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Abstract An advantage of shape based techniques, for object analysistasks, is that
shape allows a large number of numerical characterizations. Some of these have
an intuitively clear meaning, while others do not, but they are still very useful be-
cause they satisfy some desirable properties (e.g. invariance with respect to a set of
certain transformations). In this chapter we focus on numerical shape characteris-
tics that have a clear intuitive interpretation – i.e. basedon such numerical values,
we can predict, to some extent, what the considered object looks like. This is ben-
eficial, since it enables a priori appraisal of whether certain shape characteristics
have suitable discriminative potential that make them appropriate for the intended
task. By their nature, the number of such methods cannot be aslarge as the num-
ber of methods to allocate shape/object characteristics based on some formalism
(algebraic, geometric, probabilistic, etc). Because of that, some other possibilities
to increase the discriminative capacity of the methods based on numerical shape
characteristics, with an intuitively predictable meaning, are considered. Herein, we
observe two such possibilities: the use of tuning parameters to obtain a family of
shape characteristics, and the use of multiple shapes derived from the objects ana-
lyzed.
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1 Introduction

Shape is an important component of the human visual system, and is also widely
used in computer vision to provide a means of describing objects as a precursor to
identifying them. If object boundaries can be reliably extracted (which of course re-
mains a challenge for unconstrained scenes, but is achievable in many other cases)
then shape descriptors offer many advantages to those basedon intensity, colour,
texture, etc. First, although those latter approaches incorporate more information,
offering a richer descriptive power, they are consequentlyalso more sensitive to po-
tentially irrelevant variations in illumination, colouring, etc. For instance, whereas
the shape of a typical car is clear cut, cars come in many colours, and so colour
(unlike shape) is not helpful to the task of assigning an object to the general class
of cars. Second, most shape descriptors can be easily normalised so that they are
invariant to many transformations (e.g. translation, rotation, scaling, shearing) with-
out requiring expensive and less reliable methods such as scale-space based image
processing. Third, many techniques for shape based analysis provide a compact de-
scriptor, that is not only efficient to store, but is also wellsuited to efficient matching.

Many shape properties, herein calledshape descriptors, are known to be very
suitable for a numerical evaluation (e.g. shape convexity,ellipticity, elongation,
compactness, linearity, sigmoidality, tortuosity, etc.). Methods developed to eval-
uate a certain shape descriptor will be calledshape measures. Examples of shape
measures already developed are: convexity [26, 32, 45], circularity [15, 24, 30, 43],
compactness [17], linearity [10, 36, 41], ellipticity [1, 29, 38, 42, 24], sigmoidality
[31], rectilinearity [44], tortuosity [12], and many more.As it can be seen, there are
shape descriptors with multiple measures developed for their numerical evaluation.
This is because none of the shape measures are ideally suitedfor all the possible
applications.

Apart from the shape measures mentioned, which relate to a certain shape prop-
erty, there are generic shape measures which are not originally designed to mea-
sure a specific shape property/characteristic. Among them are: Fourier descriptors
[5, 39], moment invariants [16, 20], shape-illumination invariants [3], and so on.
Those measures satisfy some desirable properties (e.g. invariance with respect to
some transformations) and their power comes from the fact that, at least in theory,
an infinite number of them can be generated and assigned to a given object/shape. A
drawback is that their behavior is not well explained and cannot be predicted. This
further implies that their suitability for a certain task has to be verified through an
intensive experimental study, which is always a time consuming process.

Contrary to the generic shape measures, the measures which do relate to a certain
shape property have a well understood and predictable behavior. Their disadvantage
is that their number is limited. This further causes a limited discriminative power
of the object analysis tools based on such measures, particularly when dealing with
huge data sets. In this chapter we consider possibilities ofincreasing the discrimina-
tive power of such tools, with applications in image processing and computer vision
tasks. We discuss the following possibilities: (i) An involvement of a tuning param-
eter; (ii) Allocation of multiple shapes to the objects considered; (iii) A combination
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of the approaches in (i) and (ii). Our discussion is supported with experimental re-
sults.

Throughout this chapter we will assume that all occurring shapes are bounded.
In order to avoid discussions on pathological situations, we will say that two shapes
are equal if their set differences have area equal to zero. This is obviously not a
restriction in practical applications – e.g. a closed ellipse {(x,y) | x2+3 ·y2 ≤ 1}
and the “open” one{(x,y) | x2+3·y2 < 1} are considered to be the same shape.

