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Abstract

In this paper we propose a new circularity measure which defines the degree to

which a shape differs from a perfect circle. The new measure is easy to compute and

being area based, is robust – e.g., with respect to noise or narrow intrusions. Also, it

satisfies the following desirable properties:

– it ranges over (0, 1] and gives the measured circularity equal to 1 if and only if the

measured shape is a circle;

– it is invariant with respect to translations, rotations and scaling.

Compared with the most standard circularity measure, which considers the relation

between the shape area and the shape perimeter, the new measure performs better in

the case of shapes with boundary defects (which lead to a large increase in perimeter)

and in the case of compound shapes. In contrast to the standard circularity measure,

the new measure depends on the mutual position of the components inside a compound

shape.

Also, the new measure performs consistently in the case of shapes with very small

(i.e., close to zero) measured circularity. It turns out that such a property enables the

new measure to measure the linearity of shapes.

In addition, we propose a generalization of the new measure so that shape circu-

larity can be computed while controlling the impact of the relative position of points

inside the shape. An additional advantage of the generalized measure is that it can be

used for detecting small irregularities in nearly circular shapes damaged by noise or

during an extraction process in a particular image processing task.

Keywords: shape, circularity measure, moments, Hu moment invariants, image pro-

cessing.
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1 Introduction

Shape descriptors are a powerful tool for shape classification tasks. Many shape descrip-

tors have already been studied in the literature and applied in practice. Some examples

are: elongation [32], convexity [21], rectangularity [24], rectilinearity [36], sigmoidality [25],

orientability [38], etc. Note also that, due to the diversity of shapes and the diversity of appli-

cations in different areas such as computer science, medicine, biology, robotics, etc., several

methods are often developed for measuring the same shape property. As an illustration we

list just a few known methods for measuring shape convexity: [1, 11, 19, 21, 26, 37] and for

computing the orientation of a shape: [3, 8, 13, 27, 28, 33]. The latter is often used within

a shape normalisation procedure that is sometimes required prior to further shape analysis.

All the methods developed have their strengths and weaknesses, and their suitability cannot

be evaluated without knowing the particular application for which they are to be applied.

Similar considerations hold for the other shape descriptors as well, including the circularity

measure that will be considered here.

In this paper we define a new measure for circularity (circularity is sometimes referred

to as compactness in the literature). Being one of the basic shape properties, circularity

has already been extensively studied, and several methods for measuring the circularity

already exist in the literature [4, 9, 12, 15, 20, 30]. Let us mention that 3D-compactness and

circularity in a discrete space have also been considered [2], but were defined in a different

way. Probably the most standard circularity measure is derived from the relation between

the shape area and the shape perimeter [29]. Taking into account that, among all shapes with

the same area, the circle has the minimal perimeter, a circularity measure can be defined as

Cst(S) =
4 · π · area of S

(perimeter of S)2
. (1)

It is easy to check that the following natural requirements, for such a defined circularity

measure, hold:

(a) Cst(S) ∈ (0, 1];

(b) Cst(S) = 1 if and only if S is a circle;

(c) Cst(S) is invariant with respect to similarity transformations (i.e., translations, rota-

tions and scaling);

(d) For each δ > 0 there is a shape S such that 0 < Cst(S) < δ, i.e. there are shapes whose

measured circularities are arbitrarily close to 0.
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As mentioned, there are also other possibilities for defining a circularity measure. One

of the general approaches to defining shape descriptor measures could also be applied to

defining circularity. For example, let us fit a circle C to a measured shape S, then the

circularity of the shape S can be estimated by comparing C and S. One straightforward

possibility for a fitted circle C is the circle whose centroid coincides with the centroid of S

and whose area is equal to the area of S. Finally, a circularity measure (i.e. the comparison

between S and C) can be given as
area of (S ∩ C)

area of (S ∪ C)
. Of course, there are other variations

of this approach.

Geometric moments will be used in the definition of the new circularity measure. It

is worth mentioning that geometric moments are widely used in computer vision, image

analysis, or pattern recognition tasks – see [29] or [10, 18, 27, 33] for more specific tasks.

The (p, q)-moment mp,q(S) of a planar shape S is defined by the following:

mp,q(S) =
∫∫

S
xpyq dx dy

and has order p + q. Basic shape features (e.g., size, position, orientation, elongation) are

computed from the moments having order less than or equal to two. E.g., m0,0(S) equals

the area of S while
(

m1,0(S)

m0,0(S)
, m0,1(S)

m0,0(S)

)

is the centroid of S. Higher order moments are needed

for computing, for example, the orientation of rotationally symmetric shapes [33] or moment

invariants [10].

The centralised (p, q)-moment µp,q(S) of a planar set S is:

µp,q(S) =
∫∫

S

(

x− m1,0(S)

m0,0(S)

)p (

y − m0,1(S)

m0,0(S)

)q

dxdy.

Of course, if the centroid of S and the origin coincide then mp,q(S) = µp,q(S) for all p and

q. Trivially, m0,0(S) = µ0,0(S), but in the rest of the paper we will use µp,q(S), rather than

m0,0(S), for the area of S.

In this paper we show that the quantity

C(S) = (µ0,0(S))
2

2π · (µ2,0(S) + µ0,2(S))

can be used as a circularity measure. We show that the basic requirements (a),(b),(c)

and (d) (given above) are also satisfied by C(S). Several given examples demonstrate the

behaviour of the new measure. Also, we give a generalisation of the new measure in order

to enable control of the impact of the points’ positions inside the measured shape to the

computed circularity.

4



Note that the quantity (µ2,0(S) + µ0,2(S))/(µ0,0(S))
2 is well known from the literature.

It is one of the famous Hu moment invariants [10] (invariant to translation, rotation and

scaling). The same quantity also appears as one of the geometric invariants derived in [35].

