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Abstract An advantage of shape based techniques, for object antdg&is, is that
shape allows a large number of numerical characterizatifome of these have
an intuitively clear meaning, while others do not, but they still very useful be-
cause they satisfy some desirable properties (e.g. im@iwith respect to a set of
certain transformations). In this chapter we focus on niocakshape characteris-
tics that have a clear intuitive interpretation — i.e. basadguch numerical values,
we can predict, to some extent, what the considered objeksltike. This is ben-
eficial, since it enables a priori appraisal of whether ¢ershape characteristics
have suitable discriminative potential that make them ayppate for the intended
task. By their nature, the number of such methods cannot ter@es as the num-
ber of methods to allocate shape/object characteristissdban some formalism
(algebraic, geometric, probabilistic, etc). Because af,tkome other possibilities
to increase the discriminative capacity of the methods dasenumerical shape
characteristics, with an intuitively predictable meaniage considered. Herein, we
observe two such possibilities: the use of tuning pararadteobtain a family of
shape characteristics, and the use of multiple shapesedediriom the objects ana-
lyzed.
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1 Introduction

Shape is an important component of the human visual systethisaalso widely
used in computer vision to provide a means of describingathjas a precursor to
identifying them. If object boundaries can be reliably agted (which of course re-
mains a challenge for unconstrained scenes, but is acléewvaimany other cases)
then shape descriptors offer many advantages to those basedensity, colour,
texture, etc. First, although those latter approachesiacate more information,
offering a richer descriptive power, they are consequeaiflg more sensitive to po-
tentially irrelevant variations in illumination, colowmg, etc. For instance, whereas
the shape of a typical car is clear cut, cars come in many cgl@nd so colour
(unlike shape) is not helpful to the task of assigning an alie the general class
of cars. Second, most shape descriptors can be easily neechabo that they are
invariant to many transformations (e.g. translation,tiotg scaling, shearing) with-
out requiring expensive and less reliable methods suchads-space based image
processing. Third, many techniques for shape based asgiysiide a compact de-
scriptor, that is not only efficient to store, but is also veelited to efficient matching.

Many shape properties, herein callgidlape descriptorsare known to be very
suitable for a numerical evaluation (e.g. shape convegitipticity, elongation,
compactness, linearity, sigmoidality, tortuosity, etéfethods developed to eval-
uate a certain shape descriptor will be calddpe measure§&xamples of shape
measures already developed are: convexity [26, 32, 48}lairty [15, 24, 30, 43],
compactness [17], linearity [10, 36, 41], ellipticity [19,238, 42, 24], sigmoidality
[31], rectilinearity [44], tortuosity [12], and many mor&s it can be seen, there are
shape descriptors with multiple measures developed fartnenerical evaluation.
This is because none of the shape measures are ideally $witeli the possible
applications.

Apart from the shape measures mentioned, which relate taa@rtshape prop-
erty, there are generic shape measures which are not diygiesigned to mea-
sure a specific shape property/characteristic. Among themFaurier descriptors
[5, 39], moment invariants [16, 20], shape-illuminatiowdriants [3], and so on.
Those measures satisfy some desirable properties (eagianege with respect to
some transformations) and their power comes from the fatf &t least in theory,
an infinite number of them can be generated and assignedvemabject/shape. A
drawback is that their behavior is not well explained andhcabe predicted. This
further implies that their suitability for a certain tasksh@ be verified through an
intensive experimental study, which is always a time coriegrprocess.

Contrary to the generic shape measures, the measures vehielate to a certain
shape property have a well understood and predictable mgh@kieir disadvantage
is that their number is limited. This further causes a lihitkscriminative power
of the object analysis tools based on such measures, garljcwhen dealing with
huge data sets. In this chapter we consider possibiliti#scoéasing the discrimina-
tive power of such tools, with applications in image progggand computer vision
tasks. We discuss the following possibilities: (i) An inveiment of a tuning param-
eter; (ii) Allocation of multiple shapes to the objects ddesed; (iii) A combination
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of the approaches in (i) and (ii). Our discussion is supmowih experimental re-
sults.
Throughout this chapter we will assume that all occurringp&s are bounded.
In order to avoid discussions on pathological situatioresyll say that two shapes
are equal if their set differences have area equal to zens. i$hobviously not a
restriction in practical applications — e.g. a closed e#ip{(x,y) | x> +3-y? < 1}
and the “open” one{(x,y) | ¥*4+3-y? < 1} are considered to be the same shape.
The geometric momentn, 4(S) of a given shapeS, represented by a planar
bounded region, is defined as

mpa(S) = [ [X° ¥ dxay ®

Obviously,mgo(S) equals the area & As a short reminder, the centroid of a given
shapeSis defined as