The geometric momentmp,q(S) of a given shapeS, represented by a planar
bounded region, is defined as

mp,q(S) =
∫ ∫

S
xp yq dx dy. (1)

Obviously,m0,0(S) equals the area ofS. As a short reminder, the centroid of a given
shapeS is defined as

(∫∫

Sx dx dy
∫∫

Sdx dy
,

∫∫

Sy dx dy
∫∫

Sdx dy

)

=

(

m1,0(S)
m0,0(S)

,
m0,1(S)
m0,0(S)

)

. (2)

Since shape does not change under the translations, we will assume that all the
appearing shapes are positioned such that their centroid coincides with the origin.
In other words:

m1,0(S) =

∫ ∫

S
x dx dy= 0 and m0,1(S) =

∫ ∫

S
y dx dy= 0 (3)

will be assumed, even if not mentioned, for all the shapes considered.
Finally, S(ω) will denote the shapeSrotated around its centroid by the angleω.

2 Power Increase by Introducing a Tuning Parameter

In this section we discuss a family of circularity measures,introduced as a gen-
eralization of the first Hu moment invariant [16], by incorporating one parameter
[43]. The role of this introduced parameter is to control thebehavior of the circu-
larity measures from the given family. Shape interpretation of the first Hu moment
invariant,I1(S),

I1(S) =
∫ ∫

S
(x2+y2) dx dy (4)

has been analyzed in [43]. It has been shown that the first Hu moment invariant,
I1(S), ranges over the interval[ 1

2π ,∞) and returns the minimum possible value12π
for circles only. This property has been used to define the newcircularity measure,
C (S), for planar shapes:

C (S) =
1

2π
·

m0,0(S)2

m2,0(S)+m0,2(S)
=

1
2·π · I1(S)

. (5)
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Such a circularity measureC (S) ranges over the interval(0,1], produces the
value 1 if and only if the considered shapeS is a circle, and is invariant with respect
to translation, rotation, and scaling transformations. Italso might be said that the
new circularity measure fits well with our perception of whata circularity measure
should be – a quantity which indicates how much a shape given differs from a circle.
Shapes with relatively largeC (S) values are nearly circular, while shapes with small
C (S) values have a nearly linear structure. We illustrate this bya small collection
of fish shapes and their assigned circularity values, but more examples can be found
in [43]. Five fish shapes are listed in Fig.1, in accordance with their computedC (S)

0.9579 0.8755 0.4506 0.3361 0.1390

Fig. 1 Fish shapes are ranked with respect to their computedC (S) circularity values.

circularity values. The largest circularity 0.9579 is assigned to the shape on the left,
which is as expected since this shape is nearly circular. Thesmallest circularity value
0.1390 is assigned to the shape on the right. Again, such a smallcircularity comes
from the fact that this shape has a nearly linear structure. Our judgment is that we
may say that these values, as well as the remaining three values, and the ranking
obtained, are in accordance with human perception.

The circularity measureC (S) is area based, and because of this is robust, i.e.
relatively resistant to small shape deformations or to defects caused by noise, for
example. Of course, such a (robustness) property is an advantage in many situations
but it could be a disadvantage in situations when high precision is required. To avoid
such a possible drawback, the measureC (S) has been modified. A tuning parameter
α was introduced [43] to produce a family of circularity measuresCα(S) as follows:

Cα(S) =
1

(α +1) ·πα ·
m0,0(S)α+1

∫∫

S(x
2+y2)αdxdy

(6)

for all α > 01 and for all bounded compact planar shapesS. Obviously, the measure
C (S) also belongs to the new family of circularity measures defined in (6), since
C (S) = Cα=1(S). All circularity measures from the familyCα(S) keep the basic
desirable properties. They range over(0,1], with the equalityCα(S) = 1 satisfied
for circles only. MeasuresCα(S) are invariant with respect to similarity transforma-
tions as well. The main role of the tuning parameterα is to enable control of the
sensitivity/robustness properties ofCα(S). It has been shown that bigger values of
α lead to a more sensitive measureCα(S). More detailed discussion can be found

1 For an extension to the circularity measures withα ∈ (−1,0), see [43].
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in [43], but here we give a lemma which supports the previous statement. Indeed,
Lemma 1 says that for any shapeS different from a circle, there is a parameterα
such thatCα(S) is arbitrarily close to 0. In other words, there is a choice ofcir-
cularity measureCα(S) (i.e. the choice of the parameterα) which would penalize,
strongly enough, any existing difference between the shapeSand a circle.

