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Abstract—We propose a novel method based on higher order
Conditional Random Field (CRF) for reconstructing surface
models from multi-view data sets. This method is automatic
and robust to inevitable scanning noise and registration errors
involved in the stages of data acquisition and registration.
By incorporating the information within the input data sets
into the energy function more sufficiently than existing meth-
ods, it more effectively captures spatial relations between 3D
points, making the reconstructed surface both topologically
and geometrically consistent with the data sources. We employ
the state-of-the-art belief propagation algorithm to infer this
higher order CRF while utilizing the sparseness of the CRF
labeling to reduce the computational complexity. Experiments
show that the proposed approach provides improved surface
reconstruction.

Keywords-Conditional Random Field; Surface Reconstruc-
tion; Integration; Multi-View Data Sets;

I. INTRODUCTION

Two types of method are currently popular for 3D surface
reconstruction from multi-view data sets. One is multi-view
stereo where the input usually comprises 2D photographs.
The other acquires range data (2.5D or 3D point clouds)
via laser scanning [2]. Both methods depend on initially
accurately registering the input views into a common coor-
dinate system. In the stereo method, alignment information
is usually obtained by calibration techniques, which lead to
accurate registration, but are not automatic. Many automatic
registration techniques have been developed for laser range
data [14], [15]. Ultimately, however, registration errors are
inevitable. Such errors have a significant impact on surface
reconstruction from multi-view data sets, especially when
registration errors are accumulated.

Constructing a consistent surface (again as a point cloud)
from such multi-view data sets is difficult: approaches
often depend on the tricky problems of accurately finding
the transformations linking the data sets, and optimally
integrating them. Here, we specifically address integration
of the data, meaning (i) effective reduction of redundant
information in areas where the data sets overlap, while (ii)
sufficiently preserving data describing surface details. Inte-
gration is a difficult task due to scanning noise and outliers,
registration errors, and unreliable data measurements.

This paper focuses on robust (with respect to poor regis-
tration, in particular) and automatic integration of the most
general multi-view data—multiple 3D unstructured point
clouds. Most input data used for 3D surface reconstruction
can be converted to point clouds (but not always vice versa),
allowing the proposed method to address a wide range of
applications.

II. PREVIOUS WORK

Existing methods for surface reconstruction from multi-
view data sets can be analysed in terms of the different
integration methods employed (rather than other steps, e.g.
triangulation). Doing so leads to four categories: volumetric,
mesh-based, clustering-based and Bayesian approaches.

Volumetric methods [5], [20] integrate data by merg-
ing them in each voxel using a data fusion algorithm.
Most multi-view stereo-based reconstruction techniques (e.g.
those in [7]) employ this approach to produce a complete
3D model after depth estimation via stereo. These methods
require highly accurate alignment information (estimated via
manually-assisted camera calibration, or given as known
input in e.g. the Middlebury database [7]), and generally
do not permit the multi-view data to be unstructured point
clouds. Thus, in many cases the volumetric method works
poorly or is inapplicable [28], [29].

Mesh-based methods [19], [22] detect overlapping regions
between triangular meshes. Then, the most accurate triangles
in the overlapping regions are kept, and all remaining
triangles are reconnected. This is computationally expensive
as triangles outnumber the sample points and are more
geometrically complex. Some mesh-based methods thus just
use a 2D triangulation for efficiency, but the projection from
3D to 2D leads to ambiguities if it is not injective. Such
methods fail for highly curved regions where no unique
projection plane exists. Furthermore, such strategies usually
cannot deal with 3D unstructured point clouds as they rely
on the 2D lattice structure of the input data.

Clustering-based methods [28], [29] employ classical
clustering methods to minimise an objective function based
on Euclidean distances. They are generally superior to
previous methods, being more robust to scanning noise
and registration errors. However, Euclidean distances are
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Figure 1. Local topology has a significant effect on the point clustering
in non-flat areas

used to allocate points to the closest cluster centroid, and
furthermore do not consider local surface topology and
neighbourhood consistency. This leads to severe errors in
highly curved areas. For instance, in Fig. 1, point A is
closest to B so they would be clustered together, whereas A
should be clustered with C or D to preserve correct surface
topology and geometry.

