Chapter 6

Copy-Move Forgery Detection Using Cellular
Automata

Dijana Tralic, Paul L. Rosin, Xianfang Sun, and Sonja Grgic

Abstract. Thanks to the availability of many sophisticated image processing tools,
digital image forgery is prevalent nowadays. One of the common methods is copy-
move forgery (CMF), where part of an image is copied to another location in the
same image. Detection of copy-move forgery has been widely researched recently,
and many different solutions have been proposed. This chapter introduces a differ-
ent approach, in which cellular automata (CA) are applied to the task of copy-move
forgery detection (CMFD). The basic idea is to learn, for each overlapping block in
the image, a set of CA rules that represents the intensity changes within that block.
These rules are then used as features for the detection of copied blocks.

A problem arises when applying CA to image processing. If pixel intensities are
used as cell states, then the large range of image intensities leads to a combinato-
rial explosion in the number of possible rules, making it difficult to both learn and
represent rules efficiently. We describe a solution in which a reduced description of
a neighbourhood is accomplished by a proper binary representation of the image
based on local binary patterns (LBPs).

In the case of plain copy-move forgery, a simple 1D CA are sufficient for de-
tection purposes, but any transformation of the copied area (for example, rotation
and scaling) introduces large changes into the binary representation of the image,
resulting in the need for more complicated forms of the CA’s neighbourhood. How-
ever, the main issue of CMFD using CA rules is its sensitivity to processing after
the copy-move operation applied to hide traces of the forgery, for example, addition
of noise. Nevertheless, in some cases the CA can effectively cope with such forg-
eries if image pre-processing (for example, simple image filtering) is applied before
forgery detection.

Dijana Tralic - Sonja Grgic

Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, 10000 Zagreb

e-mail: {Dijana.Tralic,Sonja.Grgic}@fer.hr

Paul L. Rosin - Xianfang Sun
School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA
e-mail: {Paul.Rosin,Xianfang.Sun}@cs.cardiff.ac.uk

P. Rosin et al. (eds.), Cellular Automata in Image Processing and Geometry, 105
Emergence, Complexity and Computation 10,
DOI: 10.1007/978-3-319-06431-4 6, © Springer International Publishing Switzerland 2014

106 D. Tralic et al.

6.1 Introduction

Nowadays analogue images are completely replaced by digital images thanks to
the simplicity of their acquisition, processing and storage. Many sophisticated dig-
ital image processing tools allow modification (tampering/manipulation) of digital
image content to be done without any visible traces, leading to many forged im-
ages used in everyday life. Different approaches for revealing the manipulation of
the content of digital image have been developed recently, with the aim to ensure
the credibility of digital images. However, there is still no methodology to verify the
integrity of digital images in an automatic manner. Therefore, digital image foren-
sics [7] is an emerging research field that includes methods for determining the
authenticity and the origin of digital images.

Image authentication methods can generally be classified into two main cate-
gories [6]: active and passive methods. Active methods involve embedding of some
information into an image in the archiving process, such as digital watermarks [13]
and signatures. Tampering of images usually destroys or modifies that embedded in-
formation, so any kind of content manipulation can be easily detected by analyzing
information extracted from image. One active approach for digital image forensics
is described in Chapter 7, where cellular automata are used as a tool for generating
digital signatures.

Passive methods on the other hand involve checking the integrity of an image by
analysis of image statistics and properties (for example, sensor noise [8], illumina-
tion conditions [10], etc.). Detection methods in this category are usually aimed at
solving some special kind of tampering attempts so there is no unique technique for
detection of all types of forgeries.

One common type of forgery attack is a copy-move forgery (CMF) [20] in which
part of an image is copied and moved to a new location. CMF is often used because
of the simplicity of performing that type of forgery. Detection of CMF can be done
using different techniques, but the most basic method is based on dividing the image
into overlapping blocks and calculating some set of features from every block. Those
features are then used to determine similarity between blocks in image. Different
feature sets were proposed for this purpose, such as average or intensity [14] or
frequency coefficients [9], etc.

In this chapter, a new approach for copy-move forgery detection based on cellu-
lar automata (CA) is presented [23]. The basic idea is to use cellular automata to
learn a set of rules for each sub-image block in an image. Those rules can serve as
features for determining the similarity of blocks. A problem that arises when us-
ing CA with grayscale images is the large number of possible rules, which leads
to an even larger number of possible combinations of those rules. A reduced rep-
resentation can be accomplished by binary representation of images in a proper
manner using techniques based on local binary patterns (LBP’s) [16]. The problem
of plain copy-move detection can be solved by applying simple 1D CA, but detec-
tion of different types of CMFs (for example, rotation or scaling of copied area) re-
quires defining more complicated types of neighbours for CA. Also, post-processing

6 Copy-Move Forgery Detection Using Cellular Automata 107

methods such as JPEG compression or the addition of noise can reduce the accuracy
of the detection algorithm.