Lemma 1. For a bounded planar compact shape S, different from a circle, the fol-
lowing equality is true

lim
α→∞

Cα(S) = 0. (7)

Some of the benefits from having the possibility to tune the behavior of circular-
ity measures are illustrated by examples in Fig.2. All the four shapes listed can be
understood as very similar to a circle. The first shape is a regular 7-gon while the re-
maining three shapes are obtained from a circle by adding noise. For the second and
third shape a different level noise is added to the shape boundary, while salt noise
(i.e. holes) is added to the interior of the fourth shape. Thecircularity C (S) of all
these shapes is very close to 1, andC (S) can neither distinguish among these shapes
nor detect the presence of the obvious irregularities. These irregularities become vis-
ible once measuresCα(S) from the new family are employed. Indeed, looking at the
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Fig. 2 Graphs of the measured circularitiesCα (S), for α ∈ [0,20], are given below the correspond-
ing shapes.

graphs ofCα(S) (considered as a function inα), displayed in the second row in
Fig.2, we see that an increase ofα leads to a decrease ofCα(S). After some point,
it becomes clearly evident that all the given shapes differ from a circle, and also that
each of these shapes differs from the others. For example, ifwe setα = 20 then, for
all the shapes displayed, the computedCα(S) circularities are all mutually different.

Next, we illustrate that some classification accuracies, reached by some of the
well known shape measures, can be outperformed by selectinga suitable measure
from the familyCα(S). For this purpose we will use the standard circularity mea-
sure, and the circularity measures of Proffitt [24] and Haralick [15]. The standard
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circularity measureCst(S) exploits the fact that among all shapes with the same
perimeter, the circle has the largest area. It is defined as

Cst(S) =
4·π ·Area o f S

(Perimetero f S)2 . (8)

Note that in the following experiments the perimeter ofSwas calculated forCst(S)
either directly from the pixel boundaries extracted from the images with inter-pixel
weights set according to Dorst and Smeulders [8], or alternatively the perimeters
were calculated from polygonal approximations of the boundaries [25]. For classifi-
cation, leave one out testing was performed with a nearest neighbor classifier using
Euclidean distances.

circularity mammography
measure circ./spic.mal./ben.4 groups
Cα=1/8(S) 83.33 66.67 51.85
Cα=1/4(S) 85.19 64.81 51.85
Cα=1/2(S) 75.93 57.41 42.59
Cα=1(S) 68.52 68.52 51.85
Cα=2(S) 75.93 68.52 53.70
Cα=4(S) 72.22 46.30 33.33
Cα=8(S) 79.63 59.26 50.00
Cα=16(S) 87.04 57.41 51.85
Cα=32(S) 90.74 70.37 64.81
Cst(S) pixel 87.04 59.26 57.41
Cst(S) polygon 85.19 59.26 57.41
Haralick [15] 68.52 46.30 37.04
Proffitt [24] 51.85 42.59 25.93

Table 1 Applications of the circularity measures to: classification of mammographic masses. The
classification accuracies, for three classification tasks, are given for different choices of the circu-
larity measures. The best performing measure wasCα=32(S) (the score highlighted in bold).

For this example, circularity was measured for the set of 54 masses from mam-
mograms, combining images from the MIAS and Screen Test databases [27], see
Fig.3. Rangayyanet al. [27] assessed the measures by classifying them as circum-
scribed/spiculated, benign/malignant, and CB/CM/SB/SM,in two group and four
group classification experiments. Their best shape measureresults for the three
classification tasks were: (i) circumscribed versus spiculated: 88.9% achieved by
bothCst(S) and a Fourier based shape factor, (ii) benign versus malignant: 75.9%
achieved by the Fourier based shape factor, (iii) four-way discrimination: 64.8%
achieved by bothCst(S) and the Fourier based shape factor.2 From Table 1 we see
that the best results from usingCα(S) occurred forα = 32 and were respectively

2 We note that our results forCst(S) listed in Table 1 do not match Rangayyanet al.’s [27] reported
accuracies forCst(S). This can be attributed to several factors: (i) different classifiers were used,
and also (ii) different methods for estimating perimeter may have been used.
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better, worse, and equal to Rangayyanet al.’s. The other circularity measures did
not perform as well asCα(S).