Bayesian methods [4], [9], [8], [17], particularly those
based on Markov random field (MRF), are very promis-
ing [17]. However, existing methods have two weaknesses:
(i) energy functions based only upon pairwise MRF are
not adequate to capture 3D information, and (ii) for those
employing a high-order prior to better capture 3D long-
range information, they do not infer the MRFs using state-
of-the-art techniques such as message passing because such
inferences are usually intractable as the computational com-
plexity is exponential to the number of the order.

To overcome these weaknesses, we propose a method
based on Conditional Random Field (CRF). Section 3 gives
a background about CRF in 3D applications which has
mainly been used to cope with 2D problems. The following
three sections describe the proposed method in detail. In
Section 4, we first produce a graph by point shifting and
triangulation. And then, in Section 5, we give the details on
how a higher-order CRF model is configured on this graph.
Section 6 discusses the belief propagation (BP) algorithm
used to infer this CRF, subject to the maximum a posteriori
(MAP) constraint. Experimental results are given in Section
7, and conclusions in Section 8.

III. CRF IN FULLY 3D

Unlike techniques [3], [26], [27] which essentially operate
on 2D projections, or 2.5D slices, and at the same time
assume lattice-based input data, our method does not require
such assumption and is applicable to the most general multi-
view data sets—multiple 3D unstructured point clouds. For
instance, in [27], a set of 2D range images with lattice struc-
ture is used as input, where the image domain is strictly a
rectangle in R2. However, due to large registration errors and
other noise, this assumption is often not satisfied in practice.
Fig. 2 shows an example. In Fig. 2, an original range image
(shown as green points and used as the reference image here)
without any transformation does have a regular 2D image
lattice structure in its image plane. But another range image

Figure 2. Projection on the image plane of an original range image (the
green points) and a registered range image (the red points).

(shown in red) registered to the same coordinate system has
lost such lattice structure due to the registration. For multi-
view range images, this issue is more severe due to error
accumulation as we map all input range images into the
space of the reference image.

When used in fully 3D, as opposed to 2.5D slices or a
lattice-based 3D voxel space, pairwise CRF/MRF typically
cannot model geometrical features of interest, as it only
captures point-pair constraints. For example, an important
geometrical feature for most 3D data—the normal vector of
a mesh facet—is determined by three neighbouring points.
Thus, we use a higher order CRF model to represent
complicated spatial interactions.

Our approach also differs in that no assumption is made
about the distribution of noise. Methods employing proba-
bilistic models for surface reconstruction [17] often assume
that the noise is independent and identically-distributed
Gaussian. However, in practice, registration errors are the
major source of noise, and these are not Gaussian but have
a distribution with a long tail [15].

Fig. 3 illustrates the workflow of the proposed CRF-based
surface reconstruction scheme from multi-view 3D unstruc-
tured point clouds. Please note that the main contribution
of this paper is the novel integration method composed of
three steps: graph construction, CRF modeling and MAP
inference using BP.

IV. CRF GRAPH CONSTRUCTION

In a CRF/MRF graph, the nodes are usually pixels or
voxels. For example, in [3], [6], [26], [24], the graphs are 2D
or 3D lattices. Here, we do not have the benefit of a lattice.
We also note that simply finding the k-nearest neighbours of
each point does not suffice for finding neighbours, as these
are based only on Euclidean distance, which fails to take into
account surface topology, and the presence of registration
errors.

We use a four-step scheme to construct an CRF graph G
from multiple unstructured point clouds.

