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Abstract  

Video Forensics keeps developing new technologies to verify the authenticity of digital videos. The existing datasets have 

limitations including unrealistic and poor-quality tampering, small size, few types of forgeries, lack of range of video content, 

different lighting conditions, and a range of camera models. This paper proposes the COMSATS Structured Video Tampering 

Evaluation Dataset (CSVTED), a three-level benchmark dataset organized by tampering quality and video complexity. This dataset 

includes a diversity of tampering in the spatial and temporal domains such as frame duplication, deletion, insertion, copy-move, 

and splicing. The dataset aims to facilitate the evaluation of video forgery detection methods by providing 1047 videos (133 original 

and 914 tampered), captured by multiple cameras in different lighting conditions (morning, noon, evening, night, fog). To develop 

the benchmark dataset, videos are tampered with a variable number of duplicated/deleted/inserted frames as well as Event-Object-

Person (EOP) based tampering. Special care has been taken to ensure minimal abrupt changes in tampered videos by using 
Structural Similarity Index Measure (SSIM) and Optical Flow (OF) to determine the optimal positions for 

duplication/insertion/deletion in the video. Taking into account the direction of motion of objects in the video, these techniques 

aid in seamlessly integrating the tampered frames while maintaining visual coherence. Furthermore, the videos in CSVTED depict 

natural scenes after the tampering process and are in the common formats of avi, mp4, or mov. This dataset will be publicly 

available for researchers in the domain of video forensic analysis.  
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I. Introduction 

A massive amount of digital visual content is being shared on 
the web by different people from all over the world to convey 
information, especially on social media networks, such as 
Facebook, WhatsApp, Twitter, and YouTube. Over 500 hours 
of videos are uploaded every minute and 5 billion videos are 
watched every day from YouTube [1]. This tremendous use of 
digital videos has been followed by a rise of techniques to 
modify video content, using different editing software. These 
tools are very simple and enable even inexperienced users to 
perform unauthorized modification in order to maliciously 
forge a video sequence, and these videos are often shared on 
different social networks to spread fake news. Videos may 
contain sensitive and important information about the event that 
occurred, and this can be easily tampered with by editing tools 
like Adobe Premiere Pro, Light Works, and Final Cut Pro X, 
etc. The attacker aims to create visually realistic video 
forgeries. It is difficult to detect the changes in the contents of 
videos with the naked human eye [2-4]. Therefore, it is 
challenging to differentiate between non-modified videos and 
their fake counterparts to determine if the video is authentic or 
tampered. Many fields such as courts, investigation 
departments, social media networks, and media groups need the 
verification of videos [5, 6]. 
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Broadly, video forgery detection can be classified into two 
groups: passive and active video tampering detection. Active 
techniques involve the use of known traces such as digital 
signatures or watermarks which are embedded into the content 
during the acquisition phase when the video is being recorded 
or later during the transmission of data. Any change in this 
embedded information indicates tampering. However, this 
technique may be ineffective if alteration occurs before 
insertion of the digital signature or watermark [7-9]. In contrast, 
passive video tampering detection methods are more 
convenient as they do not rely on encapsulated information 
(digital signatures, hash values) within the video. Therefore, the 
passive methods determine the genuineness of a video by 
exploring the intrinsic features left by the capturing devices or 
manipulation act in the media [10-12]. Similarly, digital videos 
can be forged by three different techniques: (a) spatial or object-
based (intra-frame) forgery, (b) temporal or frame-based (inter-
frame) forgery, and (c) spatio-temporal forgery. In spatial 
tampering, videos are altered by modifying the content (objects) 
within the frames, thereby affecting the visual appearance. 
Objects can be removed, replaced, and added within the 
frame(s) of a video. In temporal tampering, frames can be 
removed, inserted, duplicated, or shuffled to hide important 
information. For instance, frame duplication may be done to 
extend the time duration of an activity. Spatio-temporal 
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tampering involves combination of both spatial and temporal 
tampering [13] as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Categorization of video tampering detection 

techniques. 

Numerous algorithms for video tampering detection have 

been developed to identify a specific tampering attack by 

exploiting unique features like motion characteristics [11, 14], 

noise properties [15], video compression and coding features 

[16, 17], color models [18], and texture based features [19]. All 

these algorithms are presented by different researchers and 

perform well on particular datasets typically developed by 

them. To assess the performance of developed techniques, it is 

required to test them on the datasets freely available to the 

public. Unfortunately, such datasets are not available for other 

communities/researchers, hindering to evaluate the 

performance of their algorithms. High accuracies achieved on 

individual small datasets may give the impression that video 

tampering detection is a solved problem, which stifles 

innovation since new research may yield little improvements on 

saturated datasets. In contrast, a great effort in the area of image 

forensics [20-24], source device identification [25-27], AI-

generated content detection (AICD) and deepfake detection 

[28-32] has been made to the development of many challenging 

benchmark datasets, yet no comparable benchmark dataset is 

available for video forensics.  

Video tampering detection, focuses on manipulated real 

videos where genuine footage is altered like frame deletion, 

insertion, duplication, copy-move, or splicing. In contrast, 

AIGC detection deals with entirely synthetic videos generated 

by deep learning models such as GANs, diffusion models, or 

neural rendering. Tampering detection is critical in forensics, 

law enforcement, and media verification, whereas AIGC 

detection is essential for combating synthetic media, 

misinformation, and DeepFake threats in cybersecurity. While 

both fields aim to ensure video authenticity. 

Several papers have been published on video datasets, 

including works by Akbari et al. [33], Singla et al. [34], Sharma 

and Kanwal [35], Panchal and Shah [36], Ulutas et al. [37], 

Almansa et al. [38], Al-Sanjary et al. [39], Feng et al. [14], Su 

et al. [40], Chen et al. [41], Bestagini et al. [42], and Qadir et 

al. [43]. However, several limitations have been observed in 

these existing datasets: 

• Social media or YouTube are taken as video sources in 
[36, 39, 44] to develop the video forgery datasets, 
lacking information about the capturing devices and do 
not ensure the authenticity of the available videos.  

• The datasets do not cover all types of video forgeries in 
both the spatial and the temporal domains.  

• Limited availability of datasets for the research 
community since many are not made publicly available.  

• Tampering is often conducted in an unnatural and 
unrealistic manner. Since manually producing tampered 
videos is very time-consuming, most authors 
synthetically doctored sequences by selecting a fixed 
position for insertion/deletion/duplication. An example 
is in Panchal and shah [36] in which insertion, deletion, 
and duplication of 10, 20, and 30 frames at fixed 
positions frame 101, frame 201, and frame 301 are 
performed in every video. 

• Poor quality of tampering, such that most of the 
tampering is clearly detected by the naked eye. 

• There is limited variety in the video forgery dataset. 
Ideally, there should be different resolutions, different 
frame rates, and different light conditions such as 
morning, noon, evening, night, and fog.  

• Datasets are too small; until now no dataset has been 
found that has more than 220 tampered videos. 

Recognizing the importance of video tampering detection to 

the computer vision and video processing communities, we 

have prepared three-level benchmark dataset for spatial and 

temporal forensic analysis of videos. This CSVTED consists of 

1047 videos (including tampered and untampered videos). A 

distinguish feature of CSVTED is the fact that tampering 

quality and complexity of every video is computed. The quality 

of tampering provides insights into the characteristics of 

different types of manipulations, such as frame deletion, 

insertion or duplication. Understanding these characteristics 

can guide the development of more targeted detection methods 

tailored to specific types of tampering. The highlights of this 

paper are: 

• Existing video tampering datasets have been 
overviewed. 

• CSVTED comprises of all types of spatial and temporal 
domain tampering including EOP based tampering. 

• To achieve more robust and adaptable solutions to 
tampering detection, the developed algorithms must be 
assessed across different levels of tampering severity. To 
overcome this issue, CSVTED is split into 3 levels based 
on the quality of tampering and video complexity. 
Furthermore, these aspects have been quantified, which 
allows us to validate the contents of the tiers of our 
dataset. 