CB CM SB SM

Fig. 3 Examples of the four classes of mammographic masses: circumscribed benign (CB), cir-
cumscribed malignant (CM), spiculated benign (SB), spiculated malignant (SM). The masses were
extracted from the mammograms (top row), and have been drawn rescaled (bottom row).

3 Family of Ellipticity Measures with an Application in an
Galaxy Classification Task

Shape ellipticity measures are intensively studied in the literature. An early attempt
[38] goes back to 1910. Notice that there are two approaches for how to measure
shape ellipticity. The first one assumes that all ellipses are of the same shape, regard-
less of their axis length ratios, e.g. [1, 29]. Another approach assumes that ellipses
whose axis ratios differ also differ in shape, e.g. [2]. It isnot possible to say a priori
which approach is better. In some applications the first approach would be more
appropriate, whilst in some others the second is preferred.

Ellipticity measures considered in this section, from the family introduced re-
cently [2], assume that ellipses with a different axis length ratio are different in
shape. A precise definition follows.

Definition 1. Let a bounded planar shapeS, whose centroid coincides with the ori-
gin, be given. For everyρ ∈ (0,1] the ellipticity measureEρ(S) of S, is defined as
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Eρ(S) =
1

2·π
·

m0,0(S)4

min
ω∈[0,2π]

∫∫

S(ω)

(

x2

ρ +ρ ·y2
)

dx dy
. (9)

Note 1.The formula in (9) enables an easy and straightforward numerical computa-
tion of Eρ(S), with ρ ∈ (0,1]. There is also a closed formula for the computation of
Eρ(S), derived recently in [40].

All the ellipticity measuresEρ(S), from Definition 1 have the following proper-
ties (for a proof see [2]):

(a) Eρ(S) ∈ (0,1], for any shapeS;
(b) Eρ(S) = 1 if and only if S is an ellipse whose axis length ratio isρ ;
(c) Eρ(S) is invariant with respect to similarity transformations.

Theoretical foundations for understanding the behavior ofthe new ellipticity
measuresEρ(S) are established in [2]. Here we give a brief discussion. The parame-
terρ can be understood as a tuning parameter, because the behavior of the ellipticity
measures, from{Eρ(S) | ρ ∈ (0,1]}, depends on the choice of the parameterρ . For a
fixed ρ , the measureEρ(S) indicates how much the considered shapeSdiffers from
a perfect ellipseE(ρ) whose axes length ratio isρ . The highest score, equal to 1,
is given only to theE(ρ) ellipses. For all the shapes different fromE(ρ), including
the ellipses whose axes length ratio differs fromρ , the computedEρ(S) ellipticities
are strictly less than 1. Which values of the parameterρ should be selected depends
on the application which is going to be performed. Ellipticity Eρ(S), corresponding
to one selection of the parameterρ , can perform well in one application, but also
can have a poor performance in another.

In this section, in addition to the use of a tunable ellipticity measures, we con-
sider another possibility to increase the discriminative capacity of shape based ob-
ject analysis tools. The idea is to assign a number of shapes to an object presented
in an image, instead of just a single shape, as is the common approach. Multiple
shapes can be assigned in several ways (e.g. as it is done in this section – see Fig.5,
and also as it is done in Section 4 – see Fig.8, or in [28], etc.). In this section we
will assign two shapes to each object by using two versions ofOtsu’s thresholding
method [22]: A “global” one (the same threshold level is applied to all pixels) and
a “local” one (the original method is applied to blocks of theoriginal image, so that
the threshold level applied varies). This means that we allocate two shapes (repre-
sented as two binary images) for each object. For each of these two shapes/images
we will compute three shape measures, which will comprise the components of the
feature vectors used for classification.

This approach will be applied to a galaxy classification task. The elliptical and
spiral galaxies, listed in the Nearby Galaxy Catalog [9], are used as the data/shape
set. The same data set has been used by many others, and the classification task has
been already recognized as a difficult problem [18]. Many approaches have been
applied and used to provide an automatic machine galaxy classification, e.g. neural
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networks approaches [4, 14, 21], fuzzy sets theory [19], geometric shape features
[11, 13], shape squareness [34], fractal signatures [18], etc.