It is worth mentioning that moment invariants have been used in many classification tasks,

but also some of them are used to measure shape properties. For example [24] uses the

projective invariant I1(S) = (µ2,0(S) · µ0,2(S) − (µ1,1(S))
2)/(µ0,0(S))

2 (see [7]) to define an

ellipticity measure, under the argument that any ellipse can be obtained by applying an

affine transformation to a circle. More precisely, the ellipticity measure of a given shape S is

obtained by comparing I1(S) with
1

16π2
= I1(circle). The same paper derives a triangularity

measure by the same reasoning and by using I1(S) again.

Such defined ellipticity and triangularity measures are adopted to range over [0, 1] and

peak at 1 for a perfect ellipse (or a perfect triangle). The problem is that for both measures,

if the measured ellipticity (triangularity) equals 1 it is not guaranteed (or at least not proven)

that the measured shape is a perfect ellipse (triangle). The circularity measure described

here does not have such a disadvantage – it equals 1 if and only if the measured shape is a

perfect circle.

The paper is organised as follows. The next section introduces the new circularity measure

and proves several desirable properties of it. Section 3 gives some illustrative examples that

demonstrate the behaviour of the new measure C(S) and compare it with the behaviour of

the standard circularity measure Cst(S). In Section 4 we introduce a modification of C(S)
which gives different weights to the points inside the shape depending on their position

with respect to the measured shape centroid. In such a way, the impact on the computed

circularity of the positions of points inside the shape can be controlled. Illustrative examples

and theoretical consideration of the modified measure are also given. In Section 5 we discuss

and demonstrate the suitability of a use of the new circularity measure for measuring shape

linearity. Section 6 uses the circularity measure for a variety of image processing applications.

Comments and conclusion are in the last section.

2 New Circularity Measure

In this section we define a new circularity measure. Through the paper we assume that all

shapes considered are planar and compact (a closed and bounded set is said to be compact),

even if this is not explicitly stated. Obviously, this is not a restriction in image processing

tasks. We start with the quantity (µ2,0(S) + µ0,2(S)/(µ0,0(S))
2 and show that it reaches the
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minimum value of 1/(2π) if and only if S is a circle. Exploiting this fact we will come to a

new circularity measure. First, we prove the following theorem.

Theorem 1 Let S be a given planar compact shape. Then

µ2,0(S) + µ0,2(S)

µ0,0(S)2
≥ 1

2π
, (2)

µ2,0(S) + µ0,2(S)

µ0,0(S)2
=

1

2π
⇔ S is a circle. (3)

Proof. Let S be a given planar compact shape whose centroid coincides with the origin.

Also, let C be the circle with radius r =
√

µ0,0(S)/π (i.e. the areas of C and S are the same)

and centred at the origin. Trivially:

(i) The areas of the set differences S \ C and C \ S are the same (because the areas of S

and C are the same);

(ii) The points from C \ S are closer to the origin than the points from S \ C. I.e., more

formally: If (u, v) ∈ S \ C and (w, z) ∈ C \ S then u2 + v2 > w2 + z2 (see Fig. 1).

Further, (i) and (ii) give:

∫

S\C

∫

(x2 + y2) dx dy ≥
∫

C\S

∫

(x2 + y2) dx dy. (4)

Now, we prove (2):

µ2,0(S) + µ0,2(S) =
∫∫

S
(x2 + y2)dxdy

=
∫∫

S\C
(x2 + y2)dxdy +

∫∫

S∩C
(x2 + y2)dxdy

≥
∫∫

C\S
(x2 + y2)dxdy +

∫∫

S∩C
(x2 + y2)dxdy

=
∫∫

C
(x2 + y2)dxdy =

µ0,0(S)
2

2π
.

To prove (3), notice that both S and C are compact and S 6= C implies that the inequality

(4) is strict. So,

µ2,0(S) + µ0,2(S) > µ2,0(C) + µ0,2(C) =
µ0,0(S)

2

2π
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S C
.(u,v) . (w,z)

Figure 1: Each point (w,z) from C \S is closer to the origin than any point (u,v) from S \C.

for all S different from a circle. This established the proof. ✷

Note. It is worth mentioning that the proof of Theorem 1 actually makes it intuitively

clear why the quantity µ2,0(S)+µ0,2(S) reaches its minimum for a circle, and thus, is suitable

to be used for a circularity measure. From the proof (see also Fig. 1) it becomes clear that: If

we would like to construct a shape S having the minimum possible value of µ2,0(S)+µ0,2(S),

then none of the points whose squared distance to the shape centroid is, let us say, d2 may

be included before all the points whose squared distance to the centroid of S is less than d2

are already included in S. Roughly speaking, such a “greedy algorithm” (in this particular

case) leads to a circle as the optimal (shape) solution of this optimization problem. ✷

Thus, Theorem 1 says that (µ2,0(S) + µ0,2(S))/µ0,0(S)
2 reaches its minimum if and only

if S is a circle. This minimum is 1/(2π). Based on this, we give the following definition.

Definition 1 Let S be a given shape. Then the circularity measure C(S) is defined as

C(S) = 1

2π
· µ0,0(S)

2

µ2,0(S) + µ0,2(S)
. (5)

Theorem 2 summarises the desirable properties of C(S).

Theorem 2 The circularity measure C(S) satisfies:

(a) C(S) ∈ (0, 1], for all shapes S;

(b) C(S) = 1 ⇔ S is a circle;

(c) C(S) is an invariant w.r.t. similarity transformations;

(d) For each δ > 0 there is a shape S such that 0 < C(S) < δ.
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Proof. Items (a) and (b) follow directly from Theorem 1.

Item (c) follows from the fact that the quantity (µ2,0(S) + µ0,2(S))/µ0,0(S)
2 is invariant

with respect to similarity transformations. So, µ0,0(S)
2/(2π(µ2,0(S) + µ0,2(S))) is also such

an invariant.

