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Abstract. In this paper we present a novel method for performing image
registration of different modalities. Mutual Information (MI) is an estab-
lished method for performing such registration. However, it is recognised
that standard MI is not without some problems, in particular it does not
utilise spatial information within the images. Various modifications have
been proposed to resolve this, however these only offer slight improve-
ment to the accuracy of registration. We present Feature Neighbourhood
Mutual Information (FNMI) that combines both image structure and
spatial neighbourhood information which is efficiently incorporated into
Mutual Information by approximating the joint distribution with a co-
variance matrix (c.f. Russakoff’s Regional Mutual Information). Results
show that our approach offers a very high level of accuracy that im-
proves greatly on previous methods. In comparison to Regional MI, our
method also improves runtime for more demanding registration problems
where a higher neighbourhood radius is required. We demonstrate our
method using retinal fundus photographs and scanning laser ophthal-
moscopy images, two modalities that have received little attention in
registration literature. Registration of these images would improve accu-
racy when performing demarcation of the optic nerve head for detecting
such diseases as glaucoma.

1 Introduction

Image Registration is the task of finding a spatial transformation that aligns two
(or more) images into matching correspondence. Within the medical domain,
combining images of different modalities can provide a clinician with greater
insight when treating a patient. Mutual Information (MI) is a widely recognised
technique for registering different modalities, based on the entropy of the image
regions being compared. Simultaneously proposed by Viola [1] and Collignon [2],
MI relies on a statistical comparison between the images rather than individual
intensity comparison, making it a suitable similarity measure for multi-modal
images. Given our floating image A, and the region being covered by this in



our reference image B, MI can then be defined as I(A; B) = H(A) + H(B) −
H(A,B), where H(A) is the entropy of image A, H(B) is the entropy of image
B and H(A,B) is the joint entropy of the two. We wish to find the spatial
transformation that maximises I(A;B).

Since being introduced, there have been many methods proposed to improve
the registration accuracy of MI. This is largely to resolve the fact that no spatial
information is considered within the measure meaning each pixel is considered
independently of its neighbours. Given two multi-modal images, there may be
little or no consistent intensity mapping that relates the two together due to the
differences in lighting and acquisition (Fig. 1) [3]. Therefore it is sensible to also
include structural information since intensity alone may not provide adequate
information.

Fig. 1. Two images with clear structural relationship but no simple intensity mapping.

There have been many proposed methods that attempt to improve MI. Pluim
suggests integrating a gradient value into the MI measure [4], however this is
simply done by computing standard MI and multiplying this by a gradient term.
Dowson incorporates interpolated pixel information to improve the entropy esti-
mate [5] using NP-Windows. However this is computationally expensive giving a
lengthy runtime that is unsuitable for our task. Rueckert proposes higher-order
MI that computes entropy for intensity pairs rather than individual intensities,
to introduce neighbouring pixel information into MI [6]. Beijing also uses higher-
order MI [7] to include a range of other properties such as mean and median
values of a pixel neighbourhood, different neighbouring pixels (left and right
neighbours) and also a gradient value. Kubecka suggests using gradient-image
MI, where MI is computed for both the original images (after performing illu-
mination correction) and also for the corresponding gradient images [8].

Another proposed scheme to improve Mutual Information is Regional Mu-
tual Information (RMI), introduced by Russakoff [9]. This takes neighbouring
pixels into account to incorporate spatial information. Essentially, for each pixel,
a vector of all the local intensities is created for both of the images being reg-
istered. While this provides much greater relational information for each pixel,
it also means that many intensities need to be considered (e.g. for a neigh-
bourhood radius of 1, this would mean 18 intensities per pixel when register-
ing two 2-dimensional images). Using a joint histogram to represent this would
be unfeasible and place far too great a demand on the physical memory of
the computer system (using 8-bit images, the joint histogram would consist of
25618 ≈ 2.2301× 1043 bins). To overcome this complexity problem, the samples
are replaced by a covariance matrix which substantially reduces the amount of
data. The covariance matrix represents the relation between the original vector
elements by approximating the joint intensities by a normal distribution. This



method offers a clear improvement over standard MI, although computing the
original matrix can still be computationally demanding. This becomes even more
apparent in difficult registration problems where a larger neighbourhood radius
is required.

