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Abstract. Multi-view range image integration aims at producing a sin-
gle reasonable 3D point cloud. The point cloud is likely to be inconsistent
with the measurements topologically and geometrically due to registra-
tion errors and scanning noise. This paper proposes a novel integration
method cast in the framework of Markov random fields (MRF). We de-
fine a probabilistic description of a MRF model designed to represent
not only the interpoint Euclidean distances but also the surface topol-
ogy and neighbourhood consistency intrinsically embedded in a prede-
fined neighbourhood. Subject to this model, points are clustered in aN
iterative manner, which compensates the errors caused by poor registra-
tion and scanning noise. The integration is thus robust and experiments
show the superiority of our MRF-based approach over existing methods.

1 Introduction

3D surface reconstruction from multi-view 2.5D range images is important for
a wide range of applications, such as reverse engineering, CAD and quality as-
surance, etc. Its goal is to estimate a manifold surface that approximates an
unknown object surface using multi-view range images, each of which essentially
represents a sample of points in 3D Euclidean space. These samples of points are
usually described in local, system centred, coordinate systems and cannot offer a
full coverage of the object surface. To reconstruct a complete 3D surface model,
we need to register a set of overlapped range images into a common coordinate
frame and then integrate them to fuse the redundant data contained in over-
lapping regions while retain enough data sufficiently representing the correct
surface details. However, to achieve both is challenging due to its ad hoc na-
ture. Scanning noise such as unwanted outliers and data loss typically caused by
self-occlusion, large registration errors and connectivity relationship loss among
sampled points in acquired data often lead to a poor integration. As a result,
the reconstructed surface may include holes, false connections, thick and non-
smooth or over-smooth patches, and artefacts. Hence, a good integration should
be robust to inevitable registration errors and noise. Once multiple registered
overlapping range images have been fused into a single reasonable point cloud,
many techniques [1–3] can be employed to reconstruct a watertight surface.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 644–653, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



MRF-Based Clustering for the Integration of Multi-view Range Images 645

2 Related Work

Existing integration methods can be classified into four categories: volumetric
method, mesh-based method, point-based method and clustering-based method.
The volumetric method [4–7] first divides the space around objects into voxels
and then fuses the data in each voxel. But the comparative studies [8, 9] show
they are time-consuming, memory-hungry and not robust to registration errors
and scanning noise, resulting in poor reconstructed surfaces. The mesh-based
method [10–13] first employs a step discontiuity constrained triangulation and
then detects the overlapping regions between the triangular meshes derived from
successive range images. Finally, it reserves the most accurate triangles in the
overlapping regions and reconnects all remaining triangles subject to a certain
objective function. Since the number of triangles is usually much larger than
that of the sampled points, the mesh-based methods are computationally more
expensive. Some mesh-based methods employ a 2D triangulation in the image
plane to estimate the local surface connectivity as computation in a 2D sub-
space is more efficient. But projection from 3D to 2D may lead to ambiguities if
the projection is not injective. The mesh-based methods are thus highly likely to
fail in non-flat areas where no unique projection plane exists. The point-based
method [14, 15] produces a set of new points with optimised locations. But its
integration result is often over-smooth and cannot retain enough surface details
in non-flat areas. The clustering-based method [8, 9] employs classical cluster-
ing methods to minimise dissimilarity objective functions. It surpasses previous
methods as it is more robust to noise and registration errors. Also, the itera-
tive clustering optimises the locations of points and thus generates much fewer
ill-shaped triangles. However, this clustering, only based on Euclidean distance,
does not consider local surface topology and neighbourhood consistency, leading
to errors in non-flat areas. For instance, in Fig.1(a), although point A is closer
to B and thus the clustering-based methods wrongly group them together, we
would rather group A with C or D to maintain the correct surface topology.

In this paper, we propose a novel integration method. A MRF model is
designed based on both statistical and structural information that clustering-
based methods neglect. This model is then converted into a specific description

Fig. 1. (a) Local topology has a significant effect on the point clustering in non-flat
areas (b) X-Y projection of point clouds from reference and registered range images
where the gray points are the raw data and the black points are the registered ones



646 R. Song et al.

minimised in a clustering manner. The new method retains the advantages of
clustering-based methods and is more robust as it uses more information from
the input data. The integration is thus reliable in both flat areas and non-flat
areas. It is worth mentioning that our method does not require a regular image
grid whereas some state-of-the-art techniques [16, 17] rely heavily on it. The
registered range images used as the input in this work are actually 3D unstruc-
tured point clouds due to large registration errors (Fig.1(b)). Generally, our
method can also cope with the more general input–multiple 3D unstructured
point clouds.