• A detailed description of the proposed structured three-
level benchmark dataset along with systematic and 
natural ways of incorporating the video tampering 
process is presented. 
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• A variety of videos having different frame rates, video 
formats, and lighting conditions in the dataset along with 
measures of their complexity and quality of tampering 
are provided. 

• A comparison of the proposed dataset with state-of-the-
art datasets is also presented. 

Audio constitutes a significant element of video content, and 

in some forensic investigations, audio analysis holds paramount 

importance. Nonetheless, there are several factors that may lead 

to the exclusion or lower prioritization of audio when preparing 

a video forensic dataset. Firstly, video forensic analysis often 

focuses primarily on the visual aspects of the footage, such as 

identifying individuals, objects, and events. This is because 

video evidence can provide valuable information even in the 

absence of audio, such as facial recognition, license plate 

identification, or establishing the sequence of events. Secondly, 

audio analysis requires specialized skills and tools that are 

distinct from those used in video analysis. Thirdly, audio 

recordings within video footage may encounter various quality 

issues, including background noise, distortion, or low volume. 

These issues can make audio analysis challenging and less 

reliable, which may discourage its inclusion in some datasets. 

In any case, audio can provide some clues to detect tampering, 

but we want users to rely on the images alone, which is why this 

additional information is not be provided as part of CSVTED. 

The original 133 videos are captured using 9 different cameras 

with varying resolutions, frame rates, and lighting conditions 

such as morning, noon, evening, night, and fog. Videos are 

tampered with by applying different tampering techniques such 

as Frame duplication, Frame deletion, Frame insertion, Copy-

move, and Splicing. In this way, this dataset contains 133 

original and 914 tampered videos. The details are presented in 

Table A1.  

The structure of this paper contains a literature review 

regarding the development of datasets for video forgery. In 

Section 2, methods of video forgery are explained. In Section 3 

and Section 4, the framework of video tampering and ground-

truth values of CSVTED is described. Finally, Section 5 

concludes this work.  

1.1 Existing Video Forgery Datasets  

The availability of an efficient dataset is crucial to conduct any 

research work. Unfortunately, there are only few datasets exist 

for video forensics, and they often comprise a limited number 

of forged videos, possess low-resolution, and were not captured 

using modern portable devices in different light conditions 

(morning, noon, evening, and night). For instance, SULFA 

[43], publicly available on the University of Surrey website, 

consists of 150 original videos with a low resolution of 320 × 

240 pixels and a duration of 10-seconds, with only 5 tampered 

videos covering spatial and temporal tampering. The existing 

video forgery datasets are not appropriate due to small size (few 

videos), and covering few types of forgeries [39, 40, 43, 45, 46], 

prompting many researchers to develop their personal datasets 

to conduct experiments. For example, Le et al., 2017 [38] 

developed a dataset of video in-painting containing 53 

tampered videos, aimed to recover the missing area/region in a 

video frame by exploiting spatio-temporal information from the 

rest of that video. There is lack of realistic representation in the 

VIFFD dataset [47], it only incorporates certain scenarios; 

frames are only inserted at the start or end of the video in frame 

insertion tampering. If frames are deleted at the start of the 

video, the deleted frames are replaced by black frames; which 

is not a practical approach. 

The latest video dataset on three types of temporal tampering 

was introduced by Panchal and Shah [36]. A thorough analysis 

revealed several drawbacks. Firstly, the video capturing source 

is unknown for social media and YouTube videos. Secondly, 

there is no guarantee that the uploaded videos on YouTube are 

always in their authentic form. Such doubtful videos are not 

suitable for experiments such as different YouTube videos are 

used as a source in [36] and [39] to prepare tampered datasets.. 

Thirdly, fixed locations are selected as start tampering points in 

all videos for deletion/insertion/duplication. For example, in 

[36] frames 101, 201, and 301 are fixed for tampering of 10, 20, 

and 30 frames. Fourthly, the tampering approaches are 

unnatural or unrealistic. Frames are duplicated/deleted/inserted 

without considering that the inserted or deleted frames are 

creating a big jump or gap, giving a strong clue of tampering. 

Mostly tampering is done by unprofessional people using 

commonly available video editing tools. 

Al Sanjary et al. [39] addressed three types of tampering: 

copy-move, splicing, and frame duplication in their dataset, 

which contains 33 original and 26 forged videos (10 copy-

move, 10 splicing, and 6 frame duplication). While this dataset 

is openly available for researchers and encompasses a variety 

of tampering in both spatial and temporal domains, the main 

problem with this dataset is the absence of information about 

the capturing devices, different lighting conditions, and their 

features. Furthermore, not all types of temporal tampering are 

covered in this dataset. D'Avino, Cozzolino et al. [48] proposed 

a method for video splicing detection based on auto-encoder 

and recurrent neural networks. Their developed dataset 

comprises of 10 short video clips, specifically designed for 

splicing detection. The tampering in these videos can be easily 

detectable with the naked eye. Several datasets such as 

FaceForensics 2018 [49], VISION 2017 [50], and Newson et al. 

2017 [51] have been produced; they primarily focus on a single 

tampering method such as splicing, motion transfer, or in-

painting. The videos in VIDEOSHAM [32] are manipulated 

using spatial and temporal attacks. This lack of comprehensive 

coverage underscores the necessity for a sufficiently large 

dataset for video forensics, containing a heterogeneous set of 

videos along with ground-truth references. 

Datasets containing both original and tampered videos play a 

vital role in estimating the accuracy of algorithms [14]. The 

development of a reliable dataset for algorithms of video 

forensic investigation is important, yet to the best of our 

knowledge, no large and efficient dataset exists so far in the 

domain of video forgery. Therefore, a new dataset of tampered 

videos is developed where each video has undergone a single 

tampering attack such as frame deletion, frame duplication, and 

frame insertion. Static cameras are used to capture the videos 

and are forged with various forgery techniques. The comparison  
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between existing datasets and the developed dataset is 

presented in Table 1a and Table 1b. The primary objective 

behind developing the CSVTED is to assess the robustness of 

video forgery detection algorithms by providing this dataset to 

the researchers.  

2 Types of Video Forgery  

Hackers have devised many ways to tamper digital videos; 

including splicing, copy-move, frame insertion, deletion, 

duplication, and shuffling. It becomes challenging for digital 

forensic investigators to differentiate between original and 

tampered content. Video tampering typically falls into three 

categories: spatial forgery, temporal forgery, and spatio-

temporal forgery [40, 52-55]. In spatial tampering, forgers try 

to manipulate the pixels within the video frame. Fig. 2 (a) 

represents an original video; while Fig. 2 (b) illustrates a 

tampered video in the spatial domain as its pixels P11, P12, P21, 

and P22 are manipulated. In temporal forgery, forgers try to 

disrupt the sequence of the frames by adding, removing, 

reordering, and replacing the frames. Fig. 2(c) illustrates a 

temporally forged video by deleting and replacing the frames 

F6, F7, F8 by F1, F2, and F3. Similarly, Fig. 2(d) represents a 

combination of temporal and spatial tampering where both 

pixel manipulation and frame sequence disruption occur. In 

spatial tampering, copy-move and splicing methods are used to 

forge the video frame and these techniques can also be applied 

to still images. The root of tampered regions are the processes 

that are post-performed to forge the video [54]. Fig. 3 provides 

an example of copy-move forgery, demonstrating how this 

technique is used to manipulate videos taken from CSVTED. 

The copy-move technique is applied by copying a specific area 

from a frame of the video and pasting it on the same frame to 

conceal the car and fire extinguisher in Fig. 3(a) and 3(b), 

respectively. All videos in the CSVTED are recorded using 

different cameras and contain scenes representative of realistic 

situations, with frame rates ranging from 12.50 to 30.0174 fps, 

and the resolution of 1920×1080, 1280×720, and 640×480. The 

duration of the original videos varies from 6.016s to 47.67s. 