1) Overlapping area detection Given a set of consecu-
tive point clouds P1, P2, . . . , Pm, we employ the pairwise
registration method from [14] to obtain a transform H12

mapping P1 into the coordinate system of P2. To integrate
the transformed point cloud P ′1 and the reference point cloud
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Figure 3. The workflow of the proposed method

P2, the overlapping and non-overlapping areas of each have
to be accurately and efficiently detected. To do so, a point in
one point cloud is deemed to belong to the overlapping area
if its distance to the nearest point in the other point cloud
(its corresponding point) is within a threshold; otherwise it
belongs to the non-overlapping area. A k-D tree is used for
speed of search. The threshold is set to 3R, where R is the
scanning resolution of the input data.

2) Two-view integration After detecting the overlap, we
set S1 and S2 to the points in the non-overlapping areas
belonging to P ′1 and P2 respectively, and initialise the set P
of nodes in G as:

P = Snon−overlap = S1 + S2 (1)

Next, to bring the corresponding points closer to each other,
each point P in both overlapping areas is shifted along its
normal N towards its corresponding point P∗ by half of its
distance to P∗:

P→ P + 0.5d · N, d = ∆P · N, ∆P = P∗ − P (2)

A sphere with radius r = 1.5R is defined, centered at
each such shifted point of the reference point cloud P2. If
other points fall into this sphere, then their original unshifted
points are retrieved. The average position of these unshifted
points is then computed and returned to form the point set
Soverlap. Then the point set P is updated as:

P = Snon−overlap + Soverlap (3)

This strategy (i) compensates for pairwise registration errors
as corresponding points are closer to each other, (ii) does not
alter the tangential spread of the overlap, as points are moved
along their normals, and (iii) leaves the surface topology
unaffected, as again, the shift is along the normal.

3) Multi-view integration We now consider the third
input point cloud P3. We map the current P into the
coordinate system of P3 using the transform H23. The
overlap between P ′ transformed from P and the current
reference point cloud P3 is then detected. We now update
P based on Eq. (3). In this update, Snon−overlap contains
the points from P ′ and P3 in non-overlapping areas and
Soverlap is produced by the two-view integration strategy.
We iteratively apply this updating scheme to all input point
clouds.

4) Triangulation Finally, we triangulate P to construct
the graph G. G is a mesh and we use the notation V to
denotes the vertices in G for clarity albeit V = P . We
define two types of neighbourhood systems. The two-point
neighbourhood E is the set of edges connecting vertices. The
three-point neighbourhood F is the set of vertex trifolds and
each of them is composed of the three vertices in the same
triangular facet. This approach has advantages over defining
neighbourhoods using the k-nearest neighbours method: it
reflects the surface topology and does not need an estimate
for k.

V. HIGHER ORDER CRF MODELING

CRF is a probabilistic framework where no effort is
wasted on modeling the observations and arbitrary attributes
of the observation data may be captured by the model, with-
out the modeler having to worry about how these attributes
are related. We define a label assignment x = {xi,∀i ∈ V}
to all vertices as a realisation of a family of random variables
defined on G. We also define a random observation field
y = {yi,∀i ∈ V}. We define the label set L = {1, . . . ,m}
as the set of serial numbers of input point clouds. Thus, we
have ∀xi ∈ L and ∀yi ∈ L. A CRF is defined as below:

p(x|y) =
1
Z

exp
{
−
∑
c∈C

(λc · ψc(xc|yc)
}
, (4)

where Z is a normalising constant. The factors ψc are
potential functions of the random variables xc within a
clique c ∈ C. It can be seen that a CRF is actually an MRF
globally conditioned on the observed data. Mathematically, it
is equal to an MRF where all prior terms are conditioned on
the observed data. Therefore, Eq. (4) is still in the form of a
Gibbs distribution due to the Markovian property of the CRF.
The weighting parameter λc is usually estimated through
learning. An efficient learning can be fairly sophisticated
(e.g. [1]). In this work, we just tune λc empirically. On
one hand, unlike many 2D vision tasks, in our 3D surface
reconstruction problem, we do not have a large and proper
dataset for training. On the other hand, because our CRF
only has three terms, it is not difficult to find two proper
weighting parameters by adjusting them in tests, leading to
an acceptable result. Furthermore, this allows us to make a
fair comparison with other aforementioned existing methods
on performance and computational time.
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The Gibbs energy of the proposed CRF is expressed as