6.2 Copy-Move Forgery (CMF)

One of the most common used digital image forgery methods is a copy-move forgery
(CMF) [20], where part of an image is copied and moved to another location in the
same image. The purpose of this kind of forgery is usually to hide or to add some
content or object in the image. Since the forged region came from the same image,
it is impossible to use some statistical properties (for example, camera noise or
illumination conditions) for forgery detection because they are very well matched
within the image. Taking the forged region from the same image also simplifies the
forgery process because it is easier to fit the forged region into the image due to the
similarity of properties of the copied region and the rest of image.

Plain copy-move forgery is a type of forgery where the copied area is translated
to a new location in the same image without changing any properties of the copied
area. Therefore, in that kind of forgery, there are two completely identical areas in
the image which makes plain copy-move forgery detection quite easy to implement.

More complicated types of forgery can be done by transformation of a copied
region before translation to a new location. Some possible transformations of copied
regions are:

1. scaling — enlarging or shrinking of a copied area by an equal scale factor in all
directions,

2. rotation — circular moving of a copied area around a centre of rotation by a arbi-
trary angle,

3. distortion — enlarging or shrinking of a copied area by a scale factor that is not
the same in all directions,

4. combination — application of more than one transformation of a copied area.

The result of applying any of these transformations is a change in the proper-
ties of the copied area. Therefore, searching for forgeries is not as simple as in the
case of plain CMF. Figure 6.1 shows some examples of CMFs from the CoMoFoD
database [24].

Hiding of forgery traces can be done by applying some post-processing methods.
It is possible to apply a post-processing method on the whole image after forgery,
but sometimes post-processing is applied only on copied region borders to assure
better fitting with the new background. The most common post-processing methods
used in digital image forgery are JPEG compression, addition of noise and image
blurring (Fig. 6.2).

6.3 Copy-Move Forgery Detection (CMFD)

Detection of copy-move forgery has been widely researched [9]. Developed meth-
ods for copy-move forgery detection can be categorized as keypoint-based and

108 D. Tralic et al.

b Rotation - rotation angle: 90 degrees (061_F)

¢ Scaling - scaling factor: 0.7 (098_F)

Fig. 6.1 Examples of CMF (left: original image, middle: regions with copy-move version,
right: forged image). The image identifiers in brackets are provided for comparison with
results in Tab. 6.1.

block-based methods. Keypoint-based methods include scanning of the whole im-
age with the aim of finding points of interest (for example, point with high entropy).
Those points are then analyzed to select only point with the same properties and
detect similar areas in the image. Some popular examples of keypoint-based meth-
ods are SIFT (Scale-invariant feature transform) [1] and SURF (Speeded Up Robust
Features) [21].

Block-based methods involve dividing an image into small overlapping blocks as
a first step of the algorithm. A set of features is then calculated for every defined
block, and those features are used for detection of similar blocks in the image. Dif-
ferent sets of features, such as DCT (Discrete Cosine Transform) [9] / DWT (Dis-
crete Wavelet Transform) [2] coefficients, PCA (Principal Component Analysis)

6 Copy-Move Forgery Detection Using Cellular Automata 109

a JPEG compression - quality factor: 30 (005_F)

¢ Noise adding - zero mean, variance: 0.001 (032_F)

Fig. 6.2 Examples of postprocessing methods applied on whole image (left: original image,
right: post-processed image)

[17] or Zernike moments [19], have been proposed for use in block-based meth-
ods, but the use of cellular automata for this purpose is a completely new approach.

6.3.1 Block-Based Method for CMFD

Generally all block-based copy move forgery detection approaches follow similar
steps (Fig. 6.3 illustrates each step):

110 D. Tralic et al.

1. First the image is pre-processed because most algorithms require only the lu-
minance component information, and so it is necessary to convert images to
grayscale space. Sometimes a Gaussian pyramid decomposition is also applied
(for example, in [25]).

2. After pre-processing, an image is divided into overlapping blocks by sliding a
predefined window by one pixel through the whole image. The size of the win-
dow is usually small (for example, 8 x8, 16x16, 24 x24 pixels) to assure de-
tection of areas of all sizes. Dividing an NxM image into overlapping blocks
of size bxb leads to a very large number of different blocks according to equa-
tion (6.1) (for illustration: dividing a 512x512 image using a 8 x8 window pro-
duces 255,025 different blocks).

No=(N—b+1)x (M—b+1) 6.1)

3. For every defined block a feature vector f is calculated by same method. The
feature vector is used as a reduced description of a block because it contains
information about shape, texture, orientation or some other properties of a block.
The size of the feature vector depends on the selected method for its calculation.

4. Applying brute-force search to find similar blocks by mutual comparison of all
pairs of blocks requires a lot of computational time and resources. Therefore,
all feature vectors are stored in one matrix that is sorted by some algorithm (for
example, lexicography sorting) to accomplish grouping of similar blocks. Be-
side sorting, some other methods for finding similar blocks can be applied, for
example, kd-tree.