The benchmark results, prior to a 100% classification rate obtained in [2], were
92.3% and 95.1%, obtained in [18] by using nearest neighbor and neural network
classifiers, respectively.

3.1 Ellipticity Measures Used and Classification Results Obtained

Three ellipticity measures were used to perform the galaxy classification task. Two
of them are from the familyEρ(S):

• Eρ=0.7(S) =
1

2·π
·

m0,0(S)4

min
ω∈[0,2π]

∫∫

S(ω)

(

x2

0.7 +0.7·y2
)

dx dy
(m1)

• Eρ=0.9(S) =
1

2·π
·

m0,0(S)4

min
ω∈[0,2π]

∫∫

S(ω)

(

x2

0.9 +0.9·y2
)

dx dy
(m2)

while the third ellipticity measure used is introduced in [1] and is defined as follows

• E (S) =
1

2·π
·

m0,0(S)4

min
ω∈[0,2π]

∫∫

S(ω)

(

x2

γ + γ ·y2
)

dx dy
(m3)

where the parameterγ is defined as

γ =

√

µ2,0(S)+µ0,2(S)+
√

4· (µ1,1(S))2+(µ2,0(S)−µ0,2(S))2

√

µ2,0(S)+µ0,2(S)−
√

4· (µ1,1(S))2+(µ2,0(S)−µ0,2(S))2
.

Ellipticity measuresEρ=0.7(S) and Eρ=0.9(S) were selected according to the
graphs displayed in Fig.4. Precisely, 32 shapes were selected randomly and then
thresholded by both the global and local methods. The graphsof Eρ(S), for ρ vary-
ing through the interval(0,1], were computed. The graphs ofEρ(S) corresponding
to shapes obtained by the global thresholding are on the leftin Fig.4, while the
graphsEρ(S) for shapes obtained by the local thresholding are on the right in Fig.4.
Our hypothesis was: “Since for bothρ = 0.7 andρ = 0.9 the values ofEρ(S) are
“scattered” reasonably well, an efficient discrimination among the galaxy shapes
would be enabled by using the functions/measuresEρ=0.7(S) andEρ=0.9(S)”. Also,
the selected parameters are preferred to be reasonably different. It turns out that, at
least in this case, the hypothesis was valid.

Thus, each galaxyg was represented by a 6-dimensional feature vector deter-
mined as follows:
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Fig. 4 Eρ (S), ρ ∈ (0,1], graphs for the shapesSobtained by thresholding of 32 randomly selected
galaxy images: global thresholding applied (on the left) and local thresholding applied (on the
right).

(

Eρ=0.7(S
′
g), Eρ=0.9(S

′
g), E (S′g), Eρ=0.7(S

′′
g), Eρ=0.9(S

′′
g), E (S′′g)

)

(10)

whereS′g andS′′g are the shapes (i.e. binary images) obtained from the original im-
age (of the galaxyg) thresholded by two selected methods (the global and local
one). Some examples are in Fig.5: original images are in the left column, shapes
S′g obtained by the global thresholding are in the middle column, while shapesS′′g
obtained by local thresholding are in the right column.

We have used thek-Nearest Neighbour Classifier (k-NN), with k = 5. For the
training set we have used 4 elliptical and 28 spiral galaxies(e.g. approximately 30%
of the galaxies have been used for the training – the same percentage as in [18]).
The classification was performed on the complete data set (galaxies selected for
the training were also included). In order to get a reliable indicator about the ef-
ficiency of the classification “mechanism” described above,100 experiments were
performed. The experiments were mutually independent – i.e. galaxies for the train-
ing set (4 elliptical and 28 spiral galaxies) have been selected randomly in every
experiment.

The classification results were very good, and outperform the previous accu-
racies. Among 100 experiments performed, the classification rate of 100% was
achieved 3 times. The average classification rate was 95.6% – better than both best
rates obtained byk-NN and neural network classifiers in [18]. The minimal classi-
fication rate of 90.2% was obtained 4 times. The classification results, for eachof
the 100 experiments, are displayed in Fig.6. It is worth mentioning that because the
ellipticity measures have predictable behavior, it was expected that good classifica-
tion results might be expected (galaxy shapes have an elliptical structure). Such a
prediction would not be possible if some generic shape measures were used instead.
The additional tool which led to the maximum classification is the use of multiple
shapes assigned to an object/image. To illustrate the latter statement we provide the
classification results in experiments where a single shape is allocated to each galaxy.
The same ellipticity measures:Eρ=0.7(S), Eρ=0.9(S), andE (S) were used again. As
expected, smaller classification rates were obtained. The classification results, based
on 100 mutually independent experiments, are displayed in Fig.7. As it can be seen:
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NGC no.: 4125 global thresholding local thresholding