To prove (d), let us consider a rectangle T (t) whose edge lengths are 1 and t, where

t is an arbitrary positive number. It is easy to verify that

C(T (t)) = 1

2π
· (µ0,0(T (t)))

2

µ2,0(T (t)) + µ0,2(T (t))
=

6 · t
π · (t2 + 1)

. (6)

A trivial equality: lim
t→∞

C(T (t)) = 0 completes the proof. ✷

Remark. Notice that the measured circularity C(T (t)) = 6t/(π ·(t2+1)) is in accordance

with our perception. The highest measured circularity is for t = 1; i.e., among all rectangles

the square has the highest measured circularity. This is as expected. Also, when t → ∞ and

t → 0 the measured circularity tends to 0. In those cases the rectangle degenerates into an

infinitely long (but with constant width) strip (t → ∞) or into a line segment (t → 0), and

such a measured circularity, tending to 0, seems to be very reasonable.

3 Experiments Illustrating C(S) Behaviour

Examples in Fig.2 illustrate how the new circularity measure acts. Ten fish shapes are ranked

with respect to their measured C(S) circularity (the numbers given immediately below the

shapes). It could be said that the obtained ranking is in accordance with our perception.

If the same shapes are ranked with respect to Cst(S), a different ranking (b)(a)(c)(d)(e)(g)
(h)(f)(i)(j) (instead of (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)) is obtained. Such a different ranking is

expected. The standard circularity measure Cst(S) penalises deep intrusions into the shape.

Such intrusions lead to a perimeter increase and, consequently, implies a lower measured

circularity. That is exactly what happened here. The shape in Fig.2(a) has a higher measured

C(S) circularity than the shape in Fig.2(b). On the other hand, the measure Cst(S) penalises
intrusions into the shape in Fig.2(a) and assigns a higher measured circularity Cst(S) to the

shape in Fig.2(b). The same reasons lead to the 8th position of the shape in Fig.2(f) if

ranked by Cst(S) measure.

Several more shapes are presented in Fig.3. The same reasoning applies. The biggest

differences among the C(S) and Cst(S) rankings are in the case of shapes that have deep intru-

sions. Ranking (a)(b)(c)(d)(e)(f)(g)(h)(i)(j) by C(S) is replaced by the ranking (a)(c)(e)(f)

(i)(b)(g)(h)(j)(d). A highly ranked shape in Fig.3(d), by a use of C(S), is ranked the last
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(a):0.9579

(0.4881)

(b):0.8755

(0.4937)

(c):0.6765

(0.3508)

(d):0.4506

(0.2733)

(e):0.4385

(0.2679)

(f):0.3810

(0.1981)

(g):0.3361

(0.2148)

(h):0.2776

(0.2082)

(i):0.1390

(0.1545)

(j):0.0729

(0.0982)

Figure 2: Fish shapes are ranked with respect to their measured C(S) circularities. Circu-

larities measured by Cst(S) are in brackets.

if Cst(S) is applied. The examples in figures Fig.2(e) and Fig.2(f) (also in Fig.2(g) and

Fig.2(h)) illustrate how shape deformations could lead to differences in the measured circu-

larity. In both cases the changes in the measured circularity C(S) are in accordance with our

perception of how a circularity measure should act – we prefer a higher circularity assigned

to the shape in Fig.3(e) (Fig.3(g)) than for the shape in Fig.3(f) (Fig.3(h)).
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(a):0.8265

(0.6046)

(b):0.8174

(0.2335)

(c):0.7851

(0.5772)

(d):0.7789

(0.0651)

(e):0.7777

(0.2677)

(f):0.7459

(0.2622)

(g):0.7387

(0.1651)

(h):0.6967

(0.1553)

(i):0.6600

(0.2506)
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(j):0.6142

(0.1102)

Figure 3: Shapes are ranked with respect to their measured C(S) circularities. Circularities
measure by Cst(S) are in brackets.

Figure 4 illustrates that C(S) can be applied to compound objects as well. Three shapes

consisting of three isometric circles are presented in Fig.4(a)-(c). In all three cases the

standard circularity measure Cst(S) assigns the same measured circularity equal to 1/3 ≈
0.3333. This is in accordance with formula (1), which, by the way, says that all compound
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(a): 0.7909 (b): 0.4540 (c): 0.2091

Figure 4: Measured circularity C(S) of a compound shape S strongly depends on the mutual

positions of the components of S.

object consisting of m isometric circles have the same assigned circularity Cst equal to 1/m,

independently on the mutual positions of the circles. On the other hand, the new measure

strongly depends on such positions, and consequently assigns different circularity measures

C(S) depending on them. The maximum circularity is measured when the circle centres are

vertices of a regular triangle (Fig.4(a)), while the minimum circularity is measured when the

disc centres belong to a line and circles are far away each other (Fig.4(c)). Such measured

circularities match our expectation. This behaviour of C(S) in the case of compound objects

can be considered to be an advantage over Cst(S).
Figure 5 illustrates the robustness of C(S). All four presented shapes have very similar

measured C(S) circularities even though the fourth shape (in Fig.5(d)) has a very high noise

level. On the other hand, the standard circularity measure Cst(S) can only cope with small

levels of noise. Indeed, the shape in Fig.5(a) has approximately 2.3 times higher measured

circularity than the shape in Fig.5(d).

(a):0.7470

(0.3155)

(b):0.7520

(0.3039)

(c):0.7565

(0.2289)

(d):0.7412

(0.1367)

Figure 5: Measured circularities C(S) of a shape with added noise. Measured Cst(S) circu-
larities are in brackets.