5. Neighbor feature vectors in the sorted matrix are than compared by analyzing the
similarity between them, using the Euclidean distances between feature vector
elements according to equation (6.2). All pairs of blocks with distance v higher
than some predefined threshold T are removed from the set of possible results.
Selection of threshold 7 depends on the type of forgery, for example, it can be
set to zero for plain CMF, or it has to be adjusted to some higher values if any
transformations/post-processing methods are applied. After this step only similar
pairs of blocks are kept as possible results.

size(f)
V= (f1() = f2(0))? (6.2)

i=1

6. The set of possible results is analyzed again and Euclidean distance d is calcu-
lated between coordinates of blocks of every pair according to equation (6.3).
All pairs with distance d smaller than predefined threshold 7, are removed from
the set of possible results. Threshold 7} is usually defined according to selected
block size (for example, kx b, where k is some small positive constant) to remove
all close blocks (it can be assumed that a block is moved more than 7, pixels).
After this step only similar pairs of blocks that are not close to each other are
kept as possible matches.

6 Copy-Move Forgery Detection Using Cellular Automata 111

EABEENE
- T -
@ﬂ@mmgﬁ

Fig. 6.3 Block-based copy-move forgery detection: 1. preprocessing; 2. overlapping blocks;
3. feature vectors; 4. sorting; 5. detection of similar blocks, 6. detection of CMF

d= \/(Xfl —xp2)* + (V1 —yp2)? (6.3)

7. The detection image is generated by marking all remaining pairs of blocks. Some
simple post-processing can be applied to remove small, falsely detected areas in
the image (for example, morphological opening).

6.3.2 Possible Feature Vectors

Defining an appropriate feature set is a common problem in block-based methods,
because features have to yield similar results for duplicated blocks despite the trans-
formation of the copied area or applied post-processing methods. Different sets of
feature vectors for block-based CMFD have been proposed [5].

One of the first approaches used quantized frequency coefficients of the Discrete
Cosine Transform (DCT) [9] as features. Thanks to the properties of DCT, it gives
good results in cases of added noise, compression, and retouching. A similar ap-
proach is presented by Bashar et al. [2], where the coefficients of a Discrete Wavelet
Transform (DWT) using Haar-Wavelets was introduced. Bayram et al. [3] recom-
mended using the Fourier-Mellin Transform (FMT) for generating feature vectors.

Popescu and Farid [17] computed Principal Component Analysis (PCA) to re-
duce the feature set size. This representation is robust to compression and adding
of noise, but any transformation of the copied area (for example, scaling, rotation)
would affect the eigenvalues. Later this approach is expanded by dividing every
block into 4 sub-blocks using the Discrete Wavelet Transform (DWT) [12]. A sim-
ilar approach to [17] was proposed in [11], where Singular Value Decomposition
(SVD) was used.

Luo et al. [15] introduced features based on the intensity of pixels in blocks. The
first three values of the feature vectors included the average of the red, blue and
green color components. The rest of the feature vector was defined by dividing of
the block into 2 equal parts in 4 directions and calculating the ratio of each part’s
intensity with respect to the intensity of the whole block. Bravo-Solorio et al. [4]
used the same three components as in the previous method with the addition of the
entropy of a block. A similar approach is presented in [14] where every block was

112 D. Tralic et al.

divided into 4 sub-blocks and the feature vector is defined as a ratio of intensities of
those sub-blocks. In the circle approach, proposed in [25], the image is first reduced
in dimension by Gaussian pyramid decomposition and every block is divided into
four concentric circles. The feature vector is calculated as a mean of the image pixel
value in each circular region of every block.

Wang et al. [26] introduced the first four Hu moments as features. The image
is first reduced in dimension by Gaussian pyramid decomposition, and the Hu mo-
ments are computed from the overlapping blocks of the low-frequency image. The
use of Zernike moments of degree 5 as features was proposed by Ryu et al. [19].

6.4 CA for CMF Detection

Cellular automata can be described as a discrete system that contains a regular grid
of cells. Each cell can be in only one finite-state determined by the previous states
of a surrounding neighbourhood of cells (reference on CA). The use of cellular
automata for image processing is interesting because of the property that very simple
rules can result in very complex behaviour. Detection of CMF by CA is based on
the fact that similar areas in an image should produce similar rules.

The basic approach can be described as a variation of block-based methods for
CMFD with a new set of feature vectors. In this approach, the feature vector for
each block is obtained using a CA to generate a set of rules that describe the texture
of that block [23]. This process can be described as a selection of a subset of rules
from all possible rules.

Applying a CA on a greyscale image results in the combinatorial explosion in the
number of possible rules, because a whole range of image intensities (256 levels)
is used as cell states. For example, using a neighbourhood of 8 pixels for learning
rules, leads to 2568 possible rules. Moreover, the large number of possible rules
leads to an even larger number of possible subsets of those rules, which makes it
difficult to learn and represent rules efficiently. A reduced description of a neigh-
bourhood can be accomplished by a proper binary representation of image. In that
case only two values (0 and 1) are used as cells states leading to a compact descrip-
tion. For comparison, a neighbourhood of 8 pixels on binary image generates only
28 possible rules. It is clear that a binary representation of image is more suitable
for this purpose, but the problem that arises is to find a proper binary representation.
In the following section, we describe several possible solutions.