E(x) = − log p(x|y)− logZ =
∑
c∈C

λc · ψc(xc|yc)

=
∑
i∈V

ψi(xi|yi) +
∑

(i,j)∈E

λ1 · ψij(xi, xj |yi, yj)

+
∑

(i,j,k)∈F

λ2 · ψijk(xi, xj , xk|yi, yj , yk). (5)

Our aim is to find the maximum a posteriori (MAP) label
assignment x∗

x∗ = arg max
x∈L

p(x|y) = arg min
x∈L

E(x). (6)

A. One-point potential

The one-point potential ψi(xi|yi) is computed by

ψi(xi|yi) =
∑

yi∈L\xi

min(Di(xi, yi), A) (7)

where A is a truncation parameter, and

Di(xi, yi) = ‖Ci(xi)− Ci(yi)‖ (8)

is a distance function; Ci(l), l ∈ L denotes i’s closest
matching point in the lth input point cloud. In this way, we
convert the estimation for the likelihood potential of different
labels at point i into the measurement of the distances
between i’s closest points in input point clouds with different
labels. A eliminates the effects of input point clouds which
do not cover the area around i. It can be seen that the real
observed data for the node i in the graph is actually the set
of its closest points in different point clouds.

B. Two-point potential

The two-point potential ψij(xi, xj |yi, yj) for two neigh-
bouring points i and j takes the form of the Potts model [6]:

ψij(xi, xj |yi, yj) =
{

0 xi = xj ,
gij(xi, xj |yi, yj) otherwise, (9)

where gij(xi, xj |yi, yj) is estimated by

gij(xi, xj |yi, yj) =
Di(xi, xj) +Dj(xi, xj)
ψi(xi|yi) + ψj(xj |yj)

. (10)

We thus hope that the neighbouring points i and j can be
labeled consistently, which means in the output point cloud,
they are replaced with two neighbouring points from the
same point cloud. In this way, the local surface details can
be well preserved. If they are labeled with two different point
cloud serial numbers xi and xj respectively, we hope that
the two closest points (in the two point clouds) of i (or j)
can be close to each other, subject to the distances between
the closest points (in different point clouds) of i (or j). It
also tends to maintain correct local surface details.

The one-point potential ψi and the two-point potential ψij

constitute a typical pairwise CRF model. This model often
achieves good results in low-level 2D vision applications.

However, for 3D problems, richer spatial information is
needed to more accurately represent local surface details
such as local surface geometry and topology. Pairwise
CRF/MRF cannot capture such rich statistics, and typically
lead to an oversmooth reconstructed surface (see Fig. 4).

C. Higher order potential

Thus we propose a higher order CRF by introducing a
three-point potential. This idea is inspired by the nature
that a very important property of a 3D triangular mesh,
directly related to local surface geometry and topology–the
normal of each facet, is determined by three vertices jointly.
That the normals within the output point cloud are correctly
consistent with some reliable input data is vital to produce
geometrically realistic surface for the integration.

The normal of a triangular face defined by the three
adjacent points i, j and k is given by

N =
(Pj − Pi)× (Pk − Pi)
‖(Pj − Pi)× (Pk − Pi)‖

, (11)

where Pi denotes the 3D coordinates of point i.
The three-point potential for three neighbouring points i,

j and k is defined as

ψijk(xi,xj,xk|yi,yj,yk)=
∥∥N(xi,xj,xk)−N(yi,yj,yk)