<fst dxdy [Jsydx dY> _ <m1,o(3) %71(3)>
Jfsdxdy”  [[sdx dy Moo(S)” Moo(S) /)

Since shape does not change under the translations, wesatlhee that all the
appearing shapes are positioned such that their centraidides with the origin.
In other words:

mLo(S) = ./:/S'xdxdyz 0 and mi(S = '//Sydxdy: E)

()

will be assumed, even if not mentioned, for all the shapesidened.
Finally, S(w) will denote the shap8rotated around its centroid by the angle

2 Power Increase by Introducing a Tuning Parameter

In this section we discuss a family of circularity measuiagpduced as a gen-
eralization of the first Hu moment invariant [16], by incorgting one parameter
[43]. The role of this introduced parameter is to control iedavior of the circu-
larity measures from the given family. Shape interpretatibthe first Hu moment
invariant,l41(S),

() = [[0¢+y?) dxdy @

has been analyzed in [43]. It has been shown that the first Hnanbinvariant,
11(S), ranges over the interv@%r,oo) and returns the minimum possible vallil;;
for circles only. This property has been used to define thecimularity measure,
% (S), for planar shapes:

_ 1 mo®? 1
o2 mpo(S)+mo2(S)  2-m1y(S)

(S ()
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Such a circularity measur&'(S) ranges over the intervdD, 1], produces the
value 1 if and only if the considered shap&s a circle, and is invariant with respect
to translation, rotation, and scaling transformationsl$b might be said that the
new circularity measure fits well with our perception of whatircularity measure
should be — a quantity which indicates how much a shape gi¥fensifrom a circle.
Shapes with relatively largé (S) values are nearly circular, while shapes with small
% (S) values have a nearly linear structure. We illustrate thig Isynall collection
of fish shapes and their assigned circularity values, bueragamples can be found
in [43]. Five fish shapes are listed in Fig.1, in accordandé thieir computed’(S)

¢ @ !

0.9579 08755 04506 03361 01390

Fig. 1 Fish shapes are ranked with respect to their comp#tes) circularity values.

circularity values. The largest circularitydb79 is assigned to the shape on the left,
which is as expected since this shape is nearly circularsifedlest circularity value
0.1390 is assigned to the shape on the right. Again, such a sir@allarity comes
from the fact that this shape has a nearly linear structuve j@igment is that we
may say that these values, as well as the remaining threes/adind the ranking
obtained, are in accordance with human perception.

The circularity measur&’(S) is area based, and because of this is robust, i.e.
relatively resistant to small shape deformations or to etsfeaused by noise, for
example. Of course, such a (robustness) property is an &dy@im many situations
but it could be a disadvantage in situations when high pieatis required. To avoid
such a possible drawback, the meas#i(&) has been modified. A tuning parameter
a was introduced [43] to produce a family of circularity mees¥, (S) as follows:

1 rrb'O(S)CH»l

(@+1) 7@ [js0@+y?)adxdy ©)

Ca(S) =

for all a > 0! and for all bounded compact planar shape®bviously, the measure
¢ (S) also belongs to the new family of circularity measures defime(6), since
€(S) = Gu=1(9). All circularity measures from the familg, (S) keep the basic
desirable properties. They range oyérl], with the equality¢y (S) = 1 satisfied
for circles only. Measure®y (S) are invariant with respect to similarity transforma-
tions as well. The main role of the tuning parameteis to enable control of the
sensitivity/robustness properties @ (S). It has been shown that bigger values of
o lead to a more sensitive measig(S). More detailed discussion can be found

1 For an extension to the circularity measures vtk (—1,0), see [43].
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in [43], but here we give a lemma which supports the previdatement. Indeed,
Lemma 1 says that for any shafalifferent from a circle, there is a parameter
such that#, (S) is arbitrarily close to 0. In other words, there is a choiceciof
cularity measuré&y, (S) (i.e. the choice of the paramete) which would penalize,
strongly enough, any existing difference between the sBavel a circle.

