground truth is 
automaticall y acquired from the tracking data stored in 
the surveill ance database. By adopting this approach it 
becomes practical to perform experiments over several 
hundred thousand frames of video data in order to 
quantitatively evaluate tracking performance. 

The conventional approach for performance 
evaluation is to generate ground truth from pre-recorded 
video sequences. A number of semi-automatic tools are 
currently available for generating ground truth. The open 
development environment for evaluation of video systems 
(ODViS) [4] allows a user to generate ground truth for 
pre-recorded video. New tracking engines can be 
incorporated into the environment for evaluation within 
the ODViS framework. The Video Performance 
Evaluation Resource (ViPER)[5] provides a set of tools 
for ground truth generation, metrics for evaluation, and 
visualization of video analysis results. A number of 
metrics have been defined for tracker performance 
evaluation [5,6,7,8,9]. In [9] a number of metrics are 
used to evaluate tracking performance where ground 
truth is not available. They used a set of colour and 
motion metrics to assess the consistency of the tracked 
object between image frames. A number of metrics are 
defined for positional tracker evaluation in [8]. The main 
focus is on trajectory comparison to account for detection 
lag, or constant spatial shift. In [12] ground truth is 
automaticall y generated by using pre-determined cues 
such as shape and size on controlled test sequences. 
 The remainder of this paper is organized as 
follows: Section 2 describes the framework used to 
evaluate system performance using manual ground truth. 
Section 3 describes the method used to automaticall y 
select ground truth tracks from the surveill ance database, 
and generate pseudo synthetic video sequences. Section 4 
defines a set of surveill ance metrics. Section 5 shows 
results obtained for performance evaluation using 
conventional pre-recorded and pseudo-synthetic video 
sequences. Section 6 is a discussion of what has been 
achieved by the current version of the evaluation 
framework and what new work is planned for the future. 



2. Performance Evaluation 
 
A typical approach to evaluating the performance of the 
detection and tracking system uses ground truth to 
provide independent and objective data (e.g. 
classification, location, size) that can be related to the 
observations extracted from the video sequence. Manual 
ground truth is conventionally gathered by a human 
operator who uses a ‘point and cli ck’ user interface to 
step through a video sequence and select well -defined 
points for each moving object. The manual ground truth 
consists of a set of points that define the trajectory of 
each object in the video sequence (e.g. the object 
centroid). The human operator decides if objects should 
be tracked as individuals or classified as a group. The 
motion detection and tracking algorithm is then run on 
the pre-recorded video sequence and ground truth and 
tracking results are compared to assess tracking 
performance. 

The reliabilit y of the video tracking algorithm 
can be associated with a number of criteria: the 
frequency and complexity of dynamic occlusions, the 
duration of targets behind static occlusions, the 
distinctiveness of the targets (e.g. if they are all different 
colours), and changes in ill umination or weather 
conditions. In this paper we express a measure for 
estimating the perceptual complexity of the sequence 
based on the occurrence and duration of dynamic 
occlusions, since this is the event most likely to cause the 
tracking algorithm to fail . Such information can be 
estimated from the ground truth data by computing the 
ratio of the number of target occlusion frames divided by 
the total length of each target track (i.e. the number of 
frames over which it is observed), averaged over the 
sequence (see section 4). 
 

3. Pseudo Synthetic Video 
 
As an alternative to manual ground truthing we propose 
using pseudo synthetic video to evaluate tracking 
performance. A problem for performance evaluation of 
tracking algorithms is that it is not trivial to accumulate 
datasets of varying perceptual complexity. Ideally, we 
want to be able to run a number of experiments and vary 
the perceptual complexity of the scene to test the tracking 
algorithm under a variety of different conditions. This is 
possible using manual ground truth but requires the 
capture of a large number of video sequences, which may 
not be practical at some surveill ance sites. 
 The novelty of our framework is that we 
automaticall y compile a set of isolated ground truth 
tracks from the surveill ance database. We then use the 

ground truth tracks to construct a comprehensive set of 
pseudo synthetic video sequences that are used to 
evaluate the performance of a tracking algorithm. 
 