Another important part of CMFD with CA is the proper selection of neighbour-
hood. Some tasks can be solved by using simple 1D neighbourhood, but in cases of
some transformations, complicated versions of neighbourhood have to be applied.

6.4.1 Representation of Image in Binary

Applying a CA to a grayscale image requires taking the whole range of intensities as
a cell states which leads to a large number of possible rules, and a large number of
possible subsets of rules. One way to avoid that is to represent the grayscale image

6 Copy-Move Forgery Detection Using Cellular Automata 113

as a binary image, but this must be done in a proper manner that ensures that enough
information is kept for further analysis.

6.4.1.1 Image Thresholding

A grayscale image can be represented in binary by simple thresholding of pixel
intensity values g; using a predefined threshold 7} according to equation (6.4).

. la giztb
8i= {0, gi <t ©4)

Threshold T}, has to be selected according to image content with the aim of pre-
serving sufficient information about image textures so enough descriptive informa-
tion is kept for further analysis. Figure 6.4 shows a few examples of grayscale image
thresholding using different thresholds. The use of smaller values (for example, 50)
results in not enough details in the image, as can be seen in Fig. 6.4b. Larger val-
ues for thresholding (Fig. 6.4d) leads to loss of some details in the image. For this
example, a good threshold value would be around 70, as can be seen in Fig. 6.4c.
Even if using mean or median values for image thresholding appears to be an intu-
itive solution, global use of those values can lead to unreliable results (see Fig. 6.4e
and 6.4f) where most information of image content and texture is lost.

The use of binary images obtained by simple thresholding of grayscale images as
an input into CA is not the best solution for CMFD. A problem arises since applying
the same (global) threshold to all pixels values results in many homogeneous regions
in the binary image, especially in areas with smooth textures. A possible solution for
this problem is to generate more binary images with different thresholds, so-called
threshold decomposition [18], and use all of them as an input into the algorithm.
The final result is then accomplished by combining (summing) the results from all
binary images. Even if this approach can lead to good results, better results can be
accomplished by different binary representation.

6.4.1.2 Image Binary Planes

Another way of representing a greyscale image in a binary way is to convert all pixel
values into binary codes and use each plane of bits as one binary image. The result
of this process is 8 different binary images, as can be seen in Fig. 6.5). Naturally, the
use of the least significant bits will produce an image similar to noise (Fig. 6.5b),
but that effect drops with moving to more significant bits (Fig. 6.5f— 6.51). Binary
images obtained by using more significant bit planes are more similar to images
accomplished by thresholding of the greyscale image, especially the image for the
most significant bit (Fig. 6.51). According to that, the use of those images would
lead to the same problem as in the case when thresholding is used. To avoid that,
images obtained by using lower bits should be used. Even if they look like noise
(especially Fig. 6.5b— 6.5d), they contain a detailed description of texture. Also, the
lack of uniform white or black areas on those images leads to fewer falsely detected
areas.

114 D. Tralic et al.

PAULANER

5 LW
& g
P‘.’\'ULVA NER ’

3 -

T i
- ?fi,’
& %, 2«
PAULANER b
3 -~
L

PAULANER
Clnag i

a Grayscale image b Threshold: 50 ¢ Threshold: 70

d Threshold: 100 e Threshold: mean value f Threshold: median value

Fig. 6.4 Thresholding of a grayscale image

The main problem with this approach is noise sensitivity because adding even a
small amount of noise significantly affects the lower bits. In order to reduce noise
sensitivity, it is possible to use a binary image obtained by some higher bits. For ex-
ample, in Fig. 6.5 proper results can be accomplished by using the image produced
by the 4th significant bit of pixels values (Fig. 6.5¢). That binary image is less sen-
sitive to noise, but still contains enough information about image texture. However,
selection of the proper binary level strongly depends on image content. For images
with less homogeneous areas, higher levels could also be used as a proper represen-
tation.

6.4.1.3 Local Binary Pattern

Local Binary Pattern (LBP) is a simple and efficient texture operator obtained by
thresholding the neighbourhood of central pixels and representing the result as a
binary number [16]. It is simple to calculate but also has the important property of
robustness to illumination change.

The LBP of neighbourhood P and radius R is obtained by using the value of
central pixel g, as the threshold for defining values of neighbourhood pixels g,
according to equation (6.5).

1, x>0,

P—1
LPB(P,R) = Z s(gp—8c) x 27, s(x) = {O otherwise 6.5
p=0 ’ .