Lemma 1. For a bounded planar compact shaped#ferent from a circle, the fol-
lowing equality is true
lim €,(S) = 0. (7

a—o

Some of the benefits from having the possibility to tune thealor of circular-
ity measures are illustrated by examples in Fig.2. All ther fehapes listed can be
understood as very similar to a circle. The first shape is alaed-gon while the re-
maining three shapes are obtained from a circle by addirgenBor the second and
third shape a different level noise is added to the shapedasynwhile salt noise
(i.e. holes) is added to the interior of the fourth shape. dihaularity €'(S) of all
these shapes is very close tahd%’(S) can neither distinguish among these shapes
nor detect the presence of the obvious irregularities. & iresgularities become vis-
ible once measureg, (S) from the new family are employed. Indeed, looking at the

0090

0 5 10 15 20 0 5 10 15 2 0 5 10 15 20 o 5 10 15 2

Fig. 2 Graphs of the measured circulariti€s(S), for a € [0,20], are given below the correspond-
ing shapes.

graphs of¢, (S) (considered as a function im), displayed in the second row in

Fig.2, we see that an increasemfeads to a decrease @f, (S). After some point,

it becomes clearly evident that all the given shapes diffanfa circle, and also that

each of these shapes differs from the others. For example, sieta = 20 then, for

all the shapes displayed, the computgd S) circularities are all mutually different.
Next, we illustrate that some classification accuracieschied by some of the

well known shape measures, can be outperformed by selextuiable measure

from the family %, (S). For this purpose we will use the standard circularity mea-

sure, and the circularity measures of Proffitt [24] and Hekdll5]. The standard
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circularity measuregsi(S) exploits the fact that among all shapes with the same
perimeter, the circle has the largest area. It is defined as

4.711-Areaof_S
(Perimeterof_S)2°

ts(S) = (8)
Note that in the following experiments the perimetefSafas calculated fos(S)
either directly from the pixel boundaries extracted from ifmages with inter-pixel
weights set according to Dorst and Smeulders [8], or alteelg the perimeters
were calculated from polygonal approximations of the bauies [25]. For classifi-
cation, leave one out testing was performed with a nearéghiber classifier using
Euclidean distances.

circularity mammography
measure circ./spicmal./ben|4 groups
Ca—1/8(9 83.33 | 66.67 | 51.85
Ca-1/4(9 85.19 | 64.81 | 51.85
Ca=1/2(9 75.93 | 57.41 | 42.59
Ca=1(9) 68.52 | 68.52 | 51.85
Cu=2(9) 75.93 | 68.52 | 53.70
Ca-a(S) 72.22 | 46.30 | 33.33
Cu=s(S) 79.63 | 59.26 | 50.00
Ca=16(S) 87.04 | 57.41 | 51.85
Cu=32(S) 90.74 | 70.37 | 64.81
C«(S) pixel 87.04 | 59.26 | 57.41
%«(S) polygon 85.19 | 59.26 | 57.41
Haralick [15] | 68.52 | 46.30 | 37.04
Proffitt [24] 51.85 | 42.59 | 25.93

Table 1 Applications of the circularity measures to: classification ofima@ographic masses. The
classification accuracies, for three classification tasks, are ivedifferent choices of the circu-
larity measures. The best performing measure %ass2(S) (the score highlighted in bold).

For this example, circularity was measured for the set of 84sas from mam-
mograms, combining images from the MIAS and Screen Tesbdats [27], see
Fig.3. Rangayyaet al. [27] assessed the measures by classifying them as circum-
scribed/spiculated, benign/malignant, and CB/CM/SB/&Mwo group and four
group classification experiments. Their best shape measstédts for the three
classification tasks were: (i) circumscribed versus spted: 88.9% achieved by
both ¢«(S) and a Fourier based shape factor, (ii) benign versus maltgiia.9%
achieved by the Fourier based shape factor, (i) four-wiggrimination: 64.8%
achieved by botl¥(S) and the Fourier based shape faérom Table 1 we see
that the best results from usirg, (S) occurred fora = 32 and were respectively

2 We note that our results fafg(S) listed in Table 1 do not match Rangayyeiral’s [27] reported
accuracies fofgs(S). This can be attributed to several factors: (i) different cfeesi were used,
and also (ii) different methods for estimating perimeter may hasntused.