3.1 Ground Truth Track Selection 
 
A li st of ground truth tracks is initiall y compiled from 
the surveill ance database. We select ground truth tracks 
during periods of low object activity (e.g. over 
weekends), since there is a smaller li kelihood of object 
interactions that can result in tracking errors. The 
ground truth tracks are checked for consistency with 
respect to path coherence, colour coherence, and shape 
coherence in order to identify and remove tracks of poor 
qualit y. 
 
Path Coherence: The path coherence metric [3] makes 
the assumption that the derived tracked object trajectory 
should be smooth subject to direction and motion 
constraints. Measurements are penalised for lower 
consistency with respect to direction and speed, while 
measurements are rewarded for the converse situation. 
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Where k1k XX − is the vector representing the positional 

shift of the tracked object between frames k and k-1. The 
weighting factors can be appropriately assigned to define 
the contribution of the direction and speed components of 
the measure. The value of both weights was set to 0.5. 
 
Colour Coherence: The colour coherence metric 
measures the average inter-frame histogram distance of a 
tracked object. It is assumed that the object histogram 
should remain constant between image frames. The 
normalised histogram is generated using the (r,g) colour 
space in order to account for small li ghting variations. 
This metric has low values if the segmented object has 
similar colour attributes, and higher values when colour 
attributes are different. Each histogram contains 8x8 bins 
for the normalised colour components. 
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Where )u(pk  is the normalised colour histogram of the 

tracked object at frame k, which has M bins, and N is the 
number of frames the object was tracked over. This 
metric is a popular colour similarity measure employed 
by several robust tracking algorithms [10,11]. 



Shape Coherence: The shape coherence metric gives an 
indication of the level of agreement between the tracked 
object position and the object foreground region. This 
metric will have a high value when the locali sation of the 
tracked object is incorrect due to poor initiali sation or an 
error in tracking. The value of the metric is computed by 
evaluating the symmetric shape difference between the 
bounding box of the foreground object and tracked object 
state. 
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Where )k(R)k(R ft −  represents the area difference 

between the bounding box of the tracked object (state) 
and the overlapping region with the foreground object 

(measurement). The normalisation factor )k(R)k(R ft ∪  

represents the area of the union of both bounding boxes. 
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   (c) 
Figure 1: Distribution of the average path coherence (a), 
average colour coherence (b), and average shape 
coherence of each track selected from the surveill ance 
database. 

Outlier ground truth tracks can be removed by applying a 
threshold to the values of pcε , ccε , and scε . The 

distributions of the values are shown in the figure 1. It 
can be observed that a Gaussian distribution can 
adequately approximate each metric. The threshold is set 
so that the value should be within two standard 
deviations of the mean. The mean and standard 
deviations of pcε , ccε , and scε  were (0.092, 0.086, 

0.157) and (0.034, 0.020, 0.054) respectively. We also 
exclude any tracks that are short in duration and have 
not been tracked for at least N=50 frames, or have 
formed a dynamic occlusion with another track. 

 

 
Figure 2: Example of outlier tracks identified during 
ground truth track selection. 
 
In figure 2 some example outlier tracks are shown. The 
top left track was rejected due to poor path coherence, 
since the derived object trajectory is not smooth. The top 
right track was rejected due to poor colour coherence, 
which is a consequence of the poor object segmentation. 
The bottom left track was rejected due to poor shape 
coherence, where an extra pedestrian merges into the 
track. The tracked bounding boxes are not consistent 
with the detected foreground object. The bottom right 
track was rejected due to forming a dynamic occlusion 
with another track. It can be observed that in this 
instance the tracking failed and the objects switched 
identities near the bottom of the image. These examples 
ill ustrate that the metrics: path coherence, colour 
coherence, and shape coherence are effective for 
rejecting outlier ground truth tracks of poor qualit y. 
 