Another type of spatial tampering technique is splicing in 

which a specific portion of a frame in a video is copied and 

pasted into another frame of the same or the other video. 

Splicing becomes challenging when a moving camera is used 

to record the video as unstable direction and lighting conditions 

make it difficult to perform. Maintaining consistent frame rate 

in the splicing method is also a challenge. The splicing method 

involves merging various segments of video frames either from 

the same video or different videos to create seamless 

boundaries, resulting in a more realistic appearance. Examples 

of splicing techniques applied to the video tampering dataset 

are depicted in Fig. 4, showing alterations to the number plate 

of the car and content displayed on monitor. 

In the temporal domain, video tampering involves changing 

frames through frame insertion, duplication, and deletion [53]. 

Temporal video tampering can occur at frame, scene/shot, or 

video. For example, deletion of a complete scene is performed 

by removing the entire scene from a video. Similarly, inserting 

or duplicating a video is performed at the video level [56]. Fig. 

5 (b)-(d) represents an example of duplicating, deleting, and 

inserting frames at the frame level. The frame count increases 

or decreases by modifying the source video in the temporal 

domain. Frame deletion and insertion examples from CSVTED 

are illustrated in Fig. 6. In the original video scene (see Fig. 

6(a)), the frames (113, 114, 115, and 116) are deleted from a 

video shown by blank rectangular boxes as in Fig. 6(b). 

Similarly, the frames-113, 114, 115, and 116 are inserted from 

some other video (see Fig. 6(c)) 

 
Fig. 2 (a) original video (b) spatially forged video (c) temporally forged video (d) spatio-temporal forged video. Width and height are represented 

by x and y respectively
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Fig. 3 Example of copy-move tampering 

 
Fig. 4 Example of splicing tampering 

 

  
(a) (b) 
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(c) (d) 

Fig. 5 Temporally tampered examples (a) original frames (b) frame duplication (c) frame deletion (d) frame insertion 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6 Examples of temporal tampering (a) original video (b) frame deletion (c) frame insertion 
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Table 1a The Comparison of Existing Datasets with The Developed Dataset 

Reference Number of 

videos 

Video length 

in seconds 

Video source Static/moving 

camera 

Type of video forgery Scenario 

Akbari et al. 2023 

[33] 

Original: 250 

Tampered: 250 
11-15s iPhone and android smart phones Moving Object based N/A 

Singla et al, 2023 

[34] 

Original: 60 

Tampered: 966 
N/A iPhone and android smart phone Static & moving 

Frame insertion, 

deletion, duplication, 

cloning, splicing and 

inpainting 

Indoor, 

outdoor 

Sharma and Kanwal, 

2021 [35] 

Original: 200 

Tampered: 200 
06-15s Smartphones of ASUS and VIVO brands  Static & moving Frame duplication 

Indoor, 

outdoor, nature 

Panchal and Shah, 

2020 [36] 

Original: 40 

Tampered: 210 
06-18s SULFA, YouTube Static & moving 

Frame insertion, 

deletion, duplication, 

and smart tampering 

N/A 

Ulutas et al., 

2018[37] 

Original + 

Tampered: 31 
N/A SULFA and different movie scenes Static & moving Frame Duplication N/A 

Le, Almansa et al., 

2017 [38] 
Tampered: 53 N/A N/A Static & moving Video In-painting N/A 

Al-Sanjary, Ahmed et 

al., 2016 [39] 

Original: 7 

Tampered: 26 
14-16s YouTube Static & moving 

Copy–move, swapping 

frames, Splicing 
N/A 

Feng, Xu et al., 2016 

[14] 

Original: 122 

Tampered: 732 
N/A 

YUV files http://trace.eas.asu.edu/yuv/ 

http://media.xiph.org/video/derf/ 

ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/ 

http://202.114.114.212/quick_motion/yuv_download.html 

Static & moving Frame Deletion N/A 

Su, Huang et al., 

2015 [40, 57] 
Total: 20 N/A SONY DSCP10 Static Copy–move N/A 

Chen et al., 2015 [41] Total: 100 11s Commercial Surveillance Cameras Static Object based N/A 

Bestagini, Milani et 

al., 2013 [42] 

Original: 10 

Tampered: 10 
07-19s  

Canon SX220, Nikon S3000 

Fujifilm S2800HD 
Static Copy-move N/A 

Qadir, Yahaya et al., 

2012 [43] 

Original: 166 

Tampered: 5 
04-18s SULFA Dataset Static Copy-move N/A 

Proposed 

CSVTED 

 

Original: 133 

Tampered: 914 

 

6.016 - 

47.67s 

Nikon D5200, IP Cam H.265, OPPO F11, Redmi Note 

4X, HIKVISION outer, HIKVISION Inner, Nikon L29, 

Wi-Fi RoboticV380, Samsung Galaxy A51 

Static 

Splicing, Copy-move, 

Frame insertion, Frame 

deletion, Frame 

duplication 

Morning, 

Noon, 

Evening, 

Night, and Fog 
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Table 1b The Comparison of Existing Datasets with The Developed Dataset 

Dataset Name of Dataset Tampering 

in spatial 

domain 

Tampering 

in temporal 

domain 

Includes all 

temporal 

domain 

tampering 

Available 

in public 

domain 

Number of 

tampered 

videos greater 

than 250 

3-Level benchmark 

dataset based on 

video complexity  

Akbari et al. 2023 [33] - YES NO NO NO NO NO 

Singla et al, 2023 [34] HTVD YES YES YES YES YES NO 

Sharma and Kanwal, 2021 [35] VLFD NO YES NO NO NO NO 

Panchal, Shah et al., 2020 [36] TDTVD NO YES YES YES NO NO 

Ulutas et al., 2018 [37] Test Database NO YES NO YES NO NO 

Le, Almansa et al., 2017 [38] - YES NO NO YES NO NO 

Al-Sanjary, Ahmed et al., 2016 [39] VTD YES YES NO YES NO NO 

Feng, Xu et al., 2016 [14] - NO YES NO NO YES NO 

Chen et al., 2015[41] SYSU-OBJFORG YES NO NO NO NO NO 

Su, Huang et al., 2015 [40] - YES NO NO NO NO NO 

Bestagini, Milani et al., 2013[42] REWIND PROJECT YES YES NO YES NO NO 

Qadir, Yahaya et al., 2012 [43] SULFA YES YES NO NO* NO NO 

Proposed CSVTED CSVTED YES YES YES YES YES YES 

* Given link is not accessible. 
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3 Methodology 

3.1 Basis 

We have constructed a three-level benchmark video tampering 

dataset which has increasing difficulty in detection. The first 

level contains videos with simple backgrounds and a small 

number of moving objects. The second level increases the 

challenge by introducing complications such as complex 

background, lighting conditions, and random movement of 

objects. Moving to the third level intensifies the detection 

challenge by tampering with the complete events, activities or 

objects in a manner that there will be no jump at the tampering 

points. The key considerations are as follows: 

3.1.1 Challenging Videos:  

The benchmark needs to include videos that are likely to be 

challenging for video tampering detection methods. 

Revealing weaknesses in the state-of-the-art helps drive 

research progress. Some frames of videos are presented in Fig. 

7. 

3.1.2 Range of Difficulty: 

The benchmark should include tampered videos covering a 

range of levels of difficulty, to better assess the performance 

of video tampering detection algorithms, i.e., showing when 

they work, and when they fail. Excessively high detection 

accuracy on a simple dataset indicates that performance on 

this dataset has saturated and that the problem has been 

successfully resolved, which might discourage new 

researchers from striving for better models. Conversely, if 

the benchmark is overly challenging, it may discourage users 

and restrict the adoption within the community, again 

discouraging research progress. The first level should be 

attainable by the majority of existing methods. 

3.1.3 Large Number of Videos 

The benchmark dataset on video tampering should be as 

large as possible, having enough variety to be representative. 