Increasing the Power of Shape Descriptor Based Object Analgsisrilques 7

better, worse, and equal to Rangayyaral.'s. The other circularity measures did
not perform as well ag (S).

CB CM SB SM

Fig. 3 Examples of the four classes of mammographic masses: circumscribead §€&y cir-
cumscribed malignant (CM), spiculated benign (SB), spiculatddyment (SM). The masses were
extracted from the mammograms (top row), and have been drawneggbattom row).

3 Family of Ellipticity Measures with an Application in an
Galaxy Classification Task

Shape ellipticity measures are intensively studied initeedture. An early attempt
[38] goes back to 1910. Notice that there are two approaatrelsoiv to measure
shape ellipticity. The first one assumes that all ellipseoathe same shape, regard-
less of their axis length ratios, e.g. [1, 29]. Another apgptoassumes that ellipses
whose axis ratios differ also differ in shape, e.qg. [2]. Ihdt possible to say a priori
which approach is better. In some applications the first @ggr would be more
appropriate, whilst in some others the second is preferred.

Ellipticity measures considered in this section, from tamily introduced re-
cently [2], assume that ellipses with a different axis léngitio are different in
shape. A precise definition follows.

Definition 1. Let a bounded planar shafewhose centroid coincides with the ori-
gin, be given. For everp < (0,1] the ellipticity measure), (S) of S, is defined as
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moo(S)*

. X2 2\ g d‘ (9)
i s (%+p-y?) dxay

1
() = 5~

Note 1.The formula in (9) enables an easy and straightforward nigalezomputa-
tion of &, (S), with p € (0,1]. There is also a closed formula for the computation of
ép(S), derived recently in [40].

All the ellipticity measures, (S), from Definition 1 have the following proper-
ties (for a proof see [2]):

(@) &p(S) € (0,1], for any shapes,
(b) &p(S) =1 ifandonlyif Sisan ellipse whose axis length ratiogs
() &p(S) isinvariant with respect to similarity transformations.

Theoretical foundations for understanding the behaviothef new ellipticity
measures), (S) are established in [2]. Here we give a brief discussion. Trame-
ter p can be understood as a tuning parameter, because the lradfatamellipticity
measures, froé, (S) | p € (0,1]}, depends on the choice of the paramegtefor a
fixed p, the measuré), (S) indicates how much the considered sh&ukffers from
a perfect ellipsde(p) whose axes length ratio 3. The highest score, equal to 1,
is given only to theE(p) ellipses. For all the shapes different frd#p), including
the ellipses whose axes length ratio differs fropthe computed), (S) ellipticities
are strictly less than 1. Which values of the paramptshould be selected depends
on the application which is going to be performed. Elliggicf, (S), corresponding
to one selection of the parameter can perform well in one application, but also
can have a poor performance in another.

In this section, in addition to the use of a tunable ellipyicheasures, we con-
sider another possibility to increase the discriminatiapacity of shape based ob-
ject analysis tools. The idea is to assign a number of shapas object presented
in an image, instead of just a single shape, as is the commumoagh. Multiple
shapes can be assigned in several ways (e.g. as it is dorie gethion — see Fig.5,
and also as it is done in Section 4 — see Fig.8, or in [28], .ditdhis section we
will assign two shapes to each object by using two versior@tsii's thresholding
method [22]: A “global” one (the same threshold level is &xplo all pixels) and
a “local” one (the original method is applied to blocks of tireginal image, so that
the threshold level applied varies). This means that wealtwo shapes (repre-
sented as two binary images) for each object. For each of tines shapes/images
we will compute three shape measures, which will comprisecimponents of the
feature vectors used for classification.

This approach will be applied to a galaxy classification tdste elliptical and
spiral galaxies, listed in the Nearby Galaxy Catalog [9¢, ased as the data/shape
set. The same data set has been used by many others, andsHifécetdon task has
been already recognized as a difficult problem [18]. Manyrepghes have been
applied and used to provide an automatic machine galaxgifitzgion, e.g. neural
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networks approaches [4, 14, 21], fuzzy sets theory [19]gddc shape features
[11, 13], shape squareness [34], fractal signatures [18], e

The benchmark results, prior to a 100% classification rateioéd in [2], were
92.3% and 95.1%, obtained in [18] by using nearest neighbdmeural network
classifiers, respectively.