4 Point Position Dependent Circularity Measure

In this section we further develop our approach in order to enable some control of the impact

of the relative positions of points inside the shape on the computed circularity. Again, let S

be a planar shape whose centroid coincides with the origin. Informally speaking, the quantity
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(µ2,0(S)+µ0,2(S))/µ0,0(S)
2 can be understood as the average value of the squared distances

of points from S to the centroid of S. Each point (x, y) ∈ S contributes to µ2,0(S) + µ0,2(S)

by x2+ y2. Obviously, such an impact is smaller if (x, y) is closer to the centroid of S. Since

C(S) is proportional to the reciprocal value of (µ2,0(S) + µ0,2(S))/µ0,0(S)
2, we can say that

points with a lower distance to the centroid of S have a bigger impact on the computed

circularity measure of S. The question is: Is such an impact of the position of points, with

respect to the shape centroid, always suitable or would we like to change it in some particular

situations?

For example, if we consider the measured C(S) circularity of the fish in Fig.2(b), are

we happy with the measured circularity C(S) which is 0.8755? Or, would we like to give a

higher impact to the points which belong to the fish’s tail (and which are away from the

shape centroid) and, in such a way, reduce the measured circularity? Would we like to give

a higher impact to the points closer to the shape centroid and, in such a way, reduce the

impact of the rabbit’s ears (see Fig.3(e) and Fig.3(f)) and, consequently, obtain more similar

measured circularities for those rabbit shapes? In this section we give a modified method

which allows us to control the impact of a point’s position on the measured shape circularity.

We proceed with the following two lemmas which can be proven by using the approach

from the proof of Theorem 1.

Lemma 1 Let S be a given planar compact shape whose centroid coincides with the origin,

and constant β > 0. Then

∫

S

∫

(x2 + y2)βdxdy

(µ0,0(S))
β+1 ≥ 1

πβ(β + 1)
(7)

∫

S

∫

(x2 + y2)βdxdy

(µ0,0(S))
β+1 =

1

πβ(β + 1)
⇔ S is a circle. (8)

Proof. Similarly as in the proof of Theorem 1, we consider the circle C with radius r =
√

µ0,0(S)/π (i.e. preserving µ0,0(S) = µ0,0(C)) and centred at the origin. Then (see Fig.1),

because a positive β is assumed:

(u, v) ∈ S \ C, (w, z) ∈ C \ S ⇒ (u2 + v2)β > (w2 + z2)β,

which gives immediately:

∫∫

S\C
(x2 + y2)β dx dy ≥

∫∫

C\S
(x2 + y2)β dx dy. (9)
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Now, we prove (7):
∫∫

S
(x2 + y2)β dx dy

=
∫∫

S\C
(x2 + y2)β dx dy +

∫∫

S∩C
(x2 + y2)β dx dy

≥
∫∫

C\S
(x2 + y2)β dx dy +

∫∫

S∩C
(x2 + y2)β dx dy

=
∫∫

C
(x2 + y2)β dx dy =

µ0,0(S)
β+1

πβ(β + 1)
.

To prove (8) is enough to notice that S 6= C would imply that the inequality (9) is strict.

Consequently, S 6= C gives
∫∫

S

(

x2 + y2
)β

dx dy >
∫∫

C

(

x2 + y2
)β

dx dy

for all shapes different from circles. ✷

Lemma 1 considers only β > 0, but it is also possible to consider negative β. To

preserve the convergence of the integrals we assume β > −1. Notice that, contrary to

the situation when β > 0, in the case of −1 < β < 0 and S is a circle, the quantity
∫∫

S
(x2 + y2)βdxdy/(µ0,0(S))

1+β reaches the maximal possible value. This maximal value

is 1/(πβ(1 + β)). Taking this into account, the proof of the next lemma can be derived

analogously to the proof of Lemma 1 and because of that it is omitted.

Lemma 2 Let S be a given planar compact shape whose centroid coincides with the origin

and let β be a constant such that −1 < β < 0. Then
∫∫

S(x
2 + y2)βdxdy

µ0,0(S)β+1
≤ 1

(β + 1)πβ
(10)

∫∫

S(x
2 + y2)βdxdy

µ0,0(S)β+1
=

1

(β + 1)πβ
⇔ S is a circle. (11)

Now, by the arguments from Lemma 1 and Lemma 2 we give the following definition for

a modified measure.

Definition 2 Let S be a given shape whose centroid coincides with the origin and a real β

such that −1 < β and β 6= 0. Then the circularity measure Cβ(S) is defined as

Cβ(S) =



























µ0,0(S)
β+1

(β + 1)πβ
∫∫

S(x
2 + y2)βdxdy

, β > 0

(β + 1)πβ
∫∫

S(x
2 + y2)βdxdy

µ0,0(S)β+1
, β ∈ (−1, 0)

(12)
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Definition 2 generalises Definition 1. Obviously, Cβ=1(S) = C(S). Also, Definition 2

allows control of the impact of the points’ positions with respect to the centroid of S on

the measured circularity Cβ(S) by a suitable choice of β. This is illustrated by two synthetic

examples in Fig.6. Irregularities from a perfect circle for the shape in Fig.6(a) are caused by

the square gap that includes the shape centroid, while irregularities for the shape in Fig.6(b)

are caused by the enclosing triangle. Let us consider β > 0. For β ∈ (0, 1.447) the shape in

Fig.6(b) has a greater measured circularity Cβ(S) than the shape in Fig.6(b). For β = 1.447

both measured circularities are the same and equal to 0.6347. For β > 1.447 the measure

Cβ(S) gives the opposite ranking for those shapes and the shape in Fig.6(b) has a smaller

measured circularity Cβ(S) than the shape in Fig.6(a). Also the measured circularity of the

(a)
0 1 2 3 4 5

0.5

1

1.5

(a):β ∈ [0, 5]

0.5

1

1.5

1 00.20.8 0.6 0.4− − − −−
0

(a):β ∈ (−1, 0]
(b)

0.5

1

1.5

0 1 2 3 4 5

(b):β ∈ [0, 5]

0.5

1

1.5

0
1 0.20.8 0.6 0.4 0− − − −−

(b):β ∈ (−1, 0]

Figure 6: Graphs of the measured circularities Cβ(S) (for the shapes (a) and (b)) for β ∈ [0, 5]

and β ∈ (−1, 0] are displayed.

shape in Fig.6(b) converges much faster to zero (as β tends to infinity) (see Lemma 3, the

equality (13)) than the measured circularity of the shape in Fig.6(a). That is as expected.