6 Copy-Move Forgery Detection Using Cellular Automata 115

a Grayscale image ¢ Second binary plane

d Third binary plane

g Sixth binary plane h Seventh binary plane i Eight binary plane

Fig. 6.5 Image binary planes

All values of neighbourhood pixels are represented by one bit according to the
value of central pixel, making a binary code that is assigned to the central pixel. An
example of a LBP image is shown in Fig. 6.6. It can be seen that LBP combines good
properties of thresholding and binary planes, because it preserves global shapes and
texture, but it also treats homogeneous region locally leaving enough information
for analysis.

Although the LBP image properly presents texture, it still has the same number of
intensity levels as a greyscale image (256) so it is not appropriate as image represen-
tation for cellular automata. Consequently, representation is defined using LBP but
only for calculating binary values of neighbourhood pixels. Every neighbourhood
is treated separately, and binary values of pixels in that neighbourhood are defined
according to the difference between current pixel and the mean value of all pix-
els in the neighbourhood and current pixel. Those values are then used as a binary

116 D. Tralic et al.

a Grayscale image b Local binary pattern

Fig. 6.6 Local binary pattern example

representation of texture in every neighbourhood [23]. It is important to notice that
representation for every neighbourhood in all blocks is based on the same technique,
but it still produce different results thanks to its dependence on mean values.

6.4.2 Plain CMF

Detection of a plain copy-move forgery is the easiest task for any detection algo-
rithm because the goal is simply to find two equal areas in the image. This refers
to the fact that properties are not changed during the translation of the copied area
to a new location because no transformation (for example, scaling or rotation) is
used. Also, in this case we assume that no post-processing is used (handling with
post-processing is described in Subsect. 6.4.3). Detection task for plain CMF can be
easily solved with the simple 1D CA applied on every block of image [23]:

1. For every pixel p, in the block define neighbourhood N for CA as a group of k
pixels from the row of the image above pixel p.. Pixels are chosen so that one
pixel straight above pixel p. and an equal number of neighbouring pixels from
both sides of p. is selected according to equation (6.6).

N(pc) = N(pxy) = {Px-&-i,y—h i= (_ |_k/2J’"'7 I_k/ZJ)} (6.6)

2. For every neighbourhood calculate the mean value using the pixel p. and its
neighbour pixels’ intensities. Use a mean value to threshold all pixels’ values p;
to binary values b; according to equation (6.7).

o I, pi> mean(N(pC) Upc)
bi= { 0, otherwise 6.7

3. Use the fast rule identification method proposed by Sun et al. [22] to gener-
ate a rule in the block that describes the relation between each pixel p. and its

6 Copy-Move Forgery Detection Using Cellular Automata 117

H
- > mean - l—y—}

KK ?0|0|

Fig. 6.7 Rule generation using 1D CA

neighbourhood. Note that Sun et al.’s method contains a step of neighbourhood
selection, but we can simply ignore it because we have a fixed neighbourhood
for each pixel.

The result of this process is a subset of rules for every block in the image that
describes the block’s texture and is used as a feature vector to distinguish copied
areas in the image. Figure 6.7 shows generation of one rule for one neighbourhood
in 7 x 7 block of the image. Neighbourhood of 5 pixels from one row of the image is
used for learning pixel p.. Intensity values of all pixels from the neighbourhood and
pixel p. are used for calculation of mean value and thresholding of pixels intensities
to binary values. After thresholding binary values of neighbourhood pixels are used
for learning binary value of pixel p..

The use of neighbourhood of size k gives total of N; possible rules, which leads
to even higher number of possible subsets of those rules Ny, according to equation
(6.8). Thus, number of neighbourhood pixels should be selected considering the
computational time and the accuracy of texture description.

Ny = 20 = 2% (6.8)

Figure 6.8 shows a few examples of plain CMF detection on images from the
CoMoFoD database [24]. A block size b of 32x32 pixels is used, and neighbour-
hood size k is set to 7. Values of thresholds are defined as follows: Ty = 0 and Ty
= 1.5xb = 48 pixels. The only pre-processing is just for conversion of RGB im-
ages into greyscale images, and no post-processing is used (for example, removal of
falsely detected areas). Detection is very accurate under different conditions, such
as presence of homogeneous regions (Fig. 6.8a) or complex textures (Fig. 6.8b).

Detection is less accurate in conditions where many areas have very similar prop-
erties, for example, areas with very small differences of pixels values. Figures 6.8c
and 6.8d show two examples of images where part of the area includes sky and
homogeneous regions with very similar values. Beside detection of copied regions,
much false detected area is also present, so detection in those cases is not satis-
factory. The problem is caused by very small differences between pixels values so
that in the thresholding process all blocks have very similar binary representations
resulting in similar sets of rules.