3.1 Ellipticity Measures Used and Classification Results Obtzdl

Three ellipticity measures were used to perform the galéagsdfication task. Two
of them are from the family, (S):

1 S*
* =018 = 5 %;2( )07 2) dxd my
BELE <W+ ' 'y) x ey
1 9S4
* fp=00(9 = 3 — qug( )09 2\ dx d m2)
o3 s (85 +0.9:y2) dxdy
while the third ellipticity measure used is introduced ihdhd is defined as follows
1 moo(S)*
S 'xg) 2) dx d o
i Jlsa) (3 +y?) dxdy

where the parametgris defined as

/120(S) + Hoa(S) + /A (HLa(9) + (Hao(S) — Hoa(9)?
VH20(S) + H02(S) — /A (H2(S)Z + (H20(S) — Hoa(S)2

Ellipticity measuresép—o.7(S) and &,—0.9(S) were selected according to the
graphs displayed in Fig.4. Precisely, 32 shapes were sdleandomly and then
thresholded by both the global and local methods. The grap#is(S), for p vary-
ing through the interva(0, 1], were computed. The graphs &§(S) corresponding
to shapes obtained by the global thresholding are on thendfig.4, while the
graphss) (S) for shapes obtained by the local thresholding are on the ingfig.4.
Our hypothesis was: “Since for boh= 0.7 andp = 0.9 the values o&),(S) are
“scattered” reasonably well, an efficient discriminatianang the galaxy shapes
would be enabled by using the functions/measuies 7(S) and&,—0.9(S)". Also,
the selected parameters are preferred to be reasonaldyediff It turns out that, at
least in this case, the hypothesis was valid.

Thus, each galaxg was represented by a 6-dimensional feature vector deter-
mined as follows:
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Fig. 4 &5(9), p € (0,1], graphs for the shap&@obtained by thresholding of 32 randomly selected
galaxy images: global thresholding applied (on the left) armlleéhresholding applied (on the
right).

(£p=07(S), €p=09(Sy), €(]), €p=07(), €p-09(F), €(§))  (10)

whereSJ and%’ are the shapes (i.e. binary images) obtained from the afigim-

age (of the galaxy) thresholded by two selected methods (the global and local
one). Some examples are in Fig.5: original images are indfiecblumn, shapes

% obtained by the global thresholding are in the middle coluwinle shape%’
obtained by local thresholding are in the right column.

We have used thk-Nearest Neighbour Classifiek-(\NN), with k = 5. For the
training set we have used 4 elliptical and 28 spiral galafées approximately 30%
of the galaxies have been used for the training — the samemeage as in [18]).
The classification was performed on the complete data s&ix{ga selected for
the training were also included). In order to get a reliabléidator about the ef-
ficiency of the classification “mechanism” described abd@f) experiments were
performed. The experiments were mutually independent galexies for the train-
ing set (4 elliptical and 28 spiral galaxies) have been setecandomly in every
experiment.

The classification results were very good, and outperforengievious accu-
racies. Among 100 experiments performed, the classificatide of 100% was
achieved 3 times. The average classification rate w85 better than both best
rates obtained bk-NN and neural network classifiers in [18]. The minimal class
fication rate of 9®% was obtained 4 times. The classification results, for @ch
the 100 experiments, are displayed in Fig.6. It is worth mogimg that because the
ellipticity measures have predictable behavior, it waseekgd that good classifica-
tion results might be expected (galaxy shapes have aniedligtructure). Such a
prediction would not be possible if some generic shape measere used instead.
The additional tool which led to the maximum classificatisrihie use of multiple
shapes assigned to an object/image. To illustrate the ktttement we provide the
classification results in experiments where a single stagkoicated to each galaxy.
The same ellipticity measures,—o.7(S), p—0.9(S), and&’(S) were used again. As
expected, smaller classification rates were obtained. [Essification results, based
on 100 mutually independent experiments, are displaye@i FAs it can be seen:
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.

NGC no.: 4125 global thresholding local thresholding
.

NGC no.: 4486 global thresholding local thresholding
.

