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Abstract

Digital images and videos have an increasingly
important role in today’s telecommunication and our
everyday life in modern information society. The past
few years witnessed a proliferation of content-based
image retrieval techniques. Images are typically
characterized by intrinsic attributes of images such as
color, texture, and shape. However, the potential of
integrating these techniques with visualization and
data-mining techniques has yet been fully explored.
Users should be able to explore images in a database or
video clips by visual similarities. In this article, we
explore the synergy between Pathfinder networks and
content-based information retrieval techniques. Salient
structures of images are revealed through visualization
models derived from features extracted from images.
Visualizations are generated from three feature classes
of the well-known QBIC system: color, layout, and
texture.

1. INTRODUCTION

Digital images and videos have an increasingly
important role in today’s telecommunication and our
everyday life in modern information society. The past
few years witnessed a proliferation of content-based
image retrieval techniques. An image is typically
characterized by intrinsic attributes of its content,
ranging from simple, low-level features such as color
and texture, to more complex, relatively higher-level
features such as shape. However, the potential of
integrating these techniques with visualization and
data-mining techniques has yet been fully exploited to
enable users explore images in a database or video
clips by visual similarities.

Content-based image retrieval has been a highly active
area of research in the computer vision community [1,
2]. A number of image retrieval systems have been
developed over the last few years, notably, IBM's
QBIC [3], PhotoBook [4], ImageRover [5], and
Webseek [6]. On the other hand, several issues must be
understood before image retrieval is viable. For
example, it is important to understand what retrieving

relevant images entails. If users are provided with a
gpatial user interface in which content similarity
between images can be intuitively conveyed by their
gpatial proximity, then such interfaces may help users
to benefit more from a given image database.

The advances of information visualization and data
mining techniques now allow users to explore an
information landscape or an information galaxy [7, 8].
Many of these visualizations are based on
interrelationships derived from textual information,
typically using classic information retrieval models
such as the vector space model [9], Latent Semantic
Indexing (LSI) [10], or other variants. Mapping the
structure of a document collection into a high-
dimensional vector space also lent itself to some
information visualization and layout generation
techniques, notably the use of the spring-embedder
model and other physical systems. There has been a
steady increase in the interest in this type of layout and
visualization techniques, which tend to place similar
objects near to each other and separate dissimilar
objects far apart in the visualization space.

Structuring and visualizing digital images based on
their content similarities, however, is not as mature as
its text-based counterpart. Currently, many content-
based image retrieval techniques have been devel oped
to incorporate higher-level feature extraction
capabilities, but a lot of work remains to be done.
Ultimately, feature-extraction techniques, combined
with other techniques, are expected to narrow down the
gap between relatively primitive features extracted
from images and high-level, semantically-rich
perceptions by humans so that users will be able to find
the right images more easily and intuitively.

The work described in this article was originated in our
experience in organizing an image database concerning
the design of various information visualization
displays. We have collected nearly 300 images of
various information visualization systems [11].
Researchers and practitioners in  information
visualization often need to find an optimal way to
arrange various visualization displays so that design



patterns and trends will become apparent. Ideally,
images of similar layouts, spatial properties, or overall
shapes should be closely grouped together. Users
should be able to explore and compare images within
such structures.

Generalised Similarity Analysis (GSA) is a generic
framework developed for structuring and visualizing
information spaces [12, 13]. Applications of GSA
include visualization of university websites, online
conference proceedings, and journalsin digital libraries
according to a variety of similarity measures, such as
term-frequency, hypertext reference links, author co-
citation profiles, and browsing trails of users. A key
element in GSA is the use of the Pathfinder network
scaling technique to extract the most salient links and
gliminate redundant or counter-intuitive links [14].
Pathfinder has some desirable features over techniques
such as multidimensional scaling (MDS), for example,
Pathfinder networks present a more accurate local
structure. In this article, our aim isto explore a synergy
between Pathfinder network scaling and CBIR
techniques to enable users to explore a collection of
images according to their content similarities.

The rest of thisarticle is organized as follows. First, the
feature-extraction techniques to be used are introduced
in more detail. Second, a brief history of using
Pathfinder networks in information visualization is
provided to form a wider context. Subsequently
derived Pathfinder networks are examined and
discussed. Finally, implications of the synergy for
visualizing and constructing hypermedia systems are
discussed.

2. CONTENT-BASED RETRIEVAL

The key issue in CBIR is how to match two images
according to computationally extracted features.
Typically, the content of an image can be characterized
by a variety of visual properties known as features. It is
common to compare images by color, texture, and
shape, athough these entail different levels of
computational complexity. Color histograms are much
easier to compute than a shape-oriented feature
extraction.