Four main factors explain the need for a large dataset. First, 

within the video tampering detection community, where 

deep learning techniques are prevalent, large benchmark 

datasets are essential for training effective models. Second, 

the video forgery dataset should encompass a wide range of 

scenarios, including different resolutions, varying frame 

rates, and lighting conditions, such as morning, noon, 

evening, night, and fog. Third, extensive datasets should 

comprehensively cover all types of video forgeries across 

spatial and temporal domains. Last, a substantial dataset 

motivates authors and researchers to develop, generalize, and 

cross-validate their algorithms using a benchmark that 

encompasses a diverse range of manipulated videos. 

This approach discourages the development of individual
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Fig. 7 Sample frames from CSVTED 

small datasets where algorithms may exhibit exceptional 

performance. 

Due to the unavailability of benchmark datasets, researchers 

often create different small datasets. It is suggested to create a 

dataset sufficiently large that can be treated in its entirety. 

However, striking a balance between dataset size and coverage 

of target domains poses a challenge. The need for a large 

benchmark dataset is emphasized by the argument made earlier. 

Yet, it is also essential that the benchmark encompasses a 

thorough representation of the target domains. To reconcile 

these considerations, a decision was made to include a large 

number of diverse videos for all categories of inter-frame 

tampering. This choice seeks to achieve both a sizable 

benchmark and a demonstration of diverse content, addressing 

the tension between the two factors. 

3.1.4 Gap Between Levels 

The difficulty gap between level n and level n + 1 should not 

be too large since we desire fine granularity of what 

conditions cause algorithms to fail, while also avoiding 

excessive number of levels that could render the benchmark 

unwieldy. The inclusion of three levels in CSVTED provides 

more varied and challenging content. However, there 

remains scope for further levels that cover more complex 

scenes (e.g., multiple people/objects, complex motion, zoom 

in and zoom out). 

3.1.5 Variety of Video Sources, Compression Levels, and 

Resolution 

Video quality, compression, and brightness are some of the 

major challenges in video forensics. Low-resolution footage 

and variations in brightness can mislead the analysis [58]. To 

address these challenges, videos should come from a variety 

of sources to ensure that a variety of cameras, lighting 

conditions, backgrounds, and varied levels of professionalism 

of the photographers are included. We have recorded videos 

using a variety of cameras as well as taking videos from 

different CCTV cameras installed indoors and outdoors. To 

ensure the effectiveness of video tampering detection 

algorithms, they must be capable of handling videos with 

varying resolutions, frame rates, and formats. Therefore, 

during the development of the benchmark, videos with 

different resolutions, frame rates, compression levels, and 

formats are intentionally included. This diverse selection of 

videos serves as a comprehensive testbed for evaluating the 

algorithms' performance across a wide range of real-world 

scenarios.  

3.2 Development of Inter-Frame Tampering Dataset 

During the creation of datasets with inter-frame tampering, the 

straightforward removal of predefined frame numbers from 

each sequence raises questions about whether this action results 

in discernible effects [59]. Rather than selecting random or 

predefined fixed positions to insert, delete, or duplicate selected 

frames, a more sophisticated approach is sought to create a 

tampered video with imperceptible jumps. The primary 

rationale behind the tentative choice of start and end points is 

to perform purposeful duplication, insertion, or deletion of 

certain objects, individuals, or events within the content. 

Subsequently, the algorithm identifies the most suitable clip to 

insert, ensuring optimal alignment with the video's existing 

content for insertion or duplication purposes. In the absence of 

these parameters, an entirely automated system might 

inadvertently select and manipulate the static segments of the 

video, either deleting them or placing that content within them. 

The objective is to identify a set of frames that can be inserted 

into the video in a way that remains undetectable to the naked 

eye. To achieve this, the Structural Similarity Index Measure 

(SSIM) and Optical Flow (OF) are utilized to determine the 

optimal matching positions for the selected video segment. To 

consider the direction of motion of objects in the video, OF aids 

in integrating the tampered frames while maintaining visual 

coherence. The SSIM image similarity measure is a 

combination of three factors computed in local windows: 

correlation, luminance, and contrast [60]. It has shown superior 

performance compared to mean squared error (MSE) and its 

derivate in terms of accuracy [61, 62]. It combines accuracy of 

prediction, simplicity of computation, and intuitiveness of 

design. The framework of the video forgery process is 

illustrated in Fig. 9 and algorithms for frame duplication, frame 
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deletion, and frame insertion tampering are given below. 

 

Algorithm 1: The preparation of frame duplication 

tampered video from a given untampered video 

Input: Frames Fi of untampered video V along with 
tentative start S and endpoint E of frames to be 

duplicated. 

Output: Tampered video with frame duplication 

tampering 

Procedure: 

1. For each frame A from S-r to S+r and B from E-r to E+r, 

where r=20: 

i. For each consecutive frame pair {C, D} of video V, 

such that C,D < A or C,D > B:  

a. Compute the optical flow OFC-1, C , OFC, A , OFA, A+1  

b. Compute the optical flow OFC, D , OFD, B , OFB, B+1 
c. Compute SSIM of colored frames: SSIMC,A and 

SSIMB,D 

d. QCA1 = SSIM (OFC-1, C, OFC, A) + SSIM (OFC, A , 

OFA, A+1) 

e. QBD1 = SSIM (OFC, D, OFD, B) + SSIM (OFD, B , 

OFB, B+1) 

f. QCA = QCA1 + SSIMC,A and QBD = QBD1 +  
SSIMB,D 

g. Min (QCA, QBD) à Q 

ii. Max(Q) à List  

2. Max(List) à Best Match 

3. Frames A and B at Best Matchà Selected Frames 
4. Insert the Selected Frames after Best Match to form a 

tampered video 

 

 

Algorithm 2: The preparation of frame deletion tampered 

video from a given untampered video 

Input: Frames Fi of untampered video V along with 
tentative start S and endpoint E of frames to be 

deleted. 

Output: Tampered video with frame deletion tampering 

Procedure: 

1. For each frame A from S-r to S+r and B from E-r to E+r, 

where r=20: 

a. Compute the optical flow OFA-1, A, OFA, B, OFB, B+1  

b. Compute SSIM of colored frames: SSIMA,B 

c. QAB1 = SSIM (OFA-1, A, OFA, B) + SSIM (OFA, B ,  

OFB, B+1) 

d. QCA = QAB1 + SSIMA,B  
e. QCA à List  

2. Max(List) à Best Match 

3. Frames A and B at Best Matchà Selected Frames 

4. Delete all frames between Selected Frames (excluding A 

and B) to form a tampered video 

 

Algorithm 3: The preparation of frame insertion tampered 

video from a given untampered video 

Input: Frames Fi of untampered video V1 along with 

tentative start S and endpoint E of frames to be 

inserted in video V2 with frames Gi. 
Output: Tampered video with frame insertion tampering) 

Procedure: 

1. For each frame A from S-r to S+r and B from E-r to E+r 

of video V1, where r=20: 

i. For each consecutive frame pair {C, D} of video V2,:  

a. Compute the optical flow OFC-1, C , OFC, A , OFA, A+1  

b. Compute the optical flow OFC, D , OFD, B , OFB, B+1 

c. Compute SSIM of colored frames: SSIMC,A and 
SSIMB,D 

d. QCA1 = SSIM (OFC-1, C, OFC, A) + SSIM (OFC, A , 

OFA, A+1) 

e. QBD1 = SSIM (OFC, D, OFD, B) + SSIM (OFD, B , 

OFB, B+1) 

f. QCA = QCA1 + SSIMC,A and QBD = QBD1 +  SSIMB,D 

g. Min (QCA, QBD) à Q 

ii. Max(Q) à List  

2. Max(List) à Best Match 

3. Frames A and B at Best Matchà Selected Frames 

4. Insert the Selected Frames after Best Match to form a 

tampered video 

3.3 Development of Spatial Tampering Dataset 

For development of the spatial tampering dataset, the initial step 

involves importing videos into Adobe Premiere Pro for 

tampering. The original videos encompass a timeline as per 

video length and a single layer in animation window. The 

animation window facilitates frame-by-frame processing, 

allowing the identification of undesired objects. Upon 

detection, the unwanted objects are eliminated using the Clone 

Stamp tool in Photoshop, which involves copying pixels from 

nearby similar areas and pasting them over the objects. To 

enhance the similarity of the forged area with its surroundings, 

adjustments are made to the brightness and contrast. After its 

completion, the newly tampered area is duplicated and copied 

into a new video layer for further tampering actions. Care is 

taken to ensure that the pasted regions blend seamlessly with 

the original video's appearance on the timeline. Employing a 

combination of subtractive masking and the aforementioned 

processes, After Effects Photoshop CS was utilized to address 

unwanted objects. These methods effectively remove 

undesirable objects while preserving the integrity of the 

remaining regions. Finally, the fully tampered video is exported 

from the tool. For more specific information regarding the 

spatial tampering dataset, please see Table A2. 