118 D. Tralic et al.

ssful CMFD on image with homogeneous regions (005_F)

b Successful CMFD on image with complex textures (011_F)

-i

¢ Problem with detection of sky (003_F)

e _—
b
A

d Problem with detection of homogeneous regions and sky (007_F)

Fig. 6.8 Plain CMFD (left: forged image, middle: expected result, right: actual result)

6 Copy-Move Forgery Detection Using Cellular Automata 119

Table 6.1 shows detection results for 40 plain CMF images from the CoMoFoD
database [24]. Block size and threshold T are chosen according to the image con-
tent in order to maximise the F-measure, threshold 7 is set to zero, and no post-
processing is applied. Results show that 82.5% of the images have a F-measure
score higher than 0.6, indicating that detection is very accurate. The main problem
for detection represents homogeneous regions because in that case many blocks are
falsely detected.

Furthermore, results achieved with this method are comparable with results of
other CMFD methods. Lower accuracy and weaker performances are noticeable
only in the case of large homogeneous regions with many pixels having similar
values. In that case, better results are achieved with methods that do not require rep-
resentation of the image in binary, such as DCT [9] or Zernike moments [19]. Better
performance in this case can be accomplished by changing the binary representa-
tion to produce a more discriminative description of such similar areas. However,
the advantage of the CA method is the very small number of false detected regions
in all other tested cases, for example images with more complex textures.

6.4.3 Application on Post-processed Images

Post-processing of forged images introduces differences in pixel values resulting
in differences in the binary representation and generated set of rules. One of the
common problems is detection of forgery in the image after the addition of noise.

Figure 6.9 shows degradation of performance with adding of Gaussian noise on
plain CMF image (simple 1D CA is used for detection). The result is accomplished
using image with added noise of zero mean and variance equal to 0.00001 (image
intensities were normalized to range [0,1] prior to addition of noise). Block size is
set to 32x 32 pixels and neighbourhood size of 7 pixels is used. Values of thresholds
are Ty =6 and T; = 1.5xb =48 pixels. Conversion of the RGB image into a greyscale
image is used before noise adding, and no post-processing is applied (for example,
removing of false detected areas). Even when the amount of noise is very small,
only part of the copied area is successfully detected (Fig. 6.9¢). A larger part of the
copied area can be detected by adjusting the similarity threshold for detection of
similar blocks, but that would also introduce much false detected area.

Coping with noise can be done by using simple pre-processing of image in the
form of filtering [23]. Figure 6.10 shows example of CMF detection on image with
Gaussian zero mean noise with variance equal to 0.0001. In the case when no pre-
processing is applied, detection is not possible at all (Fig. 6.10c). After application
of an averaging filter of size 3 X3 on noise image, detection becomes very accurate
(Fig. 6.10d).

Another very common post-processing method is image blurring. Figure 6.11
shows one example of detection of blurred image accomplished by applying of 3x3
filter. It is possible to notice that detection is quite accurate because blurring does
not affect pixels values in a way that changes properties of copied regions.

120

Table 6.1 Plain CMF detection for images from the CoMoFoD database

Image

001_F
002_F
003_F
004_F
005_F
006_F
007_F
008_F
009_F
010_F
011_F
012_F
013_F
014_F
015_F
016_F
017_F
018_F
019_F
020_F
021_F
022_F
023_F
024_F
025_F
026_F
027_F
028_F
029_F
030_F
031_F
032_F
033_F
034_F
035_F
036_F
037_F
038_F
039_F
040_F

Block size

16
16
16
16
32
32
16
any
32
16
16
16
16
16
16
32
32
16
16
16
16
16
32
32
16
16
16
16
16
16
16
16
16
32
32
any
16
16
16
32

Threshold 7T; Precision

40
35
40
25
40
40
25
any
40
25
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

0.6759
0.7031
0.2062
0.5643
0.9529
0.9133
0.0766
0.0000
1.0000
0.0384
0.9133
0.1760
0.9756
0.8907
0.9822
0.9316
0.9024
0.8482
0.8392
0.7711
0.9436
0.9207
0.9201
0.9649
0.8081
0.9671
0.9295
0.9767
0.9911
0.9970
0.8873
0.9016
0.8856
0.9709
0.9609
0.000

0.0043
09114
0.7508
1.0000

Recall

0.5778
1.0000
1.0000
1.0000
0.9522
1.0000
0.7401
0.0000
1.0000
0.9305
1.0000
0.9930
0.9807
0.9804
0.9932
0.8868
0.9969
0.7370
0.5980
0.7607
0.9558
0.8929
0.7278
1.0000
0.9048
0.9461
0.9271
0.9444
0.9734
1.0000
0.8849
0.9394
0.9728
0.8668
0.9902
0.0000
0.2066
1.0000
0.6961
0.9823

D. Tralic et al.

F-measure

0.6230
0.8257
0.3419
0.7214
0.9526
0.9546
0.1388
0.0000
1.0000
0.0738
0.9546
0.2989
0.9782
0.9334
0.9877
0.9086
0.9473
0.7887
0.6984
0.7659
0.9497
0.9066
0.8128
0.9822
0.8537
0.9565
0.9283
0.9603
0.9822
0.9985
0.8861
0.9201
0.9272
0.9159
0.9754
0.0000
0.0084
0.9536
0.7224
0.9911