Most content-based image retrieval techniques fall into
two categories. manual and computational [2]. In
manual approaches, a human expert may identify and
annotate the essence of an image for storage and
retrieval. For example, radiologists often work on
medical images marked and filed manually with a high
degree of accuracy and riability.

Computational approaches, on the other hand, typically
rely on feature-extraction and pattern-recognition
algorithms to match two images. Feature-extraction
algorithms commonly match images according to the
following attributes, also known as query classes:

color

texture

shape
spatial constraints.

A robust CBIR techniqgue should support a
combination of these query classes. ldeally, users
should be able to use high-level and semantically-rich
image query classes, such as human facial expressions,
in their image retrieval. However, the reliability of
today’ s feature-extraction techniques has yet to reach
such a level of satisfaction. This is partialy why
simpler, and relatively low-level feature-extraction
techniques are still being widely used and continuously
developed. The background of the four mainstream
feature-extraction algorithms is explained as follows.

21 Coalor

Swain and Ballard [15] matched images based soldy
on their color. The distribution of color was
represented by color histograms, and formed the
images feature vectors. The similarity between a pair
of images was then calculated using a similarity
measure between their histograms called the
normalized histogram intersection. This approach
became very popular due to the following advantages:

Robustness. The color histogramis invariant to rotation
of the image on the view axis, and changes in small
steps when rotated otherwise or scaled [15]. It is aso
insensitive to changes in image and histogram
resolution and occlusion.

Effectiveness. There is high percentage of relevance
between the query image and the extracted matching

images.

Implementation simplicity. The construction of the
color histogram is a straightforward process, including
scanning the image, assigning color values to the
resolution of the histogram, and building the histogram
using color components as indices.

Computational simplicity. The histogram computation
has O(M?) complexity for images of size M" M. The
complexity for a single image match is linear, O(n),
where n represents the number of different colors, or
resolution of the histogram.

Low storage requirements. The color histogram size is
significantly smaller than the image itsdlf, assuming
color quantisation.

22 Texture

A common extension to color-based feature extraction
is to add textural information. There are many texture
analysis methods available, and these can be applied



either to perform segmentation of the image, or to
extract texture properties from segmented regions or
the whole image. In a similar vein to color-based
feature extraction, He and Wang's approach [16] can
be used to generate a histogram of texture, which is
called the texture spectrum. More recently, the circular
co-occurrence matrix, a modified version of the
standard co-occurrence method, is developed to
produce a texture histogram with an additional degree
of rotation invariance [17].

In general, texture-based feature extraction tends to
provide more gpatial information than color
histograms. In order to find out more about the content
of an image, one may consider features associated with
shapes. For example, the presence of edges, edge
orientation, and edge distance may lead to a more
accurate match of images.

2.3 Shape

Shape extraction remains a challenge to feature-
oriented approaches. Several methods have been
developed for detecting shapes indirectly. Whereas it
tends to be extremely difficult to perform semantically
meaningful segmentation, many reasonably reiable
algorithms for low-level feature extraction have been
developed. These will be used to provide the spatial
information that is lacking in color histograms.

Rather than attempt to directly measure shape we
calculate some simpler properties that are indirectly
related to shape and avoid the requirement for good
segmentation, providing a more practical solution.

Edge Orientation. Jain and Vailaya combined edge
orientation histograms with color histograms [18].
These edge orientation histograms encode some
aspects of shape information. As a result, image
retrieval can be more responsive to the shape content
of the images. Standard edge detection is sufficient for
shape-oriented feature extraction (eg. Canny's
algorithm [19]). In addition, minor errors in the edge
map have little effect on the edge orientation
histograms. Unlike color histograms, the orientation
histograms are not rotationally invariant. Therefore the
histogram matching process has to iteratively shift the
histogram to find the best match.

A more important consideration is that the edge maps
were thresholded by some unspecified means. For
robustness an adaptive thresholding scheme should be
used [20]. However, an alternative is to include al the
edges and weight their contribution to the histogram by
their magnitudes so as to reduce the contribution from
spurious edges. This is the approach we take in the
reported experiments.

Multi-resolution Salience Distance Transform. Anocther
approach to including shape information is based on

the distance transform (DT). The DT is a method for
taking a binary image of feature and non-feature pixels
and calculating at every pixel in the image the distance
to the closest feature. Although this is a potentially
expensive operation efficient algorithms have been
developed that only require two passes through the

image [21].