In accordance with Definition 2 (see (12), β > 0), the impact of points belonging to the

enclosing triangle in Fig.6(b), being distant from the shape centroid, strongly increases as

β increases and leads to a fast decrease of the measured circularity. E.g., for β = 5 the

measured circularity for the shape in Fig.6(b) is 0.0168 while the measured circularity for

the shape in Fig.6(a) is much higher and equals 0.2538. Thus, a suitable choice of β could

give a different ranking, depending on either β ∈ (0, 1.447) or β ∈ (1.447,∞), among the

shapes presented in Fig.6. Even more, a suitable choice of β could substantially increase the

difference in the measured circularities of shapes in Fig.6(a) and Fig.6(b), which is good for

classification purposes. The situation when β ∈ (−1, 0) is analogous.

It is worth mentioning that such a generalised measure Cβ(S) still keeps the basic re-

quirements that each circularity measure should have. We give the following theorem which

summarises the desirable properties of Cβ(S). The proof is omitted because of the analogy

with the proof of Theorem 2.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

β = 1.0 β = −0.9 β = −0.5 β = 0.3 β = 1.2 β = 1.5 β = 2.0 β = 5 β = 10

(a) 0.9910 0.7949 0.9984 0.9981 0.9883 0.9837 0.9748 0.8943 0.7030

(b) 0.9819 0.7565 0.9965 0.9961 0.9767 0.9681 0.9516 0.8167 0.5440

(c) 0.9817 0.7469 0.9969 0.9963 0.9760 0.9664 0.9475 0.7789 0.4418

(d) 0.9763 0.9143 0.9977 0.9950 0.9695 0.9581 0.9367 0.7650 0.4520

(e) 0.9084 0.7392 0.9823 0.9786 0.8848 0.8478 0.7832 0.4234 0.1119

(f) 0.8822 0.7999 0.9788 0.9729 0.8514 0.8028 0.7182 0.2818 0.0309

(g) 0.8443 0.8052 0.9712 0.9633 0.8053 0.7449 0.6435 0.1979 0.0158

(h) 0.7408 0.8327 0.9526 0.9355 0.6829 0.5989 0.4722 0.0855 0.0026

(i) 0.7396 0.7653 0.9509 0.9355 0.6806 0.5945 0.4637 0.0746 0.0022

Figure 7: Examples of Micrasterias desmid shapes and their measured Cβ(S) convexities

for β = 1.0,−0.9,−0.5, 0.3, 1.2, 1.5, 2.0, 5.0, 10.0. Cβ(S) was calculated on the boundary and

interior of S, but only the boundaries are displayed here so as to better highlight the many

narrow intrusions of the shapes.

Theorem 3 Let β be a real number, such that β 6= 0 and β > −1. Then, the circularity

measure Cβ(S) satisfies the following properties:

(a) Cβ(S) ∈ (0, 1] for all planar shapes S;

(b) Cβ(S) = 1 ⇔ S is a circle;

(c) Cβ(S) is invariant w.r.t. the similarity transformations;

(d) For each δ > 0 there is a shape S such that 0 < Cβ(S) < δ.

More examples are given in Fig.7. Nine microorganism shapes are listed in accordance

with their C(S) = Cβ=1(S) measured circularity (see the second column in the table in Fig.7).

The modified circularities are also computed for β = −0.9,−0.5, 0.3, 1.2, 1.5, 2.0, 5.0, 10.0. It

can be seen that β = −0.5, β = 0.3 and β = 10 give slightly different rankings while β = −0.9

gives an essentially different ranking, which can be exploited in particular classification tasks.

Notice that for a relatively small β (e.g. β = 1.0, β = 1.2 or β = 1.5), the circularity measure

Cβ(S) does not strongly distinguish between the shapes in Fig.7(a)-(d) while a large β = 10
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(and even β = 5.0) does not strongly distinguish between shapes in Fig.7(f)-(i). Overall, it

could be said that, for those particular shapes given in Fig.7, the best choice, in terms of

“classification separability”, would be β = 2.

Looking again at Fig.7 it can be seen that for a high β (e.g. β = 10) the measured

circularity for shapes in Fig.7(f)-(i) dramatically decreases to zero. Those shapes strongly

differ from a perfect circle. For shapes which could be understood as “nearly circular” their

measured circularities Cβ=10(S) are still reasonably high. That is in accordance with the

theoretical considerations. We give the following lemma which describes the behaviour of

Cβ(S) when β is large, or formally, when β tends to infinity. For completeness, the lemma

also considers the trivial case β → 0. It is easily seen that Cβ=0(S) = 1 for all shapes (this

directly follows from Definition 2). That is in accordance with examples in given in Fig.7

and their computed circularities for β = 0.3. Indeed, all values are high and very close to 1.

Lemma 3 For a planar compact shape S different from a circle1 the following equalities

hold:

lim
β→∞

Cβ(S) = 0, (13)

lim
β→0

Cβ(S) = Cβ=0(S) = 1. (14)

Proof. The proof the equality (14) follows directly from the definition (see (12)). The proof

of (13) follows.

Let S be a given planar compact shape different from a circle and let C be the circle

with radius rC =
√

µ0,0(S)/π (providing m0,0(S) = m0,0(C)), and centre coincident with the

centroid of S. Because S and C are compact and S 6= C we have

∆ = µ0,0(S \ C) = µ0,0(C \ S) > 0. (15)

Also, let

rext =
√

(µ0,0(S) + ∆)/π (16)

providing that:

(a) the circular ring determined by the circles, centred at the centroid of S, and having radii

rC and rext has the area ∆. (Notice: rC < rext.)