NGC no.: 4486 global thresholding local thresholding

NGC no.: 4450 global thresholding local thresholding

NGC no.: 3893 global thresholding local thresholding

Fig. 5 Original images and theirNGC number are in the left column; shapes obtained by the
global and local thresholding are in the middle and right column, respectively.

• If the shapes obtained by the global thresholding and the 3-dimensional feature
vector

(

Eρ=0.7(S
′
g), Eρ=0.9(S

′
g), E (S′g)

)

(11)

were used, the following rates were achieved:

– the average classification rate: 87.5%;
– the maximum classification rate: 92.1%;
– the minimal classification rate: 82.4%.

• If single shapes, obtained by the local thresholding method, and the 3-dimensional
feature vector
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Fig. 6 Classification rates obtained for 100 mutually independent galaxy classification experi-
ments.

(

Eρ=0.7(S
′′
g), Eρ=0.9(S

′′
g), E (S′′g)

)

(12)

were used, then the following rates were achieved:

– the average classification rate: 92.2%;
– the maximum classification rate: 96.0%;
– the minimal classification rate: 84.3%.

4 Multiple Shapes Assigned to Boundary Simplification

A final pair of experiments is described in which multiple shapes will be derived for
each object. Distinct from the experiments in Sections 2 and3, classification will
be performed using boundary based features. Therefore boundary based methods
will be employed to generate multiple shapes. This is the most straightforward and
appropriate approach if the input data consists of boundaries, and also ensures that
the number of components does not change, that open curves remain open, etc.

Our approach to generate multiple shapes from the given datais to perform sim-
plification of the input shapes. This can be applied at different degrees to create
an arbitrary number of additional shapes. For the two examples described in this
section two approaches are taken: Gaussian blurring and polygonal approximation.

Unlike the previous examples, only boundary information isprovided, and there
is no additional information such as object intensities. This means that the addi-
tional shapes generated will not introduce new information, although there is still a
potential benefit to be gained by making different aspects ofthe data more explicit,
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Fig. 7 Classification rates obtained for 100 mutually independent, simplified classification experi-
ments. Top row: the global thresholding method and the feature vector (11) are used. Bottom row:
the local thresholding method and the feature vector (12) are used.

whilst suppressing others. Nevertheless, the expected performance gain is likely to
be less than in Section 3.

4.1 Closed Curves Example: MPEG-7 CE-1

In [34] a set of five shape based features (namely, a Fourier based triangularity
measure [5], roundness based on the ratio of the areas of the shape and its circum-
scribing circle, rectangularity based on the ratio of the areas of the shapeSand its
minimum bounding rectangle, ellipticity based on the first affine moment invari-
ant [29] and convexity based on the areas of the shape and its convex hull) along
with two squareness measures (Qβ=2(S) andQ f it (S)) were combined to achieve
a bull’s eye test score of 74.74% when applied to the MPEG-7 CE-1 set of 1400
shapes using a minimum Mahalanobis distance classifier.
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Fig. 8 Shapes at three levels of smoothing (from left to right:{σ = 2,32,128}).

A richer feature set can be obtained by expanding the data setto include multiple
smoothed versions of the 1400 curves, and using them to compute additional fea-
tures. For example, Gaussian blurring was applied at scales{σ = 2,32,128}, see
some examples in Fig.8. When the additional convexity valuesproduced from these
scales was included in the classifier then the test score increased to 75.76%.

4.2 Open Curves Example: UJI Pen characters

The next experiment uses the UJI Pen character data set [6], in which handwriting
samples were captured with a stylus. Each of the participating 60 writers wrote
two samples of 97 characters, that included ASCII, Spanish and other non-ASCII
characters, making up 11640 samples in total. Note that someof the characters are
multi-stroke, and that of those, their component strokes donot necessarily touch.
The top row in Fig. 9 illustrates some of the different types of characters in the data
set, while the middle row demonstrates the wide variabilityin handwriting styles for
a single character. The creators of the data set have split the characters into disjoint
training and test sets created by 40 writers and 20 writers respectively.