3.4 Levels 

Evaluating tampering detection algorithms is challenging due 

to the presence of various confounding factors that can 

influence evaluation measure scores. These factors include 

scene complexity, image resolution and quality, camera 

characteristics, compression artifacts, and frame rate. Ideally, to 

obtain a more precise assessment of an algorithm’s strengths 

and limitations, these factors should be distinguished during 

evaluation. In this study, we focus on one of the most critical 

distinguishing characteristics between strong and weak 

algorithms i.e., video complexity. By categorizing our dataset 

into three distinct complexity levels, we aim to explicitly 

analyze the impact of video complexity on algorithm 

performance independently of the other factors. CSVTED has 
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been partitioned into three benchmark tiers, categorized by the 

degree of tampering quality. Multiple levels also increase its 

usefulness. The multiple levels allow the dataset to present 

multiple levels of challenge, which in turn allows researchers to 

focus on an individual level of CSVTED. That is, if level 3 is 

perceived as too difficult, then the researcher could restrict 

testing to the lower levels.  

A proficient form of tampering remains imperceptible to the 

naked eye and exhibits minimal abrupt changes. The quality of 

tampering is measured using the histograms of the SSIM maps 

across each of the three channels (RGB) at the start and end of 

tampering. A high quality tampering is characterized by high 

SSIM scores between the original and tampered frames across 

the point of tampering in a video. Various versions of SSIM, 

such as contrast-weighted SSIM, (CTW-SSIM), saliency-

weighted SSIM (SW-SSIM), distortion-weighted SSIM (DW-

SSIM), multiscale SSIM (MS-SSIM), and information content-

weighted SSIM (IW-SSIM) have been employed by various 

researchers [61, 63]. We devise W2F for the purpose of 

detecting small changes that exist over extensive regions. In this 

context W corresponds to weight/intensity and F represents the 

frequency in histograms of the SSIM maps. W2F also helps in 

dividing videos into different levels based on tampering quality 

and can be calculated as follows: 

 

!!" = $	 "#$	('!"#$"%&	,'()*)

*+,-./,(	∑ '+	
!"#$"%,
+-& 1	∑ '.	

/%&
.-()*0& )

&,         (1) 

 

where ‘start’ and ‘end’ represent the start and end of a 

tampered region in a video and V is given below. 

 

'	 = ()*+,-*((∑ 0 122
!	

2 ) )3,4,5
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where 

0, 1	 = 45678-+,9 :;;<=6.7("8 , "819)> 	3,4,5
	 , ∀5 = 1,…B            

               (3) 

Here SSIMMap gives the SSIM value for each pixel 

corresponding to frames Fi and Fi+1 across each channel.  

An example illustrating the quality of tampering is 

demonstrated in Fig. 8. Fig. 8(a) represents the EOP tampering 

performed by [36] where Frame-251 to Frame-380 are the 

tampered frames. This tampering is easily discernible due to the 

abrupt change in content at the start and end (i.e., Frame-251 

and Frame-380) of the tampering points, resulting in low 

tampering quality value of 0.8701. Whereas, Fig. 8(b) 

demonstrates the tampering performed by the proposed method. 

Frame-319 to Frame-614 represent the tampered portion where 

tampering is not detectable at the start or end of the tampering 

region, resulting in a high tampering quality value of 0.9543. 

 

     
Frame 248 Frame 249 Frame 250 Frame 251 Frame 252 

 
 
 
- - - - - - - - - - 

    
 Frame 379 Frame 380 Frame 381 Frame 382 

(a) 

     
Frame 316 Frame 317 Frame 318 Frame 319 Frame 320 

 
 
 
- - - - - - - - -     

    
 Frame 613 Frame 614 Frame 615 Frame 616 

(b) 
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Fig. 8 EOP based frame duplication tampering is performed by (a) the existing method (b) the proposed method 

 

 

During tampering, the complexity of the video is a significant 

factor. The complexity of the video includes its content, visual 

elements, and motion, which can make it more challenging to 

detect alterations. Complex scenes with a lot of details, fast 

movement of objects, or varying lighting conditions can 

provide more chances for tampering to go unnoticed. An 

attempt is made to measure video complexity, inspired by the 

image complexity measure [64]. Therefore, complexity 

estimate will be: 

59,-*	C89DE*F57G	(<H) = 	 36:_<--=-

>=?7-,@@8=A_3.B8=
,          (4) 

resulting from jpg compression of the image. 

The quality factors are selected heuristically with Level 1 

(W2F³0.95) indicating high-quality tampering, Level 2 (0.5£ 

W2F<0.95) indicating medium quality and Level 3 (W2F<0.5) 

indicating tampering of low quality. Tables 2-4 provide details 

of EOP based duplication, deletion, and insertion tampering 

while Table 5 offers a concise overview of the three-level 

benchmark dataset based on the tampering quality and video 

complexity i.e., High Complexity (HC) if value³0.6, Medium 

Complexity (MC) if 0.45£value<0.6, Low Complexity (LC) if 

value<0.45). 

 

 

Table 2 Tampering Quality and Complexity of EOP Based 

Duplication Tampering  
Video Name Tampering 

Quality 
Complexity 

Aquarium 01.mp4 1.0043 0.4572 

CCTV Moving Bikes.mp4 0.9760 0.4994 

Laces_knot.mp4 0.7565 0.5123 

Man_Crossing.mp4 0.9318 0.5154 

Original.avi 1.0074 0.6138 

Picture.AVI 1.0142 0.5387 

Professor Hands 01.mp4 0.9087 0.6211 

Professor Hands 02.mp4 0.9300 0.6813 

Real Varifocal Bullet.avi 0.9507 0.4850 

RedBuilding 01.mp4 0.8968 0.4957 

RedBuilding 02.mp4 0.9231 0.465 

RedBuilding 03.mp4 0.9196 0.4654 

Traffic.MOV 0.9420 0.5636 

Train Track 01.mp4 1.0172 0.4555 

UTurn 02.mp4 0.9070 0.5891 

Water 02.mp4 0.9282 0.5300 

Water Glass.mp4 0.8955 0.5605 

Waterfall 02.mp4 0.9967 0.3976 

Waterfall 03.mp4 0.6728 0.3817 

Train Track 02.mp4 1.0096 0.4541 

 

Table 3 Tampering Quality and Complexity of EOP Based 

Deletion Tampering  

Video Name Tampering 
Quality 

Complexity 

Aquarium 01.mp4 0.6504 0.4540 

Bicycle 02.mp4 0.9597 0.4654 

CCTV Blue Bus.mp4 0.8386 0.4336 

CCTV Delivery boy.mp4 0.8686 0.4866 

CCTV Moving Bikes.mp4 0.7224 0.5005 

Laces_knot.mp4 0.7663 0.5124 

Man_Crossing.mp4 0.8424 0.5150 

Picture.AVI 1.0207 0.5375 

Professor Hands 01.mp4 0.9096 0.6209 

Professor Hands 02.mp4 0.8963 0.6862 

RedBuilding 01.mp4 0.7630 0.5024 

Road Crossing 03.mp4 0.5338 0.5062 

Traffic.MOV 0.9684 0.5699 

Train Track 01.mp4 0.9266 0.4540 

Turn 01.mp4 0.3350 0.5913 

UTurn 03.mp4 0.7972 0.5914 

Water 02.mp4 0.8495 0.5256 

Water Glass.mp4 0.9369 0.6168 

Waterfall 02.mp4 0.7541 0.4035 

Waterfall 03.mp4 0.7514 0.3806 

 