6 Copy-Move Forgery Detection Using Cellular Automata 121

a Forged image (005_F) b Expected result (005_B) ¢ Result for zero mean noise with
variance of 0.00001

Fig. 6.9 Detection of images with noise

b Expected result (005_B)

¢ Result without any pre-processing d Result after filtering

Fig. 6.10 Detection of images with Gaussian zero mean noise (variance=0.0001) after
filtering

122 D. Tralic et al.

a Forged image (005_F) b Expected result (005_B) ¢ Actual result

Fig. 6.11 Detection of blurred image

6.5 Future Work

The current method is developed with the aim to cope with detection of plain CMF.
However, beside simple plain CMF, there are many different variations of forgery
where some additional transformation of the copied region is applied. Transforma-
tion can include some linear change of size (scaling) or orientation (rotation) of
the copied region. Furthermore, transformation can be done as a nonlinear function
where the transformation factor is not the same in all directions. Finally, more than
one transformation can be applied to the copied region.

The problem of detection of transformed copied area requires the definition of
more complicated neighbourhoods. Detection of rotated regions can be solved by
using a circular neighbourhood for every block of image. The learning process
would remain the same as in the case when 1D CA is used. On the other hand,
scaling of the copied region would require using more than one neighbourhood for
each block. Those neighbourhoods should have different size to allow detection of
changes in sizes of the copied region.

Furthermore, transformation of the copied region introduces small changes in
pixels values due to intensity interpolation effects. Those changes do not impact
the global texture of the copied region, but they affect the local thresholding process
when neighbourhood binary values are defined. Coping with this problem is possible
by application of more advanced thresholding methods for representation of images
in a binary way.

6.6 Conclusion

Digital image forgery has become a huge problem due to the simplicity of pro-
cessing of digital images. However, techniques for detection of forged images were
introduced in parallel with the development of forgery attacks. Detection methods
have some kinds of advantages and disadvantages, but there is still no unique method
for detection of all kinds of forgeries. One very common forgery type is copy-move
forgery (CMF) where part of the image is selected, copied and moved to a new

6 Copy-Move Forgery Detection Using Cellular Automata 123

location in the same image. Even if this kind of forgery is easy to carry out, success-
ful detection is still a problem of great interest.

Thanks to its property that very simple rules can result in very complex be-
haviour, cellular automata (CA) are commonly used for various image processing
tasks. The basic idea for using a CA for CMF detection is based on an assumption
that similar areas on the image should produce similar rules. The main approach is
one variation of block-based methods, where the image is divided into overlapping
blocks and each block’s properties are analysed. Thereby, CA are applied on every
overlapping block of forged image with the aim to generate a set of rules. This pro-
cess can be present as a selection of a subset of rules that describe the texture of
block from all possible rules.

Application of a CA on a greyscale image leads to a large number of possible
rules and an even larger number of possible subsets of those rules. Reduction of
number of rules can be accomplished by a proper binary representation of image,
resulting in only two possible values of cells states (as opposed to 256 in case when
a greyscale image is used). Thresholding of a greyscale image by global threshold
leads to binary image where much information about texture is lost, and usage of
binary planes is highly noise sensitive. In order to solve these issues, a new rep-
resentation of the image based on local binary pattern (LBP) is introduced. LBP
defines binary values of neighbourhood pixels based on a difference between cen-
tral and neighbourhood pixels. Consequently, LBP preserves local information but
also keeps enough global images’ information.

Detection of copy-move forgery is accomplished using simple 1D CA where the
neighbourhood for every pixel is defined as a group of pixels from the row above
the pixel under consideration. In our experiments, a neighbourhood size of 7 pix-
els showed best results according to computational time and detection accuracy.
Thresholding to binary values is based on the mean value of all pixels in the neigh-
bourhood and the pixel under consideration. The method is very reliable in different
testing conditions, but there are some cases when detection is difficult, such as in
the presence of homogeneous areas with small difference between pixels values. In
those situations many blocks are false detected as forged. The problem is caused by
the presence of similar values of pixels, leading to the same binary representation
and the same set of rules for different blocks.

The presented method shows robustness to blurring of the image with averaging
filters, but adding noise strongly affects the detection results. However, coping with
noise is possible by a simple pre-processing using an averaging filter to smooth the
image prior to applying the CA.

References

1. Amerini, I., Ballan, L., Caldelli, R., Bimbo, A.D., Serra, G.: A SIFT-based forensic
method for copy-move attack detection and transformation recovery. IEEE Transactions
on Information Forensics and Security 6(3), 1099—-1110 (2011)

2. Bashar, M., Noda, K., Ohnishi, N., Mori, K.: Exploring duplicated regions in natural
images. IEEE Transactions on Image Processing (2010) (accepted for publication)

124

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. Tralic et al.