We used a Support Vector Machine (SVM) to perform classification of the char-
acters: LIBSVM [7] with a Radial Basis Function (RBF) kerneland default settings.
Grid search and 5-fold cross validation in the training set were used to obtain the
optimized parameters and the model was then applied to the test data.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Fig. 9 Characters from the UJI Pen character data set.Top row: a) single simple curve; b) two
intersecting curves; c) three intersecting curves; d) three non-intersecting curves; e) a mixture
of open and closed curves; f) Spanish character; g) non-ASCII character.Middle row: examples
showing the variability of a single character across differentwriters. Lower row: one character
progressively simplified by increasing degrees of polygonal approximation.

The challenging nature of the data potentially complicatesthe processes of fea-
ture extraction and/or matching, and in the original paper [6] the experiments were
restricted to the ASCII alpha-numeric characters, while more recent work has fur-
ther restricted the task to 26 classes [37]. In our experiments we will use the full set
of 97 character classes. The features need to be chosen such that they can be applied
to open or closed boundaries comprised of single or multiplecomponents, ruling out
many standard shape measures. In our experiments we have used: anisotropy [35],
aspect ratio, convexity [46], linearity [33], line moments(both Hu’s first seven ro-
tation, translation and scale moment invariants [16] were used as well as six further
moment invariants designed for character recognition [23]which are invariant to
change in aspect ratio, but arenot orientation dependent so that e.g. ‘6’ and ‘9’ can
be distinguished), rectilinearity [44] (both the regular versionR1 and a modification
in which the measure isnot maximized over orientation), and the absolute sum of
turning angles.

The classification rate obtained was 51.2% for features extracted from the raw
data. Next, the data was simplified using Ramer’s polygonal approximation method
[25] over a range of scales (distance thresholds of{1,2,4,8,16,32,64,128}) – see
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the bottom row in Fig. 9 for some examples. When classificationwas performed on
the data set using features from any single approximation level then no advantage
was found, as the classification rate dropped to 36.40%–50.56%. However, when
the features from several scales were combined – namely the raw data, and Ramer
thresholds{2,64} – then an increase of classification to 56.67% was achieved. This
demonstrates the benefit of augmenting the data set by additional alternative ver-
sions of the shapes.

Of course, further improvements could be obtained by developing and using ad-
ditional features, in particular those specific to the stylus and multi-stroke character-
istics of the data. Examples are: trajectories (i.e. temporal information), the number
of strokes, the distribution of various stroke characteristics within a character, etc.

5 Conclusion

In this chapter we have considered some possibilities to increase the discrimina-
tion capabilities of shape based tools used in image processing and computer vision
tasks. We focused on shape based characteristics/properties with a intuitively clear
meaning. Many of these properties, commonly named shape descriptors, are clearly
identified (e.g. convexity, linearity, elongation, circularity, sigmodality, etc.) and
methods for their computation (i.e. numerical evaluation/estimation) are derived.
These methods are called shape measures. It has been noted that a single method
for evaluation of a given shape descriptor does not suit all applications. That is why,
for several shape descriptors, multiple shape measures have already been developed.
Among them, convexity, circularity, and ellipticity are probably the shape descrip-
tors with the largest number of measures developed for theirevaluation. Multiple
measures, related to the same descriptors, are used (eitheralternatively or jointly)
as components in the feature vectors allocated to the objects/shapes analyzed. More
shape measures increase the dimensionality of the space of the feature vectors, and
consequently, the potential for greater efficiency in shapebased tasks (classification,
recognition, matching, etc) increases as well. But the number of approaches to de-
sign a measure to certain shape property is limited. Thus, the question:“How else
we can increase the power of shape descriptor/measure basedtools?” arises. Here,
we have discussed some possibilities. In Sections 2 and 3, weconsidered area based
shape measures (in which all the shape points are used) and show how incorporat-
ing a tuning parameter can lead to an infinite family of circularity and ellipticity
measures. In Sections 3 and 4, we have illustrated that further improvements can
be obtained by assigning multiple shapes to the objects considered. As mentioned,
area based measures were used in Section 3, while in Section 4shape boundaries
(i.e. operations on them) were used to allocate the multipleshapes to the objects
considered, and then boundary based shape measures were employed.
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