Table 4 Tampering Quality and Complexity of EOP Based 

Insertion Tampering  

Video Name Tampering 
Quality 

Complexity 

Aquarium03.mp4 0.6197 0.4519 

Bicycle Lane 01a.mp4 0.9103 0.4679 

Bicycle Lane 01b.mp4 0.9132 0.4667 

Bus Stop 03.mp4 0.6498 0.4247 

CCTV Moving Cycle.mp4 0.8875 0.5007 

CCTV Red Car 02.mp4 0.9130 0.4503 

Laces_knot.mp4 0.7210 0.5136 

Lake Side 03.mp4 0.2318 0.4399 

Man_Crossing.mp4 0.7126 0.5143 

Park 03.mp4 0.1230 0.4598 

Pigeons 01.mp4 0.3072 0.6055 

Queen Street 02.mp4 0.2999 0.5112 

RedBuilding 01.mp4 0.4425 0.4937 

RedBuilding 02.mp4 0.6736 0.4754 

Street view 04.mp4 0.8845 0.3911 

Traffic 01.mp4 0.5048 0.4739 

Train Track 05.mp4 0.8939 0.4543 

UTurn 03.mp4 0.8269 0.5881 

Uni Road 01.mp4 0.7633 0.4637 

Water 06.mp4 0.9201 0.5282 

 

Table 5 Detail of CSVTED, High Complexity (HC), Medium Complexity (MC), Low Complexity (LC) 
 

Tampering Type No. of Videos Levels 
Number of Videos with 

complexity level 
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Frames 
Duplication 

311 

Level 01: 42 (HC: 02 MC: 35 LC: 05 ) 

Level 02: 219 (HC: 40 MC: 123 LC: 56) 

Level 03: 50 (HC: 08 MC: 27 LC: 15 ) 

Frames Insertion 313 

Level 01: 14 (HC: 0 MC:14 LC: 0) 

Level 02: 116 (HC: 03 MC: 91 LC: 22) 

Level 03: 183 (HC:24 MC: 101 LC: 58) 

Frames Deletion 280 

Level 01: 32 (HC: 06 MC:20 LC: 06 ) 

Level 02: 195 (HC: 30 MC: 102 LC:63 ) 

Level 03: 53 (HC: 02 MC: 36 LC: 15) 

 
 

 
Fig. 9 The framework of the video forgery process 

 

 
Fig. 10 Deducted ground truth 

 

4 Ground Truth 

The purpose of providing the ground truth of the dataset is to 

provide detailed information and explanation concerning each 

type of video forgery in the developed dataset, which then 

enables video forensic researchers to quantitatively evaluate the 
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performance of their algorithms. Different types of tools are 

used for the video forgery in the dataset developed in this paper. 

It contains the largest number of forged videos compared to 

existing datasets of video tampering, with a duration from 

6.0160s to 47.67s. Along with tampered videos, information 

about a set of tampered frames is also provided in the dataset 

that is collected while modifying the original videos. There are 

two types of footage, i.e., untampered and tampered in each 

shot, which contains the video name, duration, total number of 

frames, forged frames in each video, and the percentage of 

tampering. Researchers can use this information to evaluate the 

accuracy of their methods. The calculation of the forged 

percentage depends on the size of the forged area in each frame. 

In spatial tampering, the percentage of the forged area in a 

frame is calculated by resolution of the frame. For example, if 

the frame consists of 10×10 pixels and a 3×4 area is forged, then 

12% of the frame size is tampered. In temporal tampering, the 

ratio of manipulated frames and the number of total frames in 

the original video is calculated to compute the percentage of the 

tampered frames of a video. Fig. 10 represents an 8.5% 

tampering. 

Furthermore, CSVTED contains 1047 videos (both original 

and forged), 133 of which are not modified to evaluate the 

ability of algorithms to recognize the original videos, which are 

shown in Table A1. The remaining 914 videos are divided into 

five tampering categories: (1) frame insertion, (2) frame 

deletion; (3) frame duplication, (4) copy-move; and (5) 

splicing. In the ground truth, complete information related to 

the original and forged videos is provided. 

An important contribution is the 3 levels, and the use of 

quantitative measures of complexity & quality to confirm the 

appropriateness of the videos assigned to each tier. Together, 

the development of innovative video forgery datasets and the 

quantification of video quality and complexity represent key 

pillars in advancing the field of multimedia forensics. These 

metrics not only enable accurate quantification of video fidelity 

but also guide to develop more effective forgery detection 

algorithms by capturing subtle alterations indicative of 

tampering. 

5 Evaluation 

Inter-frame tampering detection is conducted using existing 

algorithms across three different datasets. Two of these 

datasets, SULFA+VIRAT+LASIESTA+IVY and TDTVD, are 

sourced from previous research [36, 65], while the third dataset, 

CSVTED, is the proposed dataset of this study. 

The tampering detection capability of the selected algorithms 

is assessed through quantitative evaluation and visualized on 

randomly selected tampered video samples, as illustrated in Fig. 

11. It represents that the detection algorithm proposed in [65] is 

unable to identify tampering on well prepared realistic 

tampered video samples. Additionally, the performance 

comparison of two algorithms, measured in terms of detection 

accuracy, is presented in Fig. 12. The detection algorithm 

proposed in [65] achieves an accuracy of 99%, 77.27% 

on SULFA+VIRAT+LASIESTA+IVY and TDTVD 

respectively, which is high as compared to the detection 

accuracy on proposed CSVTED. The results also indirectly 

indicate that the proposed CSVTED contains more 

diverse and challenging scenarios of video tampering. 

 

(a) Frame insertion from 150 to 160- Undetected (b) Frame insertion from 150 to 160- Detected 
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(c) Frame insertion from 43 to 75- Detected (d) Frame insertion from 43 to 75- Detected 

(e) Frame Deletion at 39 - Undetected (f) Frame Deletion at 39 - Undetected 

(g) Frame Deletion at 150 - Undetected (h) Frame Deletion at 150 - Detected 
 

Fig. 11 Inter-frame tampering detection results on random sample taken from proposed CSVTED. Subfigures (a, c, e, g), and (b, d, f, h) 

represents the detection results obtained using [65, 66], respectively 
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Fig. 12 Inter-frame tampering detection results of [65] on SULFA+VIRAT+LASIESTA+IVY dataset, TDTVD dataset, and proposed CSVTED
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6 Conclusion 

A three level benchmark dataset of tampered videos CSVTED 

is comprehensively presented in this paper for the forensic 

analysis of videos. An important contribution is the 3 levels, 

and the use of quantitative measures of complexity & quality to 

confirm the appropriateness of the videos assigned to each tier. 

Analyzing the quality of tampering provides insights into the 

characteristics of different types of manipulations, such as 

frame insertion, deletion, duplication or EOP based tampering. 

Understanding these characteristics can guide the development 

of more targeted detection methods tailored to specific types of 

tampering. All 1047 videos (133 original and 914 tampered 

videos) in CSVTED are recorded using different digital 

cameras. To the best of our knowledge, this is the largest 

tampered video library among the existing video forgery 

datasets. The primary purpose of developing and designing 

CSVTED is to standardize the existing methods of video 

forgery detection, including frame insertion, deletion, 

duplication, splicing, and copy-move. The frame rate of videos 

in the dataset varies between 12.50 to 30.0174 fps and the 

duration of videos from 6.016s to 47.67s. Different cameras are 

used to record the videos in different realistic situations and the 

developed dataset also contains videos from smartphones and 

other digital devices. Extensive experiments have been 

conducted to assess the performance of the proposed dataset. 