3 Markov Random Field-Based Clustering

MRF describes a system by local interaction and is able to capture many features
of the system of interest by simply adding appropriate terms representing spatial
or contextual dependencies into it. For this work, we denote a set of sites s =
{1, . . . , n} representing the primitive points and define the label assignment x =
{x1, . . . , xn} to all sites as a realisation of a family of random variables defined on
s. We also define the feature space that describes the sites and understand it as
a random observation field with its realisation y = {y1, . . . , yn}. We also denote
a label set L = {1, . . . , m}, where each label corresponds to a class centroid.

An optimal labeling should minimise the posterior energy U(x|y) = U(y|x) +
U(x). Under the MRF assumption that the observations are mutually indepen-
dent, the likelihood energy U(y|x) can be computed as U(y|x) =

∑
i∈S

V (yi|xi).
In this work, V (yi|xi) is the Euclidean distance between point and class centroid:

V (yi|xi) = ‖yi − Cxi
‖ = |yi − Cxi

| (1)

It can be understood in this way: given a label set C and an observation field y
which has an observation yi at point i, whether i should obey an assignment xi

which assigns it to a centroid Cxi
(Cxi

∈ C) depends on the distance between
them. The smaller the distance, the larger the probability for such an assignment.

Once we define a neighbourhood N(i) for point i, the prior energy U(x) can
be expressed as the sum of different types of clique energies:

U(x) =
∑

i

V1(xi)+
∑

i

∑

i′∈N(i)

V2(xi, xi′ )+
∑

i

∑

i′∈N(i)

∑

i′′∈N(i)

V3(xi, xi′ , xi′′ )+ · · · (2)

Here, single-point cliques V1(xi) are set to 0 as we have no preference which label
should be better. Our MRF model is inhomogenous and anisotropic due to the
specific definition of the neighbourhood. Furthermore, a range image does not
have such a discrete property attached to each point as intensity. Considering
the inhomogeneous sites with continuous labels, we cannot use a simplified form
such as the Ising model [18] to ‘discourage’ the routine from assigning different
labels to two neighbouring points. The difference between the normals is used to
evaluate the binary clique energy representing the neighbourhood consistency:

U(x) =
∑ ∑

i′∈N(i)

V2(xi, xi′) =
∑ ∑

i′∈N(i)

w|ACxi
− ACx

i′
| (3)
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where ACxi
and ACx

i′
are the unit normal vectors of the centroids Cxi

and
Cx

i′
respectively. The neighbourhood consistency constraint is thus based on

the assumption that point normals should not deviate from each other too much
in a small neighbourhood. The minimisation combining two types of energies
arises from different value ranges. The range of the likelihood energy is usually
dependent on the number and the positions of class centroids, whereas the range
of the clique energy depends on the definition and the size of the neighbour-
hood system and the measurement of the difference between the normals. One
weighting parameter w is thus necessary to balance the two kinds of energies.

We define a normal deviation parameter s related to local surface topology:

si = std(ai′ |i′ ∈ N(i)), ai′ = cos θi′ = (Ai′ · z)/|Ai′ ||z|, i′ ∈ N(i) (4)

where std is the standard deviation function. We choose z (z axis) as the reference
direction because the scanning accuracy of a point depends on the including angle
between its normal and the line of sight from the scanner which is along z [13].

For most MRF applications in computer vision [19–22], 4 neighbouring pixels
are chosen to produce a neighbourhood N(i) for a pixel i. But to define N(i) in
a 3D unstructured point cloud is more difficult since the concept ‘pixel’ does not
exist here. The simplest method is to use the k-nearest-neighbours algorithm (k-
NN) to find the k points closest to i. But this method has its drawbacks. First,
to employ k-NN needs extra computational cost. Second, more importantly, the
neighbours produced by k-NN cannot deliver surface topological information.
Due to incorrect registration and noise, some of the neighbours produced by k-
NN may not be on the surface of point cloud. The following calculation of their
normals will thus be inaccurate and makes the whole algorithm unreliable. In
this work, before the integration, we first do a triangulation for the points in the
overlapping regions and find the neighbouring triangles of point i. The vertices
of these triangles, excluding i, are defined as the neighbours of i. The collection
of all neighbours of i is defined as the neighbourhood of i, written as N(i). Fig.2
shows a neighbourhood. The advantages of this definition are: (1) it reflects the
local topology and makes it possible to evaluate the neighbourhood consistency
defined as the difference between the normals in the MRF model; (2) there is no
extra computational cost as the triangulation has been done at the beginning
of the algorithm. Since points may have different number of neighbours, it is
necessary to add a normalisation parameter to measure the clique energy. Also,
the clique energy defined in this way is not relevant to scanning resolution, but
the likelihood energy, described by the distance measurement is directly related
to it. We thus use a constant c to balance the different magnitudes between the

Fig. 2. A neighbourhood and the normalised normal vectors attached to the neighbours
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two types of energies. In a general form, w = si × c × R/ni, where ni is the
number of neighbours of i and R is the scanning resolution of the input images.