Bayram, S., Sencar, H., Memon, N.: An efficient and robust method for detecting copy-
move forgery. In: IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pp. 1053-1056 (2009)

Bravo-Solorio, S., Nandi, A.K.: Exposing duplicated regions affected by reflection, rota-
tion and scaling. In: International Conference on Acoustics, Speech and Signal Process-
ing, pp. 1880-1883 (2011)

Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular
copy-move forgery detection approaches. IEEE Information Forensics and Security 7(6),
1841-1854 (2012)

Farid, H.: Image forgery detection: A survey. IEEE Signal Processing Magazine 26(2),
16-35 (2009)

Fridrich, J.: Digital image forensics. IEEE Signal Processing Magazine 26(2), 26-37
(2009)

Chen, M., Fridrich, J., Luk4s, J., Goljan, M.: Imaging sensor noise as digital X-ray for
revealing forgeries. In: Furon, T., Cayre, F., Doérr, G., Bas, P. (eds.) IH 2007. LNCS,
vol. 4567, pp. 342-358. Springer, Heidelberg (2008)

Fridrich, J., Soukal, D., Lukas, J.: Detection of copy move forgery in digital images. In:
Proc. Digital Forensic Research Workshop (2003)

Johnson, M.K., Farid, H.: Exposing digital forgeries by detecting inconsistencies in light-
ing. In: Proc. ACM Multimedia and Security Workshop, pp. 1-10 (2005)

Kang, X., Wei, S.: Identifying tampered regions using singular value decomposition in
digital image forensics. In: International Conference on Computer Science and Software
Engineering, New York, vol. 3, pp. 926-930 (2008)

Li, G., Wu, Q., Tu, D., Sun, S.: A sorted neighborhood approach for detecting duplicated
regions in image forgeries based on dwt and svd. In: IEEE International Conference on
Multimedia and Expo, pp. 1750-1753 (2007)

Lin, C.Y., Wu, M., Bloom, J., Cox, I., Miller, M., Lui, Y.: Rotation, scale, and translation
resilient watermarking for images. IEEE Transactions on Image Processing 10(5), 767—
782 (2001)

Lin, H., Wang, C., Kao, Y.: Fast copy-move forgery detection. WSEAS Transactions on
Signal Processing 5(5), 188-197 (2009)

Luo, W.,, Huang, J., Qiu, G.: Robust detection of region-duplication forgery in digital
images. IEEE Information Forensics and Security 4, 746-749 (2006)

Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale and rotation invari-
ant texture classification with local binary patterns. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 24(7), 971-987 (2002)

Popescu, A., Farid, H.: Exposing digital forgeries by detecting duplicated image regions.
Tech. rep. tr2004-515, Dartmouth College (2004)

Rosin, P.L.: Training cellular automata for image processing. IEEE Transaction on Image
Processing 15(7), 2076-2087 (2007)

Ryu, S.-J., Lee, M.-]., Lee, H.-K.: Detection of copy-rotate-move forgery using zernike
moments. In: Bohme, R., Fong, PW.L., Safavi-Naini, R. (eds.) IH 2010. LNCS,
vol. 6387, pp. 51-65. Springer, Heidelberg (2010)

Shivakumar, B.L., Baboo, S.: Detecting copy-move forgery in digital images: A sur-
vey and analysis of current methods. Global Journal of Computer Science and Technol-
ogy 10(7), 61-65 (2010)

Shivakumar, B.L., Baboo, S.: Detection of region duplication forgery in digital images
using surf. International Journal of Computer Science Issues 8(4), 199-205 (2011)

Sun, X., Rosin, P.L.., Martin, R.R.: Fast rule identification and neighborhood selection for
cellular automata. IEEE Transactions on Systems, Man, and Cybernetics - Part B 41(3),
749-760 (2011)

23.

24.

25.

26.

Copy-Move Forgery Detection Using Cellular Automata 125

Tralic, D., Rosin, P.L., Sun, X., Grgic, S.: Detection of duplicated image regions using
cellular automata. In: International Conference on Systems, Signals and Image Process-
ing (2014) (accepted for publishing)

Tralic, D., Zupancic, 1., Grgic, S., Grgic, M.: Comofod-new database for copy-move
forgery detection. In: Proc. 55th International Symposium ELMAR 2013, pp. 49-54
(2013)

Wang, J., Liu, G., Li, H., Dai, Y., Wang, Z.: Detection of image region duplication forgery
using model with circle blocks, pp. 25-29 (2009)

Wang, J., Liu, G., Zhang, Z., Dai, Y., Wang, Z.: Fast and robust forensics for image
region-duplication forgery. Acta Automatica Sinica 35(12), 1488-1495 (2009)

	Copy-Move Forgery Detection Using CellularAutomata
	6.1 Introduction
	6.2 Copy-Move Forgery (CMF)
	6.3 Copy-Move Forgery Detection (CMFD)
	6.3.1 Block-Based Method for CMFD
	6.3.2 Possible Feature Vectors

	6.4 CA for CMF Detection
	6.4.1 Representation of Image in Binary
	6.4.2 Plain CMF
	6.4.3 Application on Post-processed Images

	6.5 Future Work
	6.6 Conclusion
	References