Furthermore, a comparison with widely used tampered video 

datasets, as presented in the paper, highlights that the proposed 

dataset is the largest freely accessible high-definition dataset to 

date This dataset will be available publicly. Detailed ground 

truth information is also given for each developed tampered 

video for authentication of tampering detection algorithms. 

This library will be very helpful for researchers in evaluating 

their algorithms. 
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APPENDIX 

Table A1 Summary of Original Videos 

No. Video Name Duration Resolution 
Total 

Frames 

Frame 

Rate 
Camera Model Scenario 

1.  Aquarium 01 20 1920×1080 600 30 Samsung Galaxy A51 Noon 

2.  Aquarium 02 14 1920×1080 420 30 Samsung Galaxy A51 Noon 

3.  Aquarium 03 20 1920×1080 600 30 Samsung Galaxy A51 Morning 

4.  Bicycle 01 24.66 1920×1080 740 30 Samsung Galaxy A51 Morning 

5.  Bicycle 02 20 1920×1080 600 30 Samsung Galaxy A51 Morning 

6.  Bicycle 03 33.33 1920×1080 1000 30 Samsung Galaxy A51 Morning 

7.  Bicycle Lane 01 20 1920×1080 600 30 Samsung Galaxy A51 Morning 

8.  Bicycle Lane 02 28 1920×1080 840 30 Samsung Galaxy A51 Morning 

9.  Black Car 7.9675 1280×720 239 29.9967 Nikkon L29 Evening 

10.  Bus Stop 01 19 1920×1080 570 30 Samsung Galaxy A51 Noon 

11.  Bus Stop 02 16 1920×1080 480 30 Samsung Galaxy A51 Noon 

12.  Bus Stop 03 20 1920×1080 600 30 Samsung Galaxy A51 Noon 

13.  Bus Stop 04 13 1920×1080 390 30 Samsung Galaxy A51 Morning 

14.  Calling Person(M) 7.918 1280×720 198 25.0253 IP Cam H.265 Morning 

15.  Canal View 7.28 1920×1080 215 29.5324 Oppo F11 Morning 

16.  CCTV Bikes in Fog 10.1 1280×720 150 14.881 
HIKVISION Turbo 

HD Outer 
Fog 

17.  CCTV Blue Bus 7 1920×1080 210 30 Samsung Galaxy A51 Noon 

18.  
CCTV Customer 

Footage(E) 
6.896 1280×720 102 14.8256 

HIKVISION Turbo 

HD Inner 
Evening 

19.  
CCTV Customer 

Shoes(M) 
7.291 1280×720 109 14.9725 

HIKVISION Turbo 

HD Inner 
Morning 

20.  CCTV Delivery boy 28 1920×1080 840 30 Samsung Galaxy A51 Noon 

21.  
CCTV Moving 

Bike(E) 
10.402 1280×720 155 14.9039 

HIKVISION Turbo 

HD Outer 
Evening 

22.  
CCTV Moving 

Bikes 
26.33 1920×1080 790 30 Samsung Galaxy A51 Noon 

23.  
CCTV Moving 

Cycle 
20 1920×1080 600 30 Samsung Galaxy A51 Noon 

24.  
CCTV Moving 

Dogs 
27 1920×1080 810 30 Samsung Galaxy A51 Noon 

25.  
CCTV Moving 

person(N) 
8.173 1280×720 122 14.951 

HIKVISION Turbo 

HD Inner 
Night 

26.  
CCTV Moving 

Vehicles(M) 
11.099 1280×720 166 14.985 

HIKVISION Turbo 

HD Outer 
Morning 

27.  
CCTV Still 

Bike(M) 
06.1227 1280×720 91 14.80 

HIKVISION Turbo 

HD Outer 
Morning 

28.  CCTV Red Car 01 8.66 1920×1080 260 30 Samsung Galaxy A51 Noon 

29.  CCTV Red Car 02 11 1920×1080 330 30 Samsung Galaxy A51 Noon 

30.  CCTV RoadTurn 02 29.33 1920×1080 880 30 Samsung Galaxy A51 Noon 

31.  CCTV Scootie 02 33.33 1920×1080 1000 30 Samsung Galaxy A51 Noon 

32.  
CCTV Street 

Footage(N) 
7.894 1280×720 117 14.8477 

HIKVISION Turbo 

HD Outer 
Night 

33.  
CCTV Walking 

Persons 
47.67 1920×1080 1430 30 Samsung Galaxy A51 Noon 
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34.  Children 8.18 640×480 132 16.2592 
Wifi Robotic Camera 

V380 
Morning 

35.  CPU 6.0160 1280×720 73 12.37 Redmi Note 4x Night 

36.  
Customer 

Dealing(E) 
11.679 1280×720 292 25.024 IP Cam H.265 Evening 

37.  Door Opening(N) 10.031 1280×720 251 25.022 IP Cam H.265 Night 

38.  Flying Birds 8.398 1280×720 250 29.7682 Redmi Note 4x Morning 

39.  Light Bulb 8.8747 1280×720 263 29.7688 Redmi Note 4x Morning 

40.  Highway 02 18 1920×1080 540 30 Samsung Galaxy A51 Evening 

41.  Highway 03 24 1920×1080 720 30 Samsung Galaxy A51 Evening 

42.  Laces_knot 18.97 1920×1080 569 30 Samsung Galaxy A51 Noon 

43.  Lake Side 01 13.67 1920×1080 410 30 Samsung Galaxy A51 Noon 

44.  Lake Side 02 14.33 1920×1080 430 30 Samsung Galaxy A51 Noon 

45.  Lake Side 03 14.67 1920×1080 440 30 Samsung Galaxy A51 Noon 

46.  Lake Side 04 25 1920×1080 750 30 Samsung Galaxy A51 Noon 

47.  Lake View 01 20 1920×1080 600 30 Samsung Galaxy A51 Noon 

48.  Lake View 02 43.33 1920×1080 1300 30 Samsung Galaxy A51 Noon 

49.  Lake View 03 43.5 1920×1080 1305 30 Samsung Galaxy A51 Noon 

50.  Man_Crossing 22 1920×1080 660 30 Samsung Galaxy A51 Noon 

51.  Moving Fish 01 23.33 1920×1080 700 30 Samsung Galaxy A51 Noon 

52.  Moving Fish 02 7.03 1920×1080 211 30 Samsung Galaxy A51 Noon 

53.  Moving Fish 03 11 1920×1080 330 30 Samsung Galaxy A51 Noon 

54.  Moving Fish 04 12 1920×1080 360 30 Samsung Galaxy A51 Noon 

55.  Moving Trees 01 16.67 1920×1080 500 30 Samsung Galaxy A51 Noon 

56.  Moving Vehicle 9.989 1920×1080 295 29.5342 Oppo F11 Evening 

57.  Moving Vehicles 01 7.67 1920×1080 230 30 Samsung Galaxy A51 Noon 

58.  Moving Vehicles 02 6.67 1920×1080 200 30 Samsung Galaxy A51 Noon 

59.  Name Plate 7.7227 1920×1080 227 29.5895 Oppo F11 Evening 

60.  No- Plate 8.7467 1280×720 260 30 Nikkon L29 Evening 

61.  Office View 8.08 640×480 202 25.1238 
Wifi Robotic Camera 

V380 
Night 

62.  Oil Tanker 9.1733 1920×1080 228 25 Nikkon D5200 Morning 

63.  Park 01 40 1920×1080 1200 30 Samsung Galaxy A51 Noon 

64.  Park 02 21 1920×1080 630 30 Samsung Galaxy A51 Noon 

65.  Park 03 18 1920×1080 540 30 Samsung Galaxy A51 Noon 

66.  Park 04 15 1920×1080 450 30 Samsung Galaxy A51 Noon 

67.  Passing man 01 10.03 1920×1080 301 30 Samsung Galaxy A51 Noon 

68.  Passing man 02 8.87 1920×1080 266 30 Samsung Galaxy A51 Noon 

69.  Pegions 01 17.5 1920×1080 525 30 Samsung Galaxy A51 Noon 

70.  Pegions 02 15 1920×1080 450 30 Samsung Galaxy A51 Noon 

71.  Pegions 03 11.67 1920×1080 350 30 Samsung Galaxy A51 Noon 

72.  Picture 8.8615 1280×720 266 30.0174 Nikkon L29 Night 

73.  Plants 8.28 1920×1080 207 25 Nikkon D5200 Evening 

74.  Professor Hands 01 23.33 1920×1080 700 30 Samsung Galaxy A51 Noon 

75.  Professor Hands 02 16.83 1920×1080 505 30 Samsung Galaxy A51 Noon 

76.  Queen Street 01 14 1920×1080 420 30 Samsung Galaxy A51 Morning 

77.  Queen Street 02 10.2 1920×1080 306 30 Samsung Galaxy A51 Morning 

78.  RedBuilding 01 26 1920×1080 780 30 Samsung Galaxy A51 Morning 

79.  RedBuilding 02 14 1920×1080 420 30 Samsung Galaxy A51 Morning 
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80.  RedBuilding 03 12.9 1920×1080 387 30 Samsung Galaxy A51 Morning 