If point i lies in a non-flat area such as a crease edge, si will probably be a
large value and the clique energy will have more weight. Thus the error illus-
trated in Fig.1 will probably be avoided. If i is located in a flat area, si will be
quite small or even equal to 0 (in a planar area). In this case, the algorithm is
actually downgraded to the classical k-means clustering. This is desired as the
k-means clustering works well in flat areas. In other words, whether a point can
be assigned to a certain centroid depends upon not only the distance between
them but also the local topology and neighbourhood consistency.

In image segmentation where MRF has already been widely used [19–21, 23],
the label set is usually defined using an intensity set and its domain remains
unchanged in the algorithm. This is a ‘pure’ MRF labeling problem and can
be solved by some well-known methods such as graph cuts and loopy belief
propagation [24]. But these methods cannot gurantee a reconstructed mesh with
well-shaped triangles. In contrast, the clustering-based methods can achieve that
due to the averaging for the calculation of new centroids in the clustering [8, 9].
We thus solve this combinatorial minimisation problem in a clustering manner. In
our method, both the label set and its domain are changed iteratively. A double
optimisation is thus achieved. One is done by MRF under a given label set and
the other one is done by the iteration analogous with the routine of the k-means
clustering. The changing label set is the centroids. Once one point i is assigned
to a centroid Cxi

, it is labeled as Cxi
and its normal is also labeled as ACxi

.
Analogously, the normal of i′ should be labeled using ACx

i′
. But estimating

ACx
i′

needs ni extra nearest neighbour searches for each point and that would
significantly slow down the whole algorithm. We thus assume ACx

i′
= Ai′ , so

U(x|y) =
∑

i

∑

i′∈N(i)

si

ni

× c × R × |ACxi
− Ai′ | +

∑

i

|yi − Cxi
| (5)

4 Implementation

Fig.3 shows the workflow of the new algorithm. We employ the method proposed
in [8] to define correspondences and detect overlapping areas. Then, the points in
the overlapping areas are triangulated to compute normals and find neighbours.

The initialisation is vital to the integration result and the speed of conver-
gence. Each point in the overlapping area is shifted along its normal towards

Fig. 3. The workflow of the MRF-based clustering algorithm



MRF-Based Clustering for the Integration of Multi-view Range Images 649

its corresponding point by half of the distance between them. For each point
shifted from a point of the reference image, a sphere with a radius r = m×R (m
is a parameter controlling the density of the output point cloud) is defined. If
some points fall into this sphere, then their original points (without shifting) and
normals are retrieved. Their averages are then used to initialise cluster centroids
and their normals. The centroid yielding the lowest energy is chosen to label
the point. All points labeled with the same centroid are grouped as one class.
The centroid of a new class and its normal can be recalculated by computing
the mean values of the coordinates of the class members and their normals. The
iteration ends when centroids do not change any more. Finally, the new point
set consisting of the new centroids and the original points not in the overlapping
areas is used to reconstruct a triangular mesh and a watertight surface.

In practice, we use a speeded-up scheme to find the centroid Cxi
. We first

perform k-NN to find the k centroids closest to i. Then we just search the one
minimising U(x|y) out of the k centroids. k is set to 5 in this work to ensure
that the one searched can always minimise U(x|y) among all centroids. Other-
wise it means that the balance constant c is not set to a reasonable value and
the clique energy has too much weight. Thus the new method has the same com-
putational complexity as the k-means clustering. The computational complexity
of our algorithm is O(n1 log2 n2) where n1 and n2 are the numbers of points in
the overlapping regions from both images and the reference image respectively.

5 Experimental Results and Performance Analysis

In our experiments, the input range images are all downloaded from the OSU
Range Image Database (http://sampl.ece.ohio-state.edu/data/3DDB/RID/
index.htm). On average, each ‘Bird’ image has 9022 points and each ‘Frog’
image has 9997 points. We employed the method proposed in [25] for pairwise
registration. Inevitably, the images are not accurately registered, since we found
the average registration error (0.30mm for the ‘Bird’ images and 0.29mm for the
‘Frog’ images) is as high as half the scanning resolution of the input data. A
large registration error causes corresponding points in the overlapping area to
move away from each other and the overlapping area detection will thus be more
difficult. The final integration is likely to be inaccurate accordingly. Fig.4 and 5
show the comparative integration results produced by existing methods and our
method.