Yang [10] extends this method by using the same approach as Russakoff, but
incorporating a mean neighbourhood intensity value instead of all intensities to
reduce the complexity of the original matrix computation. However, this method
fails to perform as well as RMI, clearly showing that too much information is
lost by simplifying the data in this fashion.

In this paper, we incorporate multi-scale feature derivatives along with spa-
tial neighbourhood knowledge into a MI framework. In doing this, we can en-
capsulate greater detail from our images in a much more efficient approach. We
demonstrate our method using retinal fundus photographs and scanning laser
ophthalmoscope (SLO) images, and obtain very high accuracy of registration.
Successful registration would help improve demarcation analysis of the optic
nerve head, an important task in detecting such diseases as glaucoma.

2 Multi-scale Feature Neighbourhood MI

To perform registration, we require a similarity measure to compare our images
and we require an optimisation search to find the transformation that maximises
our similarity measure. If we imagine the surface function given by calculating
our similarity measure at different transformation points, we wish this surface to
be smooth with few local maxima. This would mean that our search optimisation
would be more likely to find the global maximum point of our surface. Providing
that our similarity measure is correct, then the global maximum should give the
correct transformation parameters for registration.

Feature Neighbourhood Mutual Information (FNMI) consists of two stages.
Firstly, we compute the gradient magnitude of each image at multiple scales to
detect structural change and emphasise features within the images. Typically,
an image will consist of many different features, varying in shape and size. In the
case of our images, we expect to see the optic nerve head along with many blood
vessels, all of different thickness. In order to highlight all these features effec-
tively, we incorporate the notion of scale-space [11]. Scale-space applies Gaussian
blurring to an image using multiple kernel sizes that can be used to determine
how fine features in the image are connected on a larger scale. At a low scale
we can pick out small blood vessels and the edges of larger vessels. However,
for the larger vessels, there is no connectivity information that would link one
edge with the other. By using a larger scale, smaller features become grouped to
give a much more generalized edge map showing the connectivity of the larger
features.

2.1 Incorporating feature images with Mutual Information

Our method for incorporating features is an adaptation of RMI [9]. We create a
stack for each of the images being registered, consisting of the original image and



Fig. 2. Top: SLO image with multi-scale gradient images (σ = 1, 2, 4 and 8). Bottom:
Extract from fundus photograph with multi-scale gradient images (σ = 1, 2, 4 and 8).

its corresponding feature images. It is possible to combine any number of feature
images, where more features may improve accuracy further, although as more
features are added this will affect computation time. Given the floating image
and the area being registered to from the reference image, we create a vector
that consists of each pixel and its neighbours for each image in the stack. If we
use f feature images, then the vector will consist of d = 18×(f +1) elements (the
pixel and its 8 neighbouring pixels for both the floating and reference images (18
points), for each feature image plus the original image). This is done for every
point where the floating image and reference image overlap (ignoring background
in the fundus photograph), and combined to give matrix P .

We subtract the mean from each point in the matrix, and calculate the
co-variance of the matrix, given by C = 1

N PPT . From [12], the entropy of
a normally distributed set of points in <d with covariance matrix c is given
by H(c) = log((2π)

d
2 det(c)

1
2 ). The joint entropy is computed by H(C), and

the marginal entropies are computed by H(CA) and H(CB), where CA is the
d
2 × d

2 sub-matrix in the top-left corner of C, and CB is the d
2 × d

2 sub-matrix
in the bottom-right corner of C. Mutual Information is computed by MI =
H(CA) + H(CB)−H(C).

2.2 Registration search

Searching the transformation space in registration tasks is difficult since the
space is very large when considering all possible translations and rotations,
meaning an exhaustive search is unfeasible. Instead, we adopt the Nelder-Mead
simplex algorithm [13] to find translation. We know the rotation of the image to
be within the range ±3◦, which we step through at intervals of 0.5◦.