3.2 Pseudo Synthetic Video Generation 
 
Once the ground truth tracks have been selected they are 
employed to generate pseudo-synthetic videos. Each 
pseudo-synthetic video is constructed by replaying the 



ground truth tracks randomly in the generated video 
sequence. Two ground truth tracks are shown in left and 
middle images of figure 3, the tracked object is plotted 
every few frames in order to visualise the motion history 
of the object through the scene. When the two tracks are 
inserted in a pseudo-synthetic video sequence a dynamic 
occlusion can be created as shown in the right image of 
figure 3. Since the ground truth is known for each track 
we can determine the exact time and duration of the 
dynamic occlusion. By adding more ground truth tracks 
more complex object interactions are generated. 
 

 
Figure 3: The left and middle images show two ground 
truth tracks. The right image shows how the two tracks 
can form a dynamic occlusion. 

 

 
(a) 

 

 
(b) 

Figure 4: Examples of dynamic occlusions in a pseudo 
synthetic video sequence: The top and bottom rows in 
both figures represent the pseudo synthetic and original 
image frames, respectively (taken from PETS2001 
dataset 2 (camera2)). 
 

A number of steps are taken to construct each 
pseudo-synthetic video, since simple insertion of the 
ground truth tracks is not suff icient to create reali stic 
video. Initiall y, a dynamic background video is captured 
for the camera view. This allows the pseudo-synthetic 
video to simulate small ill umination changes that 
typicall y occur in outdoor environments. The framelets 
stored in the surveill ance database consist of the 
foreground regions identified by the tracking algorithm 
(i.e. within the bounding box). When the framelet is 
replayed in the pseudo-synthetic video this improves the 

reali sm of dynamic occlusions. All the ground truth 
tracks are selected from a fixed camera view. This 
ensures the object motion in the constructed video 
sequence is consistent with the typical activity in the 
scene. 3D calibration information is used to ensure that 
framelets are plotted correctly during dynamic 
occlusions, according to their estimated depth from the 
camera. This gives the effect of an object occluding or 
being occluded by other objects based on their distance 
from the camera. This point is ill ustrated in figure 4, 
where a dynamic occlusion is simulated in a video 
sequence. The pseudo-synthetic and original image 
frames are shown to demonstrate how ground truth 
tracks can be used to construct reali stic dynamic object 
occlusions. A pedestrian ground truth track is used to 
create a dynamic occlusion in figure 4a. In figure 4b a 
cycli st and pedestrian occlude a phantom vehicle, and the 
same vehicle then occludes a pedestrian later in the video 
sequence. 

There are several benefits of using pseudo 
synthetic video: it is possible to simulate a wide variety 
of dynamic occlusions of varying complexity; pseudo-
synthetic video can be generated for a variety of weather 
conditions; the perceptual complexity of each synthetic 
video can be automaticall y estimated; and ground truth 
can be automaticall y acquired. One disadvantage is that 
the pseudo synthetic video is biased towards the motion 
detection algorithm used to capture the original data, and 
few ground truth tracks will be generated in regions 
where tracking or detection performance is poor. In 
addition, the metrics described in section 3.1 do not 
completely address all the problems associated with 
motion segmentation. For example, the affects of 
shadows cast by moving objects, changes in weather 
conditions, the detection of low contrast objects, and the 
correct segmentation of an object’s boundary. However, 
the pseudo-synthetic video is effective for evaluating the 
performance of tracking with respect to dynamic 
occlusion reasoning, which is the main focus of this 
paper. 
 
3.3 Perceptual Complexity 
 
The perceptual complexity of each pseudo-synthetic 
video sequence is controlled by a set of tuneable 
parameters: 
Max Objects (Max): The maximum number of the 
objects that can be present in any frame of the generated 
video sequence. 
 
New Object Probabilit y - p(new): The probabilit y of 
creating a new object in the video sequence while the 
maximum number of objects has not been exceeded. 



Increasing the value of p(new) results in a larger number 
of objects appearing in the constructed video sequence. 
This is ill ustrated in figure 5 where the three images 
demonstrate how the value of p(new) can be used to 
control the density of objects in each pseudo-synthetic 
video sequence. The images show examples for p(new) 
having the values 0.01, 0.10 and 0.20, respectively. 
These two parameters are used to vary the complexity of 
each generated video sequence. Increasing the values of 
the parameters results in an increase of object activity. 
We have found this model provides a reali stic simulation 
of actual video sequences. 
 