∥∥ (12)

where

N(xi,xj,xk)=
(Cj(xj)−Ci(xi))×(Ck(xk)−Ci(xi))
‖(Cj(xj)−Ci(xi))×(Ck(xk)−Ci(xi))‖

(13)

and N(yi, yj , yk) is the mean of a set of observed normals
{N(yi, yj , yk), {yi, yj , yk} ∈ L} in which each N(yi, yj , yk)
satisfies N(yi, yj , yk) 6= 0. Here 0 is the zero vector and
N(yi, yj , yk) is calculated by

N(yi, yj , yk)=

{
(Cj(y)−Ci(y))×(Ck(y)−Ci(y))
‖(Cj(y)−Ci(y))×(Ck(y)−Ci(y))‖ if ∗,

0 otherwise,
(14)

where ∗ denotes the condition

‖Pi − Ci(y)‖ < 3R, and ‖Pj − Cj(y)‖ < 3R, and
‖Pk − Ck(y)‖ < 3R, and y = yi = yj = yk, y ∈ L.

By constraining the distance between a vertex in the graph
and its closest point in some input point cloud, the condition
∗ guarantees that only those input point clouds which cover
the area around the points i, j and k have contributions to the
calculation of the mean. We also require that y = yi = yj =
yk because the normal defined by three points from different
point clouds is a meaningless observation and essentially
unreliable due to registration errors. Thus the three-point
potential encourage the labeling to be consistent with valid
and reliable observed normals.
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VI. ENERGY MINIMISATION VIA BELIEF PROPAGATION

Several methods exist for minimising posterior energy.
The comparative study in [23] recommends two approaches,
graph-cuts (GC) [11] and message passing, e.g. belief
propagation (BP) [6], as efficient and powerful. Since our
energy function is neither metric nor semi-metric, GC is not
applicable.

We employ BP to find a MAP solution. BP operates by
passing messages between points in the graph G. Because
the two-point belief is independent of the three-point belief,
each iteration uses two types of message updates.

The first type of message mji(xi) is sent from a point j
to its neighbour i in a two-point clique:

mji(xi) = min
xj

(
ψi + λ1ψij +

∑
(h,j)∈E\(i,j)

mhj(xj)
)

(15)

Please note that in Eq. (15) and the following mathemat-
ical reasoning, we use a set of simplified notations:

ψi = ψi(xi|yj), bi = bi(xi), ψij = ψij(xi, xj |yi, yj)
ψijk = ψijk(xi, xj , xk|yi, yj , yk)
bkji = bkji(xi, xj , xk|yi, yj , yk)
Ekji = Ekji(xi, xj , xk|yi, yj , yk)

The other type of message sent to i is written as mkji(xi)
with {j, k} ∈ Fp(i), where Fp(i) denotes the point pair
set in which each point pair (j, k) forms a three-point
clique with i and (i, j, k) ∈ F . Let bi denote the one-point
belief and bkji denote the three-point belief. Then energies
associated with the three-point cliques can be define as

Ekji = ψi + ψj + ψk + λ2ψijk, (16)

and the Gibbs energy [25] is

E=
∑
ijk

∑
xixjxk

e−bkji(Ekji−bjki)−
∑

(qi−1)
∑
xi

e−bi(ψi−bi)

where qi is the number of points neighbouring point i.
Therefore the Lagrangian multipliers that enforce the nor-
malisation constraints are:

rkji :
∑

xixjxk

e−bkji − 1 = 0, ri :
∑
xi

ebi − 1 = 0.

The multiplier that enforces the max-marginalisation con-
straints is

λkji(xi) : e−bi = max
xlxkxj

e−bkji .