Fig.6(a) illustrates the convergence performance of the new method. The new
method achieves a high computational efficiency in terms of iteration number
required for convergence. We also compute the proportion of the points really
affected by clique energy. Here, ‘really affected’ means one point was not labeled
with its closest centroid due to the effect from clique energy. Fig.6(b) shows the
statistics over the integration of two Bird images (0◦ and 20◦) using different
parameters. Clique energy gains more weight when the product of c and R is
larger. So, Fig.6(b) shows more points are really affected by clique energy when
c×R = 80. But it does not mean a better integration can be achieved as shown
in Fig.6(c) and (d). We can see that it is important to choose an appropriate c.
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Fig. 4. Integration results of 18 ‘Bird’ images. Top left: volumetric method [5]. Top
middle: mesh-based method [13]. Top right: fuzzy-c means clustering [9]. Bottom left: k-
means clustering [8]. Bottom middle: the triangular mesh produced by the new method.
Bottom right: the final integration result produced by the new method.

Fig. 5. Integration results of 18 ‘Frog’ images. Top left: volumetric method [5]. Top
middle: mesh-based method [13]. Top right: fuzzy-c means clustering [9]. Bottom left: k-
means clustering [8]. Bottom middle: the triangular mesh produced by the new method.
Bottom right: the final integration result produced by the new method.

Fig. 6. (a): The convergence performance of the new mehtod. (b): The proportion of
the points really affected by clique energy (c): Integration result when c×R = 40 (d):
Integration result when c×R = 80. Please note the holes around the neck.



MRF-Based Clustering for the Integration of Multi-view Range Images 651

Fig. 7. Integration results of 18 ‘Bird’ images produced by different clustering methods.
Left: MRF-based clustering; Middle: fuzzy-c means; Right: k-means.

Fig. 8. Integration re0.7ts (back view) of 18 ‘Bird’ images produced by different clus-
tering methods. From left to right: k-means clustering, fuzzy-c means clustering, the
reconstructed surface and triangular mesh produced by MRF-based clustering.

Fig. 9. Triangulated meshes of the integrated surface using different methods. From left
to right: volumetric[5], mesh-based method[13], point-based method[15], our method.

Fig. 10. Different performance measures of integration algorithms. Left: distortion met-
ric. Right: computational time.
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Due to the different objective functions, it is very difficult to define a uniform
metric such as the integration error [8, 9] for comparison because we reject the
idea that the closest centroid is the best choice. However, Fig.7 and 8 highlight
the visual difference of the integration results produced by classical clustering
methods and our method. It can be seen that our method performs better,
particularly in the non-flat regions such as the neck and the tail of the bird.

Even so, for a fair comparison, we introduce some measurement parameters
widely used but not relevant to the objective function: 1) The distribution of
interior angles of triangles. The angle distribution shows the global optimal de-
gree of triangles. The closer the interior angles are to 60◦, the more similar the
triangles are to equilateral ones; 2) Average distortion metric [26]: the distortion
metric of a triangle is defined as its area divided by the sum of the squares of the
lengths of its edges and then normalised by a factor 2

√
3. The value of distortion

metric is in [0,1]. The higher the average distortion metric value, the higher the
quality of a surface; 3) The computational time; Fig.9 and 10 show that the
MRF-based algorithm performs better in the sense of the distribution of interior
angles of triangles, the distortion metric and the computational time. All exper-
iments were done on a Pentium IV 2.40 GHz computer. Additionally, because
there is no specific segmentation scheme involved in the MRF-based clustering,
our algorithm saves computational time compared with the techniques using
some segmentation algorithms as a preprocessing before the integration [9].

6 Conclusion

Clustering-based methods proved superior to other existing methods for integrat-
ing multi-view range images. It has, however, been shown that classical clustering
methods lead to significant misclassification in non-flat areas as the local surface
topology are neglected. We develop a MRF-based method to tackle this problem
and produce better integration results. It does not only focus on minimising the
integration errors defined by the Euclidean distance, but also considers the effect
from local topology and neighbourhood consistency. The reconstructed surfaces
are geometrically realistic since the new method essentially uses more informa-
tion contained within the input data. Also, it is applicable to more general data
sources such as 3D unstructured point clouds.
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project. This support is gratefully acknowledged.
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