 
Figure 5: Perceptual Complexity: left – p(new)=0.01 
image, middle – framelets plotted for p(new)=0.1,  right 
– framelets plotted for p(new)=0.2. 
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Figure 6: (a) – plot of average no. of objects per frame by 
p(new), (b) – plot of average no. of dynamic occlusions 
by p(new); No. frames=1500, Max No. objects=20. 
 

The number of dynamic occlusions in each 
pseudo synthetic video was determined by counting the 

number of occurrences where the bounding box of two or 
more ground truth objects overlap in the same image 
frame. We can count the number of dynamic occlusions 
(NDO), the average number of occluding objects (NOO), 
and the average duration of a dynamic occlusion (DDO) 
to provide a measure of the perceptual complexity [6]. 
Figure 6 demonstrates how p(new) can vary the 
perceptual complexity of each generated pseudo-synthetic 
video. Figure 6a and 6b are plots of p(new) by average 
number of objects per frame in the pseudo-synthetic 
video, and the average number of dynamic object 
occlusions respectively. The error bars on each plot 
indicate the standard deviation over the five simulations 
performed for each value of p(new). The values become 
asymptotic in both plots as the number of objects per 
frame approaches the maximum of 20, representing a 
complex and dense video sequence. 
 

4. Surveillance Metrics 
 
The surveill ance metrics have been derived from a 
number of sources [4,5,6,7,8]. We first align the ground 
truth and results tracks by minimizing the trajectory 
distance metric that appears in [7]: 
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result track at frame i respectively.  
Once the ground truth and results trajectories 

have been matched we use the following metrics to 
characterize the tracking performance: 
 
Tracker Detection Rate (TRDR) =  

 PointsTruth  Ground ofNumber  Total

 PositivesTrue Total
 

 
False Alarm Rate (FAR) =  

Positives False Total  Positives True Total

PositivesFalse Total

+
 

 
Track Detection Rate (TDR) =  

objectfor  points truth ground ofnumber Total

object dfor tracke positives  trueofNumber 
 

Object Tracking Error (OTE) =  
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Track Fragmentation (TF) = Number of result tracks 
matched to ground truth track 



Occlusion Success Rate (OSR) =  

occlusions dynamic ofnumber  ofnumber Total

occlusions dynamic sucessful ofNumber 
 

 
Tracking Success Rate (TSR) =  

objects truth ground ofnumber  ofnumber Total

objects  trackedfragmented-non ofNumber 
 

 
A true positi ve is defined as a ground truth point 

that is located within the bounding box of an object 
detected and tracked by the tracking algorithm. A false 
negative is a ground truth point that is not located with 
the bounding box of any object tracked by the tracking 
algorithm. A false positi ve is an object that is tracked by 
the system that does not have a matching ground truth 
point. These conditions are ill ustrated in figure 7. In 
figure 7(a) the vehicle in the top image has not been 
tracked correctly. The ground truth point for the vehicle 
is classified as a false negative. The bounding box of the 
incorrectly tracked vehicle is counted as a false positi ve. 
The three objects in the bottom image are counted as true 
positi ves, since the ground truth point is within the 
tracked bounding box. 

 

 
      (a)          (b) 
Figure 7: (a) Image to ill ustrate true positi ves, false 
negative and false positi ve,  (b) Image to ill ustrate a 
fragmented tracked object trajectory. 
 

The tracker detection rate (TRDR) and false 
alarm rate (FAR) characterise the tracking performance 
of the object-tracking algorithm. The track detection rate 
(TDR) indicates the tracking completeness of a specific 
ground truth track. The object tracking error (OTE) 
indicates the mean distance between the ground truth 
and the tracked object trajectory. The track 
fragmentation (TF) indicates how often a track label 
changes. Ideally, the TF value should be one, with larger 
values reflecting poor tracking and trajectory 
maintenance. The tracking success rate (TSR) 
summarises the performance of the tracking algorithm 
with respect to track fragmentation. The occlusion 
success rate (OSR) indicates how effective the tracking 
algorithm is with respect to occlusion reasoning. Figure 
7(b) shows a tracked object trajectory for the pedestrian 

who is about to leave the camera view. The track is 
fragmented into two parts shown as black and white 
trajectories. The two track segments are used to 
determine the track detection rate, which indicates the 
completeness of the tracked object. As a consequence the 
ground truth object had a TDR, OTE, and TF of 0.99, 
6.43 pixels, and 2 respectively. 
 