NGC no.: 4450 global thresholding local thr-esholding
@

NGC no.: 3893 global thresholding local thresholding

Fig. 5 Original images and theiNGC number are in the left column; shapes obtained by the
global and local thresholding are in the middle and right coluraspectively.

e If the shapes obtained by the global thresholding and thien&mkional feature

vector
(6p=07(F), €p=09(F), €(S)) (11)
were used, the following rates were achieved:

— the average classification rate: .8%;
— the maximum classification rate: 9%;
— the minimal classification rate: 8.

e Ifsingle shapes, obtained by the local thresholding method the 3-dimensional
feature vector



12

JoviaZunic, Paul L. Rosin, Mehmet Ali Aktas

100F
+
98 +

+

96

++ +

94r
il

92

90r

+*
+

++
+

++

+*

FT

+

L B LK L)
+

+

+ H+ + o+

+

L.
-+ L.

+ HE

+

+*

-+

-+

-+

881

86

Classification Accuracy (%)

84

a2 . . . . . . .
0 30 40 50 60 70 80 90
Iteration/Experiment Number

. .
10 20 100

Fig. 6 Classification rates obtained for 100 mutually independeraxyatlassification experi-
ments.

(€p=07(); bp=09(F), €(F))

were used, then the following rates were achieved:

(12)

— the average classification rate: .2%;
— the maximum classification rate: 960;
— the minimal classification rate: &%.

4 Multiple Shapes Assigned to Boundary Simplification

A final pair of experiments is described in which multiple gaawill be derived for
each object. Distinct from the experiments in Sections 2 &ndassification will
be performed using boundary based features. Thereforedboutased methods
will be employed to generate multiple shapes. This is thetstoaightforward and
appropriate approach if the input data consists of bouadaand also ensures that
the number of components does not change, that open cumegrepen, etc.

Our approach to generate multiple shapes from the givenisledgperform sim-
plification of the input shapes. This can be applied at différdegrees to create
an arbitrary number of additional shapes. For the two exasgescribed in this
section two approaches are taken: Gaussian blurring aydquhl approximation.

Unlike the previous examples, only boundary informatioprizvided, and there
is no additional information such as object intensitiesisTheans that the addi-
tional shapes generated will not introduce new informatatihough there is still a
potential benefit to be gained by making different aspecth@ftiata more explicit,
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Fig. 7 Classification rates obtained for 100 mutually independent,Ifiegpclassification experi-
ments. Top row: the global thresholding method and the featwtewgl1l) are used. Bottom row:
the local thresholding method and the feature vector (12) sed.u

whilst suppressing others. Nevertheless, the expectédrpence gain is likely to
be less than in Section 3.

4.1 Closed Curves Example: MPEG-7 CE-1

In [34] a set of five shape based features (namely, a Foursedbariangularity
measure [5], roundness based on the ratio of the areas dfidipe snd its circum-
scribing circle, rectangularity based on the ratio of theaarof the shap®and its
minimum bounding rectangle, ellipticity based on the fiffina moment invari-
ant [29] and convexity based on the areas of the shape andrit®x hull) along
with two squareness measure8g_,(S) and 2y (S)) were combined to achieve
a bull's eye test score of 74.74% when applied to the MPEG-7LGEt of 1400
shapes using a minimum Mahalanobis distance classifier.
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ST LN
STaR /AN
O

Fig. 8 Shapes at three levels of smoothing (from left to riglat:= 2, 32,128}).

Aricher feature set can be obtained by expanding the data setlude multiple
smoothed versions of the 1400 curves, and using them to denagditional fea-
tures. For example, Gaussian blurring was applied at sdates 2,32,128}, see
some examples in Fig.8. When the additional convexity vatueduced from these
scales was included in the classifier then the test scoredred to 75.76%.

4.2 Open Curves Example: UJI Pen characters

The next experiment uses the UJI Pen character data set (®hich handwriting
samples were captured with a stylus. Each of the particiga®0 writers wrote
two samples of 97 characters, that included ASCII, Spanishather non-ASCII
characters, making up 11640 samples in total. Note that sdittee characters are
multi-stroke, and that of those, their component strokesiatonecessarily touch.
The top row in Fig. 9 illustrates some of the different typéstwaracters in the data
set, while the middle row demonstrates the wide variahitifyandwriting styles for
a single character. The creators of the data set have splitifiracters into disjoint
training and test sets created by 40 writers and 20 writesacively.