Now, by applying the same reasoning as in the proof of Theorem 1, assuming β > 1, and

by using (a) and (16) we have:

1If S is a circle then Cβ(S) is identically equal to 1 for all β > −1, and consequently limβ→∞ Cβ(S) =

limβ→0 Cβ(S) = 1.
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∫

S\C

∫

(x2 + y2)β dx dy ≥
∫

rC≤
√

x2+y2≤rext

∫

(x2 + y2)βdxdy

=
π

β + 1

(

µ0,0(S) + ∆

π

)β+1

− π

β + 1

(

µ0,0(S)

π

)β+1

=
π

β + 1

(

µ0,0(S)

π

)β+1




(

1 +
∆

µ0,0(S)

)β+1

− 1





(Taylor expansion implies an ω ∈ (0, 1))

= µ0,0(S)β+1

(β+1)πβ

(

(β+1)∆
µ0,0(S)

+ (β+1)β∆2

2µ0,0(S)2

(

1 + ω ∆
µ0,0(S)

)β−1
)

> µ0,0(S)β+1

(β+1)πβ
∆

µ0,0(S)
(β + 1) = µ0,0(S)β∆

πβ . (17)

Further, (17) gives

∫∫

S(x
2 + y2)β dx dy >

∫∫

S\C(x
2 + y2)βdxdy

> µ0,0(S)β∆

πβ . (18)

Finally,

Cβ(S) = 1
(β+1)πβ · µ0,0(S)β+1

∫∫

S
(x2+y2)β dx dy

< µ0,0(S)

(β+1)·∆
. (19)

Taking into account that ∆ is strictly positive and does not depend on β, (19) gives imme-

diately the required equality lim
β→∞

Cβ(S) = 0 which holds for each shape S different from a

circle. ✷

Examples given in Fig.8 illustrate that Cβ(S), for a large β, strongly penalises deviations

of S from a perfect circle. Indeed, the shape in Fig.8(a), being a regular 14-gon, is very

similar to a perfect circle. Its measured circularity decreases slowly on the interval [0, 20].

The shape in Fig.8(b) is a regular 7-gon and differs more than the 14-gon from a perfect

circle. Such a greater difference is strongly penalised by Cβ(S) which decreases much faster

to 0 as β increases. The next two shapes in Fig.8(c) and Fig.8(d) are circles with added

noise on their boundaries. In the case of a small amount of added noise (Fig.8(c)), there is

a slight decrease of Cβ(S) on the interval [0, 20], while in the case of high noise levels such

a decrease is much faster (Fig.8(d)). Two circles with added 2% and 10% “salt noise” are

given in Fig.8(e) and Fig.8(f). The change in the speed of the decrease, as a function of the

noise level, is obvious from the presented graphs.

All shapes in Fig.8(a)-(f) could understood as pretty much nearly circular and depending

on their irregularities it is necessary to set a β large enough to be able to detect their
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Figure 8: Graphs of the measured circularities Cβ(S), for β ∈ [0, 20], are given below the

corresponding shapes.

deviations from a perfect circle by a use of Cβ(S). In the case of shapes in Fig.8(a), Fig.8(c),

and Fig.8(e) such a β should be large (say β = 20), while in the cases of the shapes in

Fig.8(b), Fig.8(d), and Fig.8(f), a much smaller β, say β = 5, will do. The shape in Fig.8(g)

is given as an illustration that for irregular shapes, very different from a perfect circle, use

of a very big β does not make sense because the measured circularity Cβ(S) very quickly

converges to zero.

5 An Application to Measuring Shape Linearity

In this section we will illustrate that a shape linearity measure can be obtained as a “by-

product” from the new circularity measure C(S). At first instance, it could seem reasonable

that shapes with a very low measured circularity are expected to be more linear. E.g., if we

consider the standard circularity measure Cst(S) such a hypothesis is valid for the shapes

given in Fig.2(i) and Fig.2(j). The measured circularities Cst(S) are 0.1545 and 0.0982 and

if we use the quantities computed as 1 − Cst(S), the obtained values 0.8455 and 0.9018

seem to be very reasonable as the corresponding linearity measures for the shapes. But the

hypothesis that 1 − Cst(S) can be used effectively as a linearity measure collapses in the

case of the shape in Fig.3(d). Indeed, the linearity measure assigned in such a way would be

0.9349 which is very high, and, because of that, unacceptable. On the other hand, in the case

of the circularity measure C(S) derived here, the quantity 1−C(S) behaves more consistently.

For the “very linear” shapes in Fig.2(i) and in Fig.2(j) it assigns 0.8610 and 0.9271 as very
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acceptable measured shape linearity values. In the case of the shape in Fig.3(d), the assigned

linearity 1 − C(S) is low and equal to an acceptable 0.2211. Moreover, if we consider the

compound shapes in Fig.4(a)-(c), then the assigned linearity values, measured by 1− C(S),
would be 0.2091, 0.5460, and 0.7909 which seems acceptable. Of course, the same linearity

(equal to 2/3), assigned to all the shapes in Fig.4 by a use of 1− Cst(S), is unacceptable.
More examples are given in Fig.9. Shapes are listed in accordance with their linearity

measure computed as 1 − C(S). Such a ranking seems reasonable. On the other hand, the

linearity measure 1−Cst(S), derived from the standard circularity measure, gives the ranking

(a):0.9133

(0.9009)

(b):0.8681

(0.8529)

(c):0.8417

(0.8312)

(d):0.7676

(0.8725)

(e):0.7079

(0.8836)

(f):0.6928

(0.8572)

(g):0.5296

(0.9556)

(h):0.4965

(0.8785)

Figure 9: Shape linearities measured by 1− C(S) are immediately below the shapes. Shape

linearity values measured by 1− Cst(S) are in brackets.