The Lagrangian L is the summation of the G and the
multiplier terms. To maximise L, we set

∂L

∂e−bkji
= 0, and hence

−bkji =Ekji +1+λkji(xi)+λikj(xj)+λjik(xk)+rkji,

∂L

∂e−bi
= 0, and hence

−bi = −ψi +
1

qi − 1

∑
(j,k)∈Fp(i)

λkji(xi) + r′i,

where r′i is the rearranged constant.
By change of variable, defining

λkji(xi) = −
∑

(h,g)∈Fp(i)\(k,j)

mhgi(xi), (17)

we obtain the following two equations

bi = ψi +
∑

(k,j)∈Fp(i)

mkji(xi),

bkji = ψi + ψj + ψk + λ2ψijk +
∑

(h,g)∈Fp(i)\(k,j)

mhgi(xi)

+
∑

(h,g)∈Fp(j)\(i,k)

mhgj(xj) +
∑

(h,g)∈Fp(k)\(j,i)

mhgk(xk).

Due to the min-sum constraint (arising from the MAP
constraint): bi = minxkxj

bkji, we have

mkji(xi)=min
xkxj

(
ψj + ψk + λ2ψijk +

∑
(h,g)∈Fp(j)\(i,k)

mhgj(xj)

+
∑

(h,g)∈Fp(k)\(i,j)

mhgk(xk)
)
. (18)

All entries in the messages are initialised to zero. We
update the two kinds of message in each iteration, and after
T iterations, a belief vector is computed for each point:

Bi(xi) = ψi +
∑

(i,j)∈E

mji(xi) +
∑

(j,k)∈Fp(i)

mkji(xi). (19)

The label x∗i that minimises Bi(xi) individually at each
point is selected.

Computing mkji is extremely costly: O(m3), as the
message vector has m elements which are computed by
minimising Eq. (18) over 2 variables each of which has
m possible states. Similarly, the cost for computing mji

is O(m2). If the graph G has n vertices and the we
run T iterations, the total cost will be O(nm2(m + 1)T ).
Clearly, such an algorithm is intractable if both n and m
are large. Most existing efficient higher-order CRF/MRF
optimisation methods are just applicable to specific families
of energy functions or specific (small) cliques such as the Pn

model [10], quadratic functions [18] truncated functions [12]
and 2×2 cliques [13], etc. None of these methods work for
the complicated structure of our energy function.

As noted, n must be large enough to sufficiently represent
surface details, so we use a point-to-cloud labeling frame-
work to bypass this problem. We label each point with a
point cloud serial number and make use of the uniqueness of
closest point in one point cloud (cloud-to-point) to finally de-
termine the point-to-point label assignment. In essence, our
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Figure 4. Rows: Reconstruction results of 18 ‘Bird’ images, 18 ‘Frog’ images, 18 ‘Lobster’ images, 20 ‘Teletubby’ images, 18 ‘Duck’ images and 8
‘Dinosaur’ images. From left to right: volumetric method [5], mesh-based method [22], FCM clustering [29], k-means clustering [28], pairwise MRF [17],
higher-order CRF

point-to-cloud-to-point labeling is a coarse-to-fine scheme
which greatly speeds up the algorithm.

Also, we utilize the sparseness of the CRF to further
reduce the costs. In [13], the authors discretized the label
set for three of the four member pixels into h bins and
only considered those h3 different combinations, decreasing
the complexity for one message update to O(mh3). Here,
when we update mji and mkji, we only consider the h
labels corresponding to the point clouds covering the area
around the vertex i, subject to the one-point potential defined
by Eq. (7). The two-point and three-point cliques become

‘sparse’ (i.e. many labelings are unlikely) and the cost for
the inference is O(nh2(h+ 1)T ). For a data sets containing
18 point clouds (m = 18), h is usually equal to 6.

VII. EXPERIMENTAL RESULTS

We performed all experiments using multi-view registered
range images. They are actually 3D unstructured point
clouds due to the loss of the original lattice structure (see
Subsection 3.1) and doing so also allows direct comparison
with other methods using the same datasets. We used data
from the well-known OSU/SAMPL Range Image Database.
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Figure 5. Meshes for integrated surfaces produced using, from left to right: volumetric method, mesh-based method, higher-order CRF.