We incorporate a multi-resolution image pyramid to search for the correct
registration on a coarse-to-fine approach. At the coarse level, we can obtain a
result much faster due to a smaller search space, and so can afford to search
all possible rotations within range. To begin, we initialise our search by placing
the floating image in the centre of the reference image, since it is expected that



the optic nerve head will occur near the centre of the fundus photograph. As we
progress down each level of the pyramid, the rotation range reduces to ±1◦ of the
value found on the previous pyramid level to reduce unnecessary computation.
For each level, we perform translation search to find a suitable initialisation
for the next level down. This reduces the time required at the fine level of the
pyramid, and obtains a good approximation of the registration quickly at the
higher level. This approach also helps to avoid local maxima points that a search
algorithm could easily become trapped within, since the coarse level has a much
smaller search space.

3 Testing and Results

For our testing, we have 135 image pairs that are to be registered. The image
modalities are retinal fundus photographs and scanning laser ophthalmoscopy
(SLO) images. The size of each fundus image is 564 × 367 and the size of each
SLO image is 286× 278. For each of the methods tested, we compare the mean
and median registration errors between the obtained result and our ground truth
values. Our ground truth registrations were performed by hand and approved by
an expert clinician. Since the mean can be affected by outliers and the median
is insensitive to half of the data, we use a 5-point grading scheme to assess each
method, with an expert clinician classifying each registration as either ‘excellent’,
‘very good’, ‘good’, ‘weak’ or a ‘fail’.

The results shown in Table 1 indicate that our method can obtain a very
high degree of accuracy for registration. It can be seen that many of the other
methods have a high variability in the results, shown by a high mean and a low
median result. While there are successful registrations found with each method,
the results show that other approaches are not as robust as our proposed method.
However, it is clear to note that our method requires much greater computation
time to achieve such accuracy. This is due to generating the additional feature
image as part of the registration process, a task which could be sped up by
utilising the GPU.

Table 1. Registration error results (Translation (pixels), Rotation (degrees) and Runtime (seconds)).

Method Mean Median Runtime

T R T R Mean Median

FNMI (σ = 2) 7.52 0.39 0 0 143.5 88.2

RMI 94.61 1.24 16 0.5 22.6 23.9

Mean Neighbourhood MI 89.13 2.39 74 2.0 11.0 11.2

Gradient-Image MI 49.94 1.56 25 1.0 17.4 17.4

Gradient MI 80.22 2.16 65 2.0 19.5 19.4

Second-Order MI (mean neighbourhood) 105.48 1.94 25 1.5 6.1 6.2

Second-Order MI (median neighbourhood) 123.68 1.74 55 1.5 7.3 7.3

Second-Order MI (gradient value) 119.54 1.74 40 1.0 14.2 14.0

Second-Order MI (left neighbour pixel) 160.70 2.01 151 1.5 5.4 5.4

Second-Order MI (right neighbour pixel) 171.54 1.96 179 1.5 5.2 5.2

Standard MI (32 bins) 115.43 1.90 42 1.5 3.9 4.0



Table 2. Registration error results for FNMI using additional features and RMI using larger radius.

Method Mean Median Runtime

T R T R Mean Median

FNMI (σ = 2 and σ = 4) 5.48 0.47 2 0 223.2 146.6

RMI (r = 3) 14.92 0.50 5 0.5 85.2 85.7

RMI (r = 4) 11.13 0.52 5 0.5 149.4 150.3

RMI (r = 5) 6.91 0.52 6 0.5 259.2 257.8

In our testing, we use the gradient at scale σ = 2. We propose that our
registration can be improved by incorporating additional image scales to our
registration. Likewise, it should be noted that Regional MI is computed using a
neighbourhood radius of 1. This neighbourhood radius can be extended, which
should improve on their original result and so we investigate this factor in com-
parison to our own method. From investigation, we have found that accuracy
improves for RMI as the neighbourhood radius is increased. Likewise for our
method, we can include additional derivatives at scale σ = 2 and σ = 4. It
can be seen in Table 2 that the mean error is reduced when using additional
features. However it is difficult to assess exactly how well this has improved reg-
istration using mean and median error results alone. Therefore we also provide
qualitative assessment, where each registration is graded on a 5-point scale by
an expert clinician as shown in Table 3. This gives a much clearer indication of
how successful each method is.