We used a Support Vector Machine (SVM) to perform classificatf the char-
acters: LIBSVM [7] with a Radial Basis Function (RBF) keraeld default settings.
Grid search and 5-fold cross validation in the training setewsed to obtain the
optimized parameters and the model was then applied to shdaea.
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Fig. 9 Characters from the UJI Pen character dataBgt.row a) single simple curve; b) two
intersecting curves; c) three intersecting curves; d) threeimensecting curves; e) a mixture
of open and closed curves; f) Spanish character; g) non-AS@Hacker.Middle row. examples
showing the variability of a single character across diffenriters. Lower row one character
progressively simplified by increasing degrees of polygonal@ppration.

©)

(u)

The challenging nature of the data potentially complicéttesprocesses of fea-
ture extraction and/or matching, and in the original papgtte experiments were
restricted to the ASCII alpha-numeric characters, whilgenmecent work has fur-
ther restricted the task to 26 classes [37]. In our experisn@e will use the full set
of 97 character classes. The features need to be choserhatithely can be applied
to open or closed boundaries comprised of single or multipieponents, ruling out
many standard shape measures. In our experiments we haleansotropy [35],
aspect ratio, convexity [46], linearity [33], line momerfb®th Hu’s first seven ro-
tation, translation and scale moment invariants [16] weedwas well as six further
moment invariants designed for character recognition {28ch are invariant to
change in aspect ratio, but amet orientation dependent so that e.g. ‘6’ and ‘9’ can
be distinguished), rectilinearity [44] (both the regularsionR; and a modification
in which the measure isot maximized over orientation), and the absolute sum of
turning angles.

The classification rate obtained was 51.2% for featuresetdd from the raw
data. Next, the data was simplified using Ramer’s polygoppi@imation method
[25] over a range of scales (distance threshold§lo®, 4,8,16,32,64,128}) — see
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the bottom row in Fig. 9 for some examples. When classificatias performed on
the data set using features from any single approximatiosl then no advantage
was found, as the classification rate dropped to 36.40%6%Q.However, when
the features from several scales were combined — namelathdata, and Ramer
thresholdg2, 64} —then an increase of classification to 56.67% was achieved. T
demonstrates the benefit of augmenting the data set by @dlitalternative ver-
sions of the shapes.

Of course, further improvements could be obtained by d@wetpand using ad-
ditional features, in particular those specific to the stynd multi-stroke character-
istics of the data. Examples are: trajectories (i.e. tempoformation), the number
of strokes, the distribution of various stroke charactesswithin a character, etc.

5 Conclusion

In this chapter we have considered some possibilities trease the discrimina-
tion capabilities of shape based tools used in image prioeand computer vision
tasks. We focused on shape based characteristics/pespeiith a intuitively clear
meaning. Many of these properties, commonly named shajpeipless, are clearly
identified (e.g. convexity, linearity, elongation, ciratity, sigmodality, etc.) and
methods for their computation (i.e. numerical evaluatstimation) are derived.
These methods are called shape measures. It has been ragtedsihgle method
for evaluation of a given shape descriptor does not suifpgllieations. That is why,
for several shape descriptors, multiple shape measuresfr@ady been developed.
Among them, convexity, circularity, and ellipticity aregirably the shape descrip-
tors with the largest number of measures developed for gwailuation. Multiple
measures, related to the same descriptors, are used (@itkreratively or jointly)
as components in the feature vectors allocated to the albeipes analyzed. More
shape measures increase the dimensionality of the spalke fefdture vectors, and
consequently, the potential for greater efficiency in shased tasks (classification,
recognition, matching, etc) increases as well. But the rerobapproaches to de-
sigh a measure to certain shape property is limited. ThasgtiestionHow else
we can increase the power of shape descriptor/measure liask?” arises. Here,
we have discussed some possibilities. In Sections 2 and Gpmsidered area based
shape measures (in which all the shape points are used) endhslw incorporat-
ing a tuning parameter can lead to an infinite family of ciacity and ellipticity
measures. In Sections 3 and 4, we have illustrated thatefuithprovements can
be obtained by assigning multiple shapes to the objectddenesl. As mentioned,
area based measures were used in Section 3, while in Sectlbapé boundaries
(i.e. operations on them) were used to allocate the mulsphbgpes to the objects
considered, and then boundary based shape measures wédogeanp
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