To improve the stability of the distance transform,
Rosin and West [22] developed an algorithm called the
salience distance transform (SDT). In SDT, the
distances are weighted by the salience of the edge,
rather than propagating out Euclidean (or quasi-
Euclidean) distances from edges. Various forms of
salience have been demonstrated, incorporating
features such as edge magnitude, curve length, and
local curvature. The effect of including salience was to
downplay the effect of spurious edges by soft
assignment while avoiding the sensitivity problems of
thresholding.

The distance values can be represented in histograms
once the SDT has been performed. These histograms
will respond differently to different types of shapes.
There is the crude distinction between cluttered,
complex scenes and simple sparse scenes, which will
result in different ends of the histogram being heavily
populated. Thus the profile of the distance histograms
provides an indication of image complexity, along the
lines of Kawaguchi and Taniguchi's [23]. However,
rather than return a single complexity measurement,
the shape of the histogram will indicate more subtle
distinctions between shapes.

3. PATHFINDER NETWORKS
Pathfinder network scaling is a structural modeling
technique originally developed for the analysis of
proximity data in psychology [14]. We have adapted
this modeling technique to simplify and visualize the
strongest interrelationships in proximity data. The
resultant networks are called Pathfinder networks
(PFNETYS).

The key to Pathfinder is the so-caled triangular
inequality condition, which can be used to eiminate
redundant or counter-intuitive links. Pathfinder
network scaling particularly refers to this pruning
process.

The topology of a PFNET is determined by two
parameters r and q and the resultant Pathfinder
network is denoted as PFNET(r, ). The weight of a
path is defined based on Minkowski metric with the r-
parameter. The g-parameter specifies that the triangle
inequality must be maintained against al the
alternative paths with up to g links connecting nodes n;
and ny;
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The least number of links can be achieved by
imposing the triangular inequality condition
throughout the entire network (g=N-1). In such
networks, each path is a minimum-cost path.

Pathfinder network scaling is a central component of
the GSA framework. GSA provides a flexible platform
for us to experiment with a variety of structures, such
as the vector-space model, LSI, and author co-citation
networks [24].

In this article, we will apply the Pathfinder network
scaling technique on image similarity data computed
based on color, layout, and texture feature classes
from the QBIC system. We used our collection of
images of information visualization displays. We call
it the InfoViz database in this article. Most of them are
computer-generated  graphics  from  information
visualization systems. The Pathfinder network scaling
process will then take these similarity data as the input
and generate Pathfinder networks. All the Pathfinder

networks described in this article are minimum-cost
networks, i.e. PFNETs (r=¥, ¢=N-1). These
Pathfinder networks are subsequently rendered as
virtual reality models in VRML (Virtual Reality
Modeling Language) for examination and evaluation.

4. PATHFINDER NETWORKS OF

IMAGES

Three Pathfinder networks of images were generated
based on similarity data produced by corresponding
image-matching schemes, namely, color, layout, and
texture. We expected that images with similar
structures and appearances should be grouped together
in Pathfinder networks.

Figure 1 is the screenshot of the visualization of our
InfoViz image database. The Pathfinder network was
derived from similarities determined by color
histograms. The layout of the visualization is visually
appealing. It is apparent that several clusters of images
have homogenous colors. The largest image cluster
appears to be the one in the lower half of the
screenshot. This cluster includes images typically with
line-drawing-like diagrams and visualization displays.

(Ble Edr Yiew Go  Comrmuniceior Halp

Figure 1: Images organized by color histogram.



Figure 2: Pathfinder networks of images by layout (left) and texture (right).

A Pathfinder network consists of all the strongest
connections among vertices as long as the triangle
inequality condition is not violated. In our example,
images are connected through such links. One can
simply estimate the computed similarity between two
images by estimating the minimum number of links
connecting them. In principle, similar images should be
placed near to each other, whereas dissimilar images
should be placed further apart. This principle echoes
the spring-embedder node placement model in a very
intuitive way. This principle appears to be substantially
realized for images based on color histograms.

Figure 2 shows the screenshots of two visualization
models of the InfoViz image database. The left figure
shows the Pathfinder network of images organized
according to their similarities determined by layout as
computed from the QBIC system. The right figure
shows similar results based on texture similarities.

The overall structure of the layout-based visualization
is different from the color-based visualization shown in
Figure 1. This is expected due to the self-organizing
nature of the spring-embedder model. On the other
hand, visualizations based on the two schemes share
some local structures. Several clusters appear in both
visualizations.