81.  Road Crossing 01 41.67 1920×1080 1250 30 Samsung Galaxy A51 Morning 

82.  Road Crossing 02 41.67 1920×1080 1250 30 Samsung Galaxy A51 Morning 

83.  Road Crossing 03 25 1920×1080 750 30 Samsung Galaxy A51 Morning 

84.  Road Repairing 01 28.2 1920×1080 846 30 Samsung Galaxy A51 Noon 

85.  Road Repairing 02 33.4 1920×1080 1002 30 Samsung Galaxy A51 Noon 

86.  Road Repairing 04 11.33 1920×1080 340 30 Samsung Galaxy A51 Noon 

87.  School Painting 10.24 1920×1080 255 25 Nikkon D5200 Morning 

88.  Scootie 01 43.33 1920×1080 1300 30 Samsung Galaxy A51 Noon 

89.  Shop Banners 8.043 1280×720 109 13.5711 Redmi Note 4x Night 

90.  Signal 01 12.4 1920×1080 372 30 Samsung Galaxy A51 Noon 

91.  Signal 02 13 1920×1080 390 30 Samsung Galaxy A51 Morning 

92.  Signal 03 10.4 1920×1080 312 30 Samsung Galaxy A51 Morning 

93.  Signal 04 13.33 1920×1080 400 30 Samsung Galaxy A51 Morning 

94.  Signal 05 14.167 1920×1080 425 30 Samsung Galaxy A51 Morning 

95.  Slides 7.339 1280×720 218 29.7554 Redmi Note 4x Evening 

96.  Standing Person 8.2133 1280×720 245 29.9976 Nikkon L29 Morning 

97.  Street Night View 01 25 1920×1080 750 30 Samsung Galaxy A51 Night 

98.  Street Night View 02 28 1920×1080 840 30 Samsung Galaxy A51 Night 

99.  Street Night View 03 11.367 1920×1080 341 30 Samsung Galaxy A51 Night 

100.  Street view 01 27 1920×1080 810 30 Samsung Galaxy A51 Evening 

101.  Street view 02 16.2 1920×1080 486 30 Samsung Galaxy A51 Evening 

102.  Street view 03 10.67 1920×1080 320 30 Samsung Galaxy A51 Evening 

103.  Street view 04 22 1920×1080 660 30 Samsung Galaxy A51 Evening 

104.  Street View(N) 7.178 1920×1080 212 29.535 Oppo F11 Night 

105.  Swings 03 29.5 1920×1080 885 30 Samsung Galaxy A51 Noon 

106.  Swings 04 8.867 1920×1080 266 30 Samsung Galaxy A51 Noon 

107.  Traffic 7.56 1920×1080 189 25 Nikkon D5200 Night 

108.  Traffic 01 7.4 1920×1080 222 30 Samsung Galaxy A51 Morning 

109.  Traffic 02 27 1920×1080 810 30 Samsung Galaxy A51 Morning 

110.  Traffic 03 13 1920×1080 390 30 Samsung Galaxy A51 Morning 

111.  Traffic 04 14.67 1920×1080 440 30 Samsung Galaxy A51 Morning 

112.  Train Track 01 20 1920×1080 600 30 Samsung Galaxy A51 Morning 

113.  Train Track 02 34 1920×1080 1020 30 Samsung Galaxy A51 Morning 

114.  Train Track 03 18 1920×1080 540 30 Samsung Galaxy A51 Morning 

115.  Train Track 04 28 1920×1080 840 30 Samsung Galaxy A51 Morning 

116.  Train Track 05 14 1920×1080 420 30 Samsung Galaxy A51 Morning 

117.  Turn 01 25.8 1920×1080 774 30 Samsung Galaxy A51 Morning 

118.  Turn 02 17 1920×1080 510 30 Samsung Galaxy A51 Morning 

119.  Turn 03 19.33 1920×1080 580 30 Samsung Galaxy A51 Morning 

120.  Uni Road 01 21 1920×1080 630 30 Samsung Galaxy A51 Noon 

121.  Uni Road 03 23.33 1920×1080 700 30 Samsung Galaxy A51 Noon 

122.  Uni Road 04 13.33 1920×1080 400 30 Samsung Galaxy A51 Noon 

123.  UTurn 01 23.33 1920×1080 700 30 Samsung Galaxy A51 Noon 

124.  UTurn 02 17 1920×1080 510 30 Samsung Galaxy A51 Noon 

125.  UTurn 03 9.367 1920×1080 281 30 Samsung Galaxy A51 Noon 

126.  Water 01 10.7 1920×1080 321 30 Samsung Galaxy A51 Morning 

127.  Water 02 11.67 1920×1080 350 30 Samsung Galaxy A51 Morning 
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128.  Water 06 11.1 1920×1080 333 30 Samsung Galaxy A51 Morning 

129.  Water Glass 7.761 640×480 193 24.9968 
Wifi Robotic Camera 

V380 
Evening 

130.  Waterfall 02 47 1920×1080 1410 30 Samsung Galaxy A51 Evening 

131.  Waterfall 03 30 1920×1080 900 30 Samsung Galaxy A51 Evening 

132.  Whiteboard 6.7627 1920×1080 168 25 Nikkon D5200 Night 

133.  White Car 10.32 1920×1080 258 25 Nikkon D5200 Evening 
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Table A2 Video Tampered in Spatial Domain 

No. Video Name Duration 
Total 

Frames 
Camera Model Type of Video Resolution 

Frame 

Rate 

No. of Frame 

Tamper 

Tampered 

Area 

Tampering 

Percentage(%) 

1 Oil Tanker 09.1733 228 Nikkon D5200 Copy-Move 1920×1080 25.00 156-194 720×324 11.25 

2 Light Bulb 08.8747 264 Redmi Note 4x Copy-Move 1280×720 29.97 1-15 104×128 
01.44 

 

3 Name Plate 07.7227 229 Oppo F11 Copy-Move 1920×1080 29.97 1-20 132×276 
01.76 

 

5 School Painting 10.2400 255 Nikkon D5200 Copy-Move 1920×1080 25 All Frames 255×255 03.14 

4 No-Plate 08.7467 260 Nikkon L29 Splicing 1280×720 30.00 30-45 226×124 03.04 

6 Standing Person 08.2133 245 Nikkon L29 Splicing 1280×720 29.9976 61-70 560×250 15.19 

7 CPU 06.0160 74 Redmi Note 4x Splicing 1280×720 12.37 38-74 254×152 04.19 

8 CCTV Still Bike(M) 06.1227 91 
HIKVISION 

Turbo HD Outer 
Splicing 1280×720 14.80 1-182 268×254 07.39 

9 Plants 8.28 207 Nikkon D5200 Splicing 1920×1080 25 All Frames 207×207 02.07 

10 Whiteboard 6.7627 168 Nikkon D5200 Splicing 1920×1080 25.00 100-150 168×168 01.36 
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