The ‘Bird’, ‘Frog’, ‘Lobster’, ‘Teletubby’, ‘Duck’ and ‘Di-
nosaur’ image sets have 156210, 181866, 176806, 105932,
268398 and 62558 points respectively. We employed the
algorithm in [14] to perform pairwise registration. Average
registration error is about 0.3mm for the first five data sets—
approximately half of the scanning resolution and that of the
‘Dinosaur’ sets is as high as 0.6mm.

In our tests, the truncation parameter A was set to 4 and
the weighting parameters λ1 and λ2 were set to 3 and 1 re-
spectively. Note that it is not possible to obtain real test data
with ground truth, a common problem in assessing automatic
multi-view integration problems as perfect registration is not
available.

We have thus evaluated our method by comparison to
competing methods. Fig. 4 show integration results produced
by existing methods and our higher-order CRF method. They
demonstrate that, of the methods compared, our method
is more robust to registration errors and gives the most
geometrically realistic surface models.

As ground truth data are not available, it is difficult
to define applicable metrics for accuracy and complete-
ness [21], to give a quantitative comparison. Note that either
accuracy or integration error [28] (the average of squared
distances between the output points and their closest points
in the input range images) just measures the global accuracy
of the reconstruction. Clearly, in terms of local accuracy,
our method performs best because a local patch of the
reconstructed surface is directly taken from a certain input
point cloud. The integration error proposed in [28] is not
applicable in this work as it always is 0 for our method
obviously. Instead, we propose a new method to measure the
integration error. For each point in the output point cloud,
we compute the average of the distances between it and a
set of points in the input point clouds whose distances to it
are smaller than a threshold set as the scanning resolution
R here. If no distance is smaller than R, we directly set
the average as R. Then the integration error of an output
point cloud is the average of these per-point averages. Also,
we have adopted some widely used measurement parameters
which do not require the ground truth. Firstly, we measured
the distribution of interior angles of triangles [28], to help

assess the quality of the final mesh—ideally, interior angles
should be close to 60◦. Secondly, we computed the average
distortion metric [29] for each triangle, defined as its area
divided by the sum of the squares of the lengths of its
edges and then normalised by a factor 2

√
3. The value of

the distortion metric lies in [0,1]. The higher the average
distortion metric value, the higher the quality of a surface.
Finally we measured the computation time. Figs. 5 and 6
show that our new method performs best in terms of the
integration error, the distribution of interior angles, and
distortion metric, but it is slower than k-means clustering and
pairwise CRF methods. All experiments used a Pentium IV
2.4GHz computer. Note that we do not use a segmentation
scheme, thus saving time compared to those methods which
perform segmentation before integration [29].

VIII. CONCLUSION AND FUTURE WORK

We have given a higher-order CRF model for surface
reconstruction from multi-view data sets. The CRF is config-
ured on a specific graph which can handle 3D unstructured
point clouds. We infer the CRF via belief propagation, and
produce geometrically realistic surface models with well
preserved local details automatically and robustly.

However, a couple of works can still be done to improve
the quality of integration in the future. We found that not
all the normals are reliable due to scanning noise and
registration errors. In particular, for the points from the
registered image, their normals are more likely to be inac-
curate. Therefore, we are looking for a more robust property
attached to the local surface around the point of interest. A
promising method is to develop a feature descriptor bounded
at each point rather than only the feature points (e.g., the
likes of 2.5D SIFT [16]).

Another approach focuses on reducing the accumulated
registration errors. A pairwise registration can produce one
equation subject to the transform matrix. If we have more
locally registered pairs than the total number of images in the
sequence, the system of equations will be overdetermined.
Solving this linear system of equations in a least squares
sense will produce a set of global registrations with minimal
deviation from the set of calculated pairwise registrations.
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Figure 6. Performance measures for integration algorithms. From left to right: integration error, distortion metric, computational time

Thus we plan to develop a scheme that can make a good
balance between the extra cost caused by more pairwise
registrations and the reduction of error accumulation.

Also, future work will focus on improving the speed.
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