Table 3. Grading results for registration.

Method Grading Results

Excellent V.Good Good Weak Failed

FNMI (σ = 2) 30 92 8 1 4

Regional MI 11 41 11 6 66

Mean Neighbourhood MI 3 9 5 3 115

Gradient-Image MI 8 22 27 12 66

Gradient MI 1 14 10 8 102

Second-Order MI (mean neighbourhood) 10 32 9 14 70

Second-Order MI (median neighbourhood) 7 30 5 10 83

Second-Order MI (gradient value) 10 37 12 8 68

Second-Order MI (left neighbour pixel) 6 23 10 8 88

Second-Order MI (right neighbour pixel) 7 21 6 6 95

Standard MI (32 bins) 8 24 16 11 76

FNMI (σ = 2 and σ = 4) 38 88 9 0 0

RMI (r = 3) 23 85 21 0 6

RMI (r = 4) 29 85 19 0 2

RMI (r = 5) 37 86 12 0 0

Figure 3 shows an example of a difficult registration. The result obtained
using our original method is the failed registration, where as FNMI with σ = 2
and σ = 4 can successfully register the images. Mutual Information (using 32
bins) at the point of failed registration is 0.4958 compared to the successful
registration where MI is 0.4672. In the case of our method, our original method
gives a higher MI score for the successful registration, however, the surface of the
function is difficult for our optimiser to find the true global solution for. Using
FNMI with σ = 2 and σ = 4 gives an improved surface for search optimisation
with very few local maxima. In the case of image registration where an exhaus-



tive transformation search is unfeasible, it is highly desirable for our similarity
measure to give a surface function that our search algorithm can easily converge
to the global solution.

Fig. 3. Left-to-right: Fundus image, SLO image, failed and successful registration.

Figure 4 shows each similarity measure versus X-translation for registration
of our difficult image example (so to provide clear plot visualisation). In this
example, both MI and RMI (when r = 3) fail as the true registration does not
give the global maximum in our surface function. RMI (r = 4 and r = 5) both
give the correct registration at the global maximum, although there exist other
local maxima that could easily trap the search optimisation. FNMI peaks at the
correct registration, provides a smooth surface to converge over, and has much
fewer local maxima that may affect the optimisation process.

Fig. 4. Surface plots of a difficult registration. Left-to-right: MI (32 bins), RMI (r = 3),
RMI (r = 4), RMI (r = 5), FNMI (σ = 2) and FNMI (σ = 2 and σ = 4).

4 Discussion

Our study is focused on the registration of multi-modal retinal images. We pro-
pose to combine multi-scale derivatives with neighbourhood intensities, and in-
corporate these into a MI framework. Our method achieves very accurate results
for our registration problem compared to existing registration methods.

Our method extends the work of Russakoff, who proposed RMI. In RMI, only
neighbourhood intensities are included in registration. What we found with RMI
is that when using the direct neighbourhood (a pixel and its 8 neighbours, for
each image; giving 18 points), RMI fails to consistently give good registration
results. This can be improved by increasing the radius of the neighbourhood,
however the number of points required for each vector quickly becomes very
large. In difficult registration cases, we found RMI can register these to a good
standard when using a neighbourhood radius of 5 pixels (requiring 242 points



in each column vector). The same image can be registered using our method
using two feature images (requiring 54 points in each vector). This significant
reduction of data points becomes even more apparent in the covarience matrix,
where RMI would have a matrix C of size 242×242 compared to a matrix of size
54×54 in our method. This leads to much less computation time required for this
step of the algorithm. However our method does require feature derivatives to be
computed which takes additional time. We experimented with two approaches:
computing the features first and then transforming the complete image stack,
or performing transformations on the single intensity images and computing
features only when performing our registration comparison. The second approach
gave slight improvement to runtime and so was adopted, although both of these
approaches could be performed much faster by exploiting the capabilities of the
GPU. However, even with this additional computation, our method still offers
improvement to runtime when compared to RMI (r = 5).
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