5. Results 
 
A number of experiments were run to test the 
performance of the tracking algorithm used by our online 
system. The tracking algorithm employs a partial-
observation tracking model [3] for occlusion reasoning. 
We first generated purely manual ground truth for the 
second PETS2001 dataset (camera 2) using the point and 
cli ck method described in section 2. We processed the 
data at a rate of 5fps. Table 1 provides a summary of the 
surveill ance metrics report. The results demonstrate the 
robust tracking performance, since the track 
completeness is nearly perfect for all the objects. A 
couple of the tracks are fragmented due to poor 
initiali sation or early termination. Figure 8 demonstrates 
what can happen when a tracked object is not initiali sed 
correctly. The left, and right images show the pedestrian 
exiting and leaving the parked vehicle. The pedestrian is 
partiall y occluded by other objects, so is not detected by 
the tracking algorithm until it has moved from the 
vehicle. The pedestrian relates to ground truth object 9. 

An example of dynamic occlusion reasoning is 
shown in figure 9. The cycli st overtakes the two 
pedestrians, forming two dynamic occlusions and it can 
be noted that the correct trajectory is maintained for all 
three objects. The object labels in figure 9 have been 
assigned by the tracking algorithm and are different from 
the ground truth object labels.  

We have also used the second PETS2001 dataset 
(camera 2) to construct a pseudo synthetic video by 
adding four additional ground truth tracks to the original 
video sequence. Table 2 summarises the differences in 
perceptual complexity between the original and pseudo 
synthetic video sequence. The number of dynamic object 
occlusions increases from 4 to 12, having the desired 
affect of increasing the complexity of the original video 
sequence. Table 2 also summarises the tracking 
performance for the original and pseudo synthetic 
sequences. These results validate our assumption that our 
object tracker can be used to generate ground truth for 
video with low activity. 

In order to test the effectiveness of the tracking 
algorithm for tracking success and dynamic occlusion 
reasoning we generated several pseudo synthetic videos 



sequences. We automaticall y selected ground truth tracks 
from the surveill ance database using the method 
described in section 3.1. We then generated five synthetic 
video sequences for each level of perceptual complexity. 
The value of p(new) was varied between 0.01 to 0.4 with 
increments of 0.01. Each pseudo synthetic video 
sequence was 1500 frames in length, which is equivalent 
to approximately 4 minutes of li ve captured video by our 
online system running at 7Hz. Hence, in total the system 
was evaluated with 200 different video sequences, 
totalli ng three hundred thousand image frames, or 
approximately 800 minutes of video. 

 

 
Figure 8: An example of how poor track initiali sation 
results in low object track detection rate of the pedestrian 
leaving the vehicle. 

 
Figure 9: Example of dynamic occlusion reasoning for 
PETS2001 dataset 2 camera 2.  
 
The synthetic video sequences were used as input to the 
tracking algorithm. The tracking results and ground 
truth were then compared and used to generate a 
surveill ance metrics report as described in section 4. 
Table 3 gives a summary of the complexity of a selection 
of the generated video sequences. These results confirm 
that p(new) controls the perceptual complexity, since the 
number of objects, average number of dynamic 
occlusions and occluding objects increases from (12.8, 
2.4, 2.0) to (357.2, 755.2, 3.24) respectively for the 
smallest and largest values of p(new). Table 4 
summarises the tracking performance for various values 
of p(new). The object tracking error increases with the 
value of p(new), which represents a degradation of 
tracking performance with respect to occlusion 
reasoning. The occlusion success rate (OSR) and 
tracking success rate (TSR) decreases in value from 
(86%, 73%) to (53%, 18%) with the increasing value of 
p(new). When the number of objects per frame 
approaches the maximum this limits the number of 
dynamic occlusions created, hence increasing values of 