(g)(a)(e)(h)(d)(f)(b)(c) which is not acceptable. Indeed, the highest linearity assigned to

the shape in Fig.9(g) and the lowest linearity assigned to the shape in Fig.9(c) do not match

our expectation.

6 Applications of Circularity

Since C(S) has been shown to measure both the circularity and linearity of shapes in a

reasonable manner it can be expected that it should be suitable for use in applications such

as classification tasks. Moreover, the addition of position dependency in Cβ(S) expands

the set of available shape measures. In this section several examples of applications are

given for the proposed circularity measure as well as Cst(S) and the circularity measures

of Proffitt [20] and Haralick [9]. For Cst(S) perimeter was calculated either directly from

the pixel boundaries extracted from the images with inter-pixel weights set according to

Dorst and Smeulders [5]; as an alternative, the perimeters were calculated from polygonal

approximations of the boundaries [22]. For classification, leave one out testing was performed

with a nearest neighbour classifier using Euclidean distances.

For the first example, circularity was measured for the set of 54 masses from mammo-

grams, combining images from the MIAS and Screen Test databases [23], see Fig.10. Ran-
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circularity mammography galaxy print

measure circ./spic. mal./ben. 4 groups quality

Cβ=1/8(S) 83.33 66.67 51.85 77.88 0.483

Cβ=1/4(S) 85.19 64.81 51.85 78.85 0.485

Cβ=1/2(S) 75.93 57.41 42.59 79.81 0.488

Cβ=1(S) 68.52 68.52 51.85 75.96 0.492

Cβ=2(S) 75.93 68.52 53.70 75.96 0.493

Cβ=4(S) 72.22 46.30 33.33 80.77 0.481

Cβ=8(S) 79.63 59.26 50.00 79.81 0.444

Cβ=16(S) 87.04 57.41 51.85 84.62 0.363

Cβ=32(S) 90.74 70.37 64.81 83.65 0.152

Cst(S) pix. 87.04 59.26 57.41 83.65 0.539

Cst(S) pol. 85.19 59.26 57.41 85.58 0.575

Haralick [9] 68.52 46.30 37.04 79.81 0.447

Proffitt [20] 51.85 42.59 25.93 76.92 0.401

Table 1: Applications of the circularity measures to: classification of mammographic masses;

classification of galaxy morphologies; and determination of print quality (mottling). The first

four columns of results report classification accuracies and the final column shows correlation

coefficients. Results for the best performing measure for each task is highlighted in bold.

CB CM SB SM

Figure 10: Examples of the four classes of mammographic masses: circumscribed benign

(CB), circumscribed malignant (CM), spiculated benign (SB), spiculated malignant (SM).

The masses were extracted from the mammograms on the left, and have been drawn rescaled.
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Figure 11: Galaxy images with their shapes extracted by thresholding. The two galaxies on

the left are spiral while those on the right are elliptical.

gayyan et al. [23] assessed the measures by classifying them as circumscribed/spiculated,

benign/malignant, and CB/CM/SB/SM, in two group and four group classification experi-

ments. Their best shape measure results for the three classification tasks were: 1/ circum-

scribed versus spiculated: 88.9% achieved by both Cst(S) and a Fourier based shape factor,

2/ benign versus malignant: 75.9% achieved by the Fourier based shape factor, 3/ four-way

discrimination: 64.8% achieved by both Cst(S) and the Fourier based shape factor.2 From

table 1 we see that the best results from using Cβ(S) occurred for β = 32 and were respec-

tively better, worse, and equal to Rangayyan et al.’s. The other circularity measures did not

perform as well as Cβ(S).
The second task was to classify galaxies into two morphological groups: spiral and ellip-

tical. The data consisted of 104 100× 100 images. The original classification by Lekshmi et

al. [16] used a fractal signature, and achieved accuracies of 92.3% and 95.1% using nearest

neighbour and neural network classifiers respectively. In this paper we restrict analysis to

binary shape data, and threshold the images as shown in Fig.11. Classification with just one

circularity value is unable to reach the same level of accuracy as using the image texture,

but reasonable results are still obtained. The accuracy for Cβ=16(S) is significantly above the

Proffitt and Haralick circularity accuracies (see table 1). Compared to Cst(S) it was slightly
above or below its accuracy, depending on how perimeter was computed.

The third example was print quality evaluation, in which quality assessment is carried out

by measuring mottling (unevenness of print) by analysis of dots from images of halftoning [6].

The data set consists of 20 images (size 2000× 2000 pixels), each containing approximately

55000 dots. In addition, the images were evaluated by experts, providing a set of mottling

indices which were used for groundtruthing. Figure 12(a) shows a small portion cropped

from one of the images; since the printed dots touch each other the image has been inverted

(as in [6]) so that the gaps will be analysed instead of the dots themselves. The image was

2We note that our results for Cst(S) listed in table 1 do not match Rangayyan et al.’s [23] reported

accuracies for Cst(S). This can be attributed to several factors: 1/ different classifiers were used, and also

2/ different methods for estimating perimeter may have used.
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(a) (b)

Figure 12: A small portion of a printed dot pattern before and after thresholding and removal

of outsized dots.

thresholded using the RATS algorithm [34] to allow for non-uniformity of illumination, and

blobs touching the image boundaries (in the cropped image in Fig.12(a) this corresponds to

the top and left boundaries only) and overly small or large blobs (which generally resulted

from faulty thresholding) were removed – see Fig.12(b). The effectiveness of the circularity

measures as a predictor of mottling was determined by computing Pearson’s correlation

coefficient between the circularity measures and the human mottling indices. The correlation

values of the single circularity measures are shown in table 1. It can be seen that Cst(S)
applied to the polygonal approximation of the boundary data considerably outperformed

all the other circularity measures. However, using Cβ(S) we can also combine a set of

circularities with different values of β to provide a more effective composite measure. In [6]

a linear combination of a set of miscellaneous shape measures was built from a subset of

the data, and they were able to achieve a correlation coefficient of 0.72. We apply a similar

approach, and use half the image data to estimate the weights for the linear combination

of the set of nine Cβ(S) values to best match the human mottling indices, where the nine β

values are given in table 1. Using these weights the average correlation coefficient, obtained

from the combination of nine Cβ(S) values generated from the remainder of the image data,

was 0.77 which compares favourably to [6].