Unlike the layout version, the texture-based
visualization has a completely different visua
appearance from the color-based visualization. To
certain extent, this is understandable because the color
histogram and color-layout schemes share some

commonality in the way they deal with color. Figure 3
shows a closer view of some images in the texture-
based visualization.

Figure 3: Images organized by texture.

Figure 4 shows a screenshot of a combined user
interface, in which the image visualization and the
QBIC search engine are integrated. Users can explore
the image space in the virtual world. One can select a
guery image for the standby QBIC search engine by
clicking on a thumbnail image in the visualization
model in VRML. The default binding was set as the
Special Hybrid feature class provided by QBIC.
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Figure 4: Searching images in QBIC through the layout-based visualization.

4.1 Pathfinder Network Structures

In order to further understand the impact of different
feature schemes on visualized structures, we compared
the Pathfinder networks across the three feature-based
matching schemes. The number of links in each
network and the number of links in common are used
as the basis for network comparisons. The degree of
similarity between two networks is determined by the
likelihood that a number of common links are
expected to be found given the total number of linksin
the networks involved.

411 Color versusLayout

Coalor- and layout-based visualization schemes turned
out to have significantly similar structures (p = 0.000).
The magnitude of structural similarity is 0.182. This
suggests that these two visualizations reveal some
salient characteristics of the image database.

4.1.2 Color versus Texture

Color-based and texture-based visualization networks
are completely different. There are only 2 links in
common between the two networks. This confirms our

visual inspection of the networks. The network
similarity is 0.004.
Number of Images 279
Linksin PF by Color 271
Linksin PF by Layout 319
Common Links 91
Expected Common Links 2.23
Point Probability 0.00
Information 406.94

Table 1. Comparison between color- and layout
visualizations.

-based

Number of Images 279
Linksin PF by Color 271
Linksin PF by Texture 284
Common Links 2
Expected Common Links 1.98
Point Probability 0.27
Information 0.76

Table 2. Comparisons of

color- and texture-based

visualizations.



4.1.3 Layout versus Texture

Given the comparison results so far, it is not surprising
to find out that layout- and texture-based
visualizations are completely different. There is only
one common link between the two networks. The
network similarity is 0.002.

Number of Images 279
Linksin PF by Layout 319
Linksin PF by Texture 284
Common Links 1
Expected Common Links 2.34
Point Probability 0.23
Information 0.14

Table 3. Comparisons of layout- and texture-based
visualizations.

The color-based visualization has the least number of
links (279). The layout-based version has the largest
number of links (319).

4.2 Video

In addition to visualize the InfoViz image database,
we also visualized a video clip. This was motivated by
our observation that one cannot expect a similarity
continuum of images from independent sources. On
the other hand, the provision of a similarity continuum
of images will facilitate the validation and evaluation
of the visualization approach. Images from video clips
are likely to satisfy this requirement. Frames in the
same shot are likely based on the same scene.

Figure 5 shows an overview of the video network
generated similarly based on color-histograms. As
expected, the visual similarity of each image cluster is
more easily to recognise.

Figure 5. Visualizing video frames.

5. DISCUSSION AND CONCLUSION

Organizing images in Pathfinder networks based on
various types of image features allows us to compare
and verify the reliability and correctness of a particular
feature-extraction algorithm.

In a long run, organizing images based on low-level
features remains a challenging field of research.
Compared to computational feature-extraction
algorithms, human users may employ a much wider
range of criteria to judge, compensate, or differentiate
the similarity between two images. The integration of
Pathfinder networks and some of the most commonly
used feature-extraction schemes as presented in this
articleis only the first step towards the development of
a comprehensive framework of visualizing and
exploring networks of images.

Visualization techniques described in this article have a
wide range of potential applications, for example, data
mining in remote sensing images and image retrieval
from film and video archives. We are now considering
applying this methodology on a sample of images with
more continuous scenes, for example, video segments,
so that we will be able to keep track of the impact of
various feature-extraction techniques more closely.

Future work should address an optimal integration of
feature-extraction techniques and other image indexing
methods, especially approaches based on meta data .

The integration of CBIR techniques and existing
techniques in GSA provides additional tools for
designers to organize images based on a variety of
features for retrieval and browsing. Image indexing
techniques described in this article have the potential to
use generic visualization techniques to generate
overviews of content-based image networks.
Visualizations based on such content-based image
indexing mechanisms may lead to more insights into
emerging trends in information visualization.
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