p(new) have a diminished affect of increasing the 
perceptual complexity. As a consequence the TSR and 
OSR become asymptotic once the number of objects per 
frame approaches the maximum of 20 as ill ustrated in 
the plots of figure (10). Larger values of p(new) and the 
maximum number of objects would result in more 
complex video sequences. Hence even with the bias 
present in the generated video sequences we can still 
evaluate the object tracking performance with respect to 
tracking success and occlusion reasoning, without 
exhaustive manual truthing, fulfilli ng the main objective 
of our framework for performance evaluation. 
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Figure 10: Plot of: (a) Tracking success rate, (b) 
occlusion success rate 

 

6. Conclusion 
 
We have presented a novel framework for evaluating the 
performance of a video tracking algorithm. The 
performance evaluation framework automaticall y selects 
ground truth tracks from a surveill ance database in 
order to construct pseudo synthetic video sequences. We 
have compiled a comprehensive set of metrics, which 
can be used to measure the qualit y of the ground truth 
tracks, as well as characterise tracking performance. We 
recognise that the pseudo synthetic video will have a 
degree of bias to the motion detection algorithm used to 
capture the original data. However, the generated video 
sequences are effective for evaluating performance of 
occlusion reasoning, and can be used to evaluate other 



tracking algorithms. The main strength of our 
evaluation framework is that we can automaticall y 
generate a variety of different testing datasets. In this 
paper we have evaluated a tracking algorithm over three 
hundred thousand frames of video, without any human 

intervention or semi-automatic ground truth generation. 
In future work we plan evaluate other tracking 
algorithms within our framework using the results 
presented in this paper as a benchmark. 

 
           
Track  0 1 2 3 4 5 6 7 8 9 
TP 25 116 26 104 36 369 78 133 43 88 
FN 0 2 0 5 0 5 1 1 1 2 
TDR 1.00 0.98 1.00 0.95 1.00 0.99 0.99 0.99 0.98 0.98 
TF 1 1 1 1 1 1 1 2 1 2 
OTE 11.09 7.23 8.37 4.70 10.82 11.63 9.05 6.43 8.11 11.87 

TP: Number of true positives FN: Number of false positives TF: Track Fragmentation  
TDR: Track Detection Rate OTE: Object Tracking Error 

Table 1: Summary of surveill ance metrics for PETS2001 dataset2 (camera 2) 
 

 TNO NDO DDO NOO TRDR TSR FAR AOTE ATDR 
        mean stdev mean Stdev 

Dataset 2(Cam 2) 10 4 8.5 2 0.99 8/10 0.01 8.93 2.4 0.99 0.010 
Pseudo Synthetic PETS Dataset 14 12 8.58 2.08 1.00 9/13 0.01 1.36 2.09 1.00 0.002 

NDO: No. of Dynamic Occlusions DDO: Duration of Dynamic Occlusion (frames) 
NOO: Number of Occluding Objects TNO: Total Number of Objects 

Table 2: Summary of perceptual complexity of the PETS2001 dataset2 (camera2) and object tracking metrics. 
 

 TNO NDO DDO NOO 

P(new) mean stdev mean stdev mean stdev mean stdev 

0.01 12.80 4.147 2.40 1.140 6.42 5.353 2.00 0.000 

0.20 284.00 16.538 595.20 49.957 10.70 0.310 2.95 0.020 

0.40 357.20 4.087 755.20 15.466 12.26 0.461 3.24 0.112 

Table 3: Summary of the perceptual complexity of the 200 synthetic video sequences (300000 frames). 
 

 TRDR FAR OSR AOTE ATDR ATSR 
P(new)   mean stdev Mean stdev mean stdev mean stdev 

0.01 0.91 0.08 0.86 0.149 3.21 1.466 0.90 0.049 0.73 0.129 
0.20 0.91 0.09 0.57 0.010 12.64 0.599 0.76 0.008 0.23 0.029 
0.40 0.90 0.09 0.53 0.014 14.12 0.581 0.72 0.006 0.18 0.015 

Table 4: Summary of metrics generated using each synthetic video sequence. 
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