7 Conclusion

We have shown in this paper that the well known Hu moment invariant (µ2,0(S)+µ0,2(S))/µ0,0(S)
2

reaches its minimum value if and only if S is a circle. We note that, to the best of the au-

thors’ knowledge, that is the first of such results, and it is not known yet whether similar
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statements hold for other Hu invariants. This remains an open problem for further research.

Exploiting the fact that circles maximize the above invariant has enabled us to introduce a

new circularity measure C(S) defined as in (5). It is shown that C(S) ranges over the interval
(0, 1] and that C(S) equals 1 if and only if S is a perfect circle. Also, C(S) is invariant with
respect to rotations, translations and scaling. Being an area based measure, C(S) is robust
– e.g. with respect to a noise or narrow intrusions. The behaviour of C(S) is demonstrated

on illustrative examples.

Such a defined C(S) measure enables an easy and straightforward estimation since only

up to second order moments are required. Note that, taking into account that in real

applications we are working with digital images (i.e. discrete data), an exact computation

of C(S) is not possible – we can have only approximated values with the accuracy dependent

on the available image resolution [14]. A straightforward and very accurate estimation (see

[14] for the estimation efficiency) of moments µp,q(S) from the corresponding binary images

can be done in O(r2) time, if r denotes the applied image resolution (i.e. the number of

pixels per measure unit). Indeed, it is enough to notice that a shape S presented on a binary

image having resolution r consists of no more than O(r2) pixels and use the approximation

mp,q(S) =
∫∫

S
xpyqdxdy ≈

∑

pixel (i,j) is in S

ip · jq.

But there are already well-known techniques (e.g. [17]) for fast computation of shape mo-

ments. In general, the geometric moments µp,q(S), of a given planar shape S can be computed

from the boundary of S. Consequently, assuming that the order p+q is bounded, an efficient

estimation of µp,q(S) is possible in O(r) time. It is obvious that a better time complexity

could not be reached if the circularity is measured by the standard circularity measure Cst(S).
Of course, depending on which algorithm is used for the estimation of perimeter of S, the

required complexity could be even higher. A similar complexity analysis could be done for

Cβ(S).
A detailed analysis of C(S) has shown that the shape points which are closer to the

shape centroid have a bigger impact on the measured shape circularity. In order to be able

to control the impact of the relative positions of points (inside the shape) on the measured

shape circularity a modification of the C(S) measure is proposed by Definition 2. The choice

of the parameter β, controls the impact of the shape points (depending on their distance to

the shape centroid) to the computed Cβ(S) measure. To illustrate such a behaviour of Cβ(S)
two synthetic and several real examples are given. Desirable properties of Cβ(S) are proven.
In addition, it has been shown that lim

β→∞
Cβ(S) = 0 for all shapes different from a circle. The
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proven convergence of Cβ(S) for non-circular shapes, when β increases, is useful and can be

used for detecting irregularities in circular shapes damaged by noise or during an extraction

process in practical image processing tasks. That is verified with several examples.

It turns out that the circularity measure C(S) behaves very consistently in the case of

very low measured circularity (i.e. when the measured circularity is close to 0). Shapes

with very low measured circularity C(S) appear to match our perception about shapes that

should have a high linearity value estimated. This suggests that 1−C(S) could be used as a

linearity measure. The suitability of using 1−C(S) as a shape linearity measure is illustrated

by several examples.

Finally, several fairly recent image processing applications, covering a wide range (med-

ical, industrial, astronomical), are given. Our comparative evaluation is restricted to scalar

shape descriptors (which are generally simpler and, very often, more computationally effi-

cient than more complex matching schemes). The proposed circularity measure is shown to

perform better in several cases than the state of the art. In other cases it is outperformed

by other measures – this is to be expected since no single shape measure will be universally

superior than others for all applications.

Acknowledgements

We would like to thank Rangaraj M. Rangayyan for providing the mammographic data,

Professors Revathy and Nayar for providing the galaxy images, Joni Kamarainen and Tuomas

Eerola for providing the print quality evaluation data, and Michael Wilkinson for his RATS

thresholding code. The work (the first author) is partially supported by the Serbian Ministry

of Science of through the project ON144018 of the Mathematical Institute of the Serbian

Academy of Science and Arts.

References

[1] L. Boxer. Computing deviations from convexity in polygons. Pattern Recognition Let-

ters, 14:163–167, 1993.

[2] E. Bribiesca. An easy measure of compactness for 2D and 3D shapes. Pattern Recogni-

tion, 41:543-554, 2008.

23



[3] S. Derrode, F. Ghorbel. Shape analysis and symmetry detection in gray-level objects

using the analytical Fourier-Mellin representation. Signal Proc., 84:25-39, 2004.

[4] C. Di Ruberto, A. Dempster. Circularity measures based on mathematical morphology.

Electronics Letters, 38:1691-1693, 2000.

[5] L. Dorst and A.W.M. Smeulders. Length estimators for digitized contours. Computer

Vision, Graphics and Image Processing, 40:311–333, 1987.

[6] T. Eerola, J.-K. Kamarainen, L. Lensu, and H. Kälviäinen. Visual print quality eval-
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[31] M. Stojmenović, A. Nayak J. Žunić. Measuring linearity of planar point sets. Pattern

Recognition, 41:2503-2